Research article

Infinitely many solutions for a critical $ p(x) $-Kirchhoff equation with Steklov boundary value

  • Received: 11 July 2024 Revised: 17 August 2024 Accepted: 04 September 2024 Published: 30 September 2024
  • MSC : 35J20, 35J15, 35J25

  • In this paper, we aim to tackle the questions of existence and multiplicity of solutions of the $ p(x) $-Kirchhoff problem involving critical exponent and the Steklov boundary value. Further, we research the results from the theory of variable exponent Sobolev spaces, the concentration-compactness principle, and the symmetric mountain pass theorem.

    Citation: Khaled Kefi, Abdeljabbar Ghanmi, Abdelhakim Sahbani, Mohammed M. Al-Shomrani. Infinitely many solutions for a critical $ p(x) $-Kirchhoff equation with Steklov boundary value[J]. AIMS Mathematics, 2024, 9(10): 28361-28378. doi: 10.3934/math.20241376

    Related Papers:

  • In this paper, we aim to tackle the questions of existence and multiplicity of solutions of the $ p(x) $-Kirchhoff problem involving critical exponent and the Steklov boundary value. Further, we research the results from the theory of variable exponent Sobolev spaces, the concentration-compactness principle, and the symmetric mountain pass theorem.



    加载中


    [1] V. Ambrosio, T. Isernia, Concentration phenomena for a fractional Schrödinger‐Kirchhoff type equation, Math. Meth. Appl. Sci., 41 (2018), 615–645. https://doi.org/10.1002/mma.4633 doi: 10.1002/mma.4633
    [2] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Func. Anal., 14 (1973), 349–381. https://doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7
    [3] J. G. Azorero, I. P. Alonso, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer. Math. Soc., 323 (1991), 877–895. https://doi.org/10.1090/S0002-9947-1991-1083144-2 doi: 10.1090/S0002-9947-1991-1083144-2
    [4] A. Bahri, P. L. Lions, On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 365–413. https://doi.org/10.1016/s0294-1449(97)80142-4 doi: 10.1016/s0294-1449(97)80142-4
    [5] J. Bonder, A. Silva, Concentration-copactness principle for variable exponent spaces and applications, Electron J. Differ. Eq., 141 (2010).
    [6] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383–1406. https://doi.org/10.1137/050624522 doi: 10.1137/050624522
    [7] R. Chammem, A. Ghanmi, A. Sahbani, Existence and multiplicity of solution for some Styklove problem involving $\kappa(x)$-Laplacian operator, Appl. Anal., 2020, 1–18.
    [8] R. Chammem, A. Sahbani, Existence and multiplicity of solution for some Styklove problem involving $(p_{1}(x), p_{2}(x))$-Laplacian operator, Appl. Anal., 2021, 1–16.
    [9] R. Chammam, A. Sahbani, A. Saidani, Multiplicity of solutions for variableorder fractional Kirchhoff problem with singular term, Quaest. Math., 2024.
    [10] G. Dai, R. Hao, Existence of solutions for a $p(x)$-Kirchhoff-type equation, J. Math. Anal. Appl., 359 (2009), 275–284. https://doi.org/10.1016/j.jmaa.2009.05.031 doi: 10.1016/j.jmaa.2009.05.031
    [11] L. Diening, P. Harjulehto, P. Hästö, M. Ružička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, Springer, Heidelberg, 2011.
    [12] G. Dai, D. Liu, Infinitely many positive solutions for a $p(x)$-Kirchhoff-type equation, J. Math. Anal. Appl., 359 (2009), 704–710. https://doi.org/10.1016/j.jmaa.2009.06.012 doi: 10.1016/j.jmaa.2009.06.012
    [13] G. Dai, R. Ma, Solutions for a $p(x)$-Kirchhoff type equation with Neumann boundary data, Nonlinear Anal.-Real, 12 (2011), 2666–2680. https://doi.org/10.1016/j.nonrwa.2011.03.013 doi: 10.1016/j.nonrwa.2011.03.013
