Research article Topical Sections

On the study the radius of analyticity for Korteweg-de-Vries type systems with a weakly damping

  • Received: 29 August 2024 Revised: 24 September 2024 Accepted: 25 September 2024 Published: 30 September 2024
  • MSC : 35B40, 35L70

  • In the present paper, we considered a Korteweg-de Vries type system with weakly damping terms and initial data in the analytic Gevery spaces. The presence of tow functions $ c_1(x), c_2(x) $, called damping coefficients, made the system more interesting from an application point of view due to their great importance in physics. To start, by using the fixed point theorem in Banach space, we investigated the local well-posedness. Additionally, by employing an approximate conservation law, we extended this to be global in time, ensuring that the radius of analyticity of solutions remained uniformly bounded below by a fixed positive number for all time.

    Citation: Sadok Otmani, Aissa Bouharou, Khaled Zennir, Keltoum Bouhali, Abdelkader Moumen, Mohamed Bouye. On the study the radius of analyticity for Korteweg-de-Vries type systems with a weakly damping[J]. AIMS Mathematics, 2024, 9(10): 28341-28360. doi: 10.3934/math.20241375

    Related Papers:

  • In the present paper, we considered a Korteweg-de Vries type system with weakly damping terms and initial data in the analytic Gevery spaces. The presence of tow functions $ c_1(x), c_2(x) $, called damping coefficients, made the system more interesting from an application point of view due to their great importance in physics. To start, by using the fixed point theorem in Banach space, we investigated the local well-posedness. Additionally, by employing an approximate conservation law, we extended this to be global in time, ensuring that the radius of analyticity of solutions remained uniformly bounded below by a fixed positive number for all time.



    加载中


    [1] M. Bjorkavag, H. Kalisch, Radius of analyticity and exponential convergence for spectral projections of the generalized KdV equation, Commun. Nonlinear Sci., 15 (2010), 869–880. https://doi.org/10.1016/j.cnsns.2009.05.015 doi: 10.1016/j.cnsns.2009.05.015
    [2] M. Wang, Nondecreasing analytic radius for the KdV equation with a weakly damping, Nonlinear Anal., 215 (2022), 112653. https://doi.org/10.1016/j.na.2021.112653 doi: 10.1016/j.na.2021.112653
    [3] A. Boukarou, D. O. da Silva, On the radius of analyticity for a Korteweg-de Vries-Kawahara equation with a weak damping term, Z. Anal. Anwend., 42 (2024), 359–374. https://doi.org/10.4171/ZAA/1743 doi: 10.4171/ZAA/1743
    [4] K. Liu, M. Wang, Fixed analytic radius lower bound for the dissipative KdV equation on the real line, Nonlinear Diff. Equ. Appl., 29 (2022), 57. https://doi.org/10.1007/s00030-022-00789-w doi: 10.1007/s00030-022-00789-w
    [5] G. P. Menzala, C. F. Vasconcellos, E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping, Q. Appl. Math., 60 (2002), 111–129. https://doi.org/10.1090/qam/1878262 doi: 10.1090/qam/1878262
    [6] S. Selberg, D. O. Da Silva, Lower bounds on the radius of spatial analyticity for the KdV equation, Ann. Henri Poincaré, 18 (2017), 1009–1023. https://doi.org/10.1007/s00023-016-0498-1 doi: 10.1007/s00023-016-0498-1
    [7] L. Rosier, B. Y. Zhang, Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain, SIAM J. Control Optim., 45 (2006), 927–956. https://doi.org/10.1137/050631409 doi: 10.1137/050631409
    [8] T. Oh, Diophantine conditions in well-posedness theory of coupled KdV-type systems: Local theory, Int. Math. Res. Notices, 18 (2009), 3516–3556. https://doi.org/10.1093/imrn/rnp063 doi: 10.1093/imrn/rnp063
    [9] Y. Guo, K. Simon, E. S. Titi, Global well-posedness of a system of nonlinearly coupled KdV equations of Majda and Biello, Commun. Math. Sci., 13 (2015), 1261–1288. https://doi.org/10.4310/CMS.2015.v13.n5.a9 doi: 10.4310/CMS.2015.v13.n5.a9
    [10] X. Yang, B. Y. Zhang, Local well-posedness of the coupled KdV-KdV systems on $\mathbb {R} $, Evol. Equ. Control The., 11 (2022), 1829–1871. https://doi.org/10.3934/eect.2022002 doi: 10.3934/eect.2022002
    [11] X. Carvajal, M. Panthee, Sharp well-posedness for a coupled system of mKdV-type equations, J. Evol. Equ., 19 (2019), 1167–1197. https://doi.org/10.1007/s00028-019-00508-6 doi: 10.1007/s00028-019-00508-6
    [12] M. Ablowitz, D. Kaup, A. Newell, H. Segur, Nonlinear evolution equations of physical significance, Phys. Rev. Lett., 31 (1973), 125–127. https://doi.org/10.1103/PhysRevLett.31.125 doi