    [14] R. Ezati, N. Nyamoradi, Existence of solutions to a Kirchhoff $\psi$-Hilfer fractional $p$‐Laplacian equations, Math. Meth. Appl. Sci., 44 (2021), 12909–12920. https://doi.org/10.1002/mma.7593 doi: 10.1002/mma.7593
    [15] X. Fan, Q. Zhang, D. Zhao, Eigenvalues of $p(x)$-Laplacian Dirichlet problem, J. Math. Anal. Appl., 302 (2015), 306–317.
    [16] X. Fan, D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424–446.
    [17] A. Fiscella, P. Pucci, $p$-fractional Kirchhoff equations involving critical nonlinearities, Nonlinear Anal.-Real, 35 (2017), 350–378. https://doi.org/10.1016/j.nonrwa.2016.11.004 doi: 10.1016/j.nonrwa.2016.11.004
    [18] Y. Fu, The principle of concentration compactness in $L^{p(x)}$ spaces and its application, Nonlinear Anal., 71 (2009), 1876–1892. https://doi.org/10.1016/j.na.2009.01.023 doi: 10.1016/j.na.2009.01.023
    [19] A. Ghanmi, A. Sahbani, Existence results for p(x)-biharmonic problems involving a singular and a Hardy type nonlinearities, AIMS Math., 8 (2023), 29892–29909. https://doi.org/10.3934/math.20231528 doi: 10.3934/math.20231528
    [20] T. C. Halsey, Electrorheological fluids, Science, 258 (1992), 761–766. https://doi.org/10.1126/science.258.5083.761 doi: 10.1126/science.258.5083.761
    [21] P. L. Lions, The concentration-compactness principle in the calculus of variations, The limit case, Part 1, Rev. Mat. Iberoam., 1 (1985), 145–201. https://doi.org/10.4171/rmi/6 doi: 10.4171/rmi/6
    [22] M. Q. Xiang, V. D. Rădulescu, B. Zhang, Nonlocal Kirchhoff problems with singular exponential nonlinearity, Appl. Math. Optim., 84 (2020). https://doi.org/10.1007/s00245-020-09666-3 doi: 10.1007/s00245-020-09666-3
    [23] M. Mihăilescu, V. Rădulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, P. Roy. Soc. A, 462 (2006), 2625–2641. https://doi.org/10.1098/rspa.2005.1633 doi: 10.1098/rspa.2005.1633
    [24] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, In: CBMS Regional Conference Series in Mathematics, vol. 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1986, by the American Mathematical Society, Providence, RI.
    [25] M. Ruzicka, Electrorheological fluids: Modelling and mathematical theory, Lecture notes in math., Berlin: Springer-Verlag, 1784 (2000).
    [26] A. Sahbani, Infinitely many solutions for problems involving Laplacian and biharmonic operators, Com. Var Ell. Equ., 2023, 1–15.
    [27] J. V. da C. Sousa, K. D. Kucche, J. J. Nieto, Existence and multiplicity of solutions for fractional $\kappa(\xi)$-Kirchhoff-type equation, Qual. Theor. Dyn. Syst., 2023. https://doi.org/10.1007/s12346-023-00877-x doi: 10.1007/s12346-023-00877-x
    [28] J. V. da C. Sousa, C. T. Ledesma, M. Pigossi, J. Zuo, Nehari manifold for weighted singular fractional $p$-Laplace equations, Bull. Braz. Math. Soc., 53 (2022), 1245–1275. https://doi.org/10.1007/s00574-022-00302-y doi: 10.1007/s00574-022-00302-y
    [29] M. Xiang, B. Zhang, V. Rădulescu, Superlinear Schrödinger-Kirchhoff type problems involving the fractional p-Laplacian and critical exponent, Adv. Nonlinear Anal., 9 (2020), 690–709. https://doi.org/10.1515/anona-2020-0021 doi: 10.1515/anona-2020-0021
    [30] Z. Yücedag, Infinitely many solutions for p(x)-Kirchhoff type equation with Steklov boundary value, Miskolc Math. Notes, 23 (2022), 987–999. https://doi.org/10.18514/MMN.2022.4078 doi: 10.18514/MMN.2022.4078
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(395) PDF downloads(92) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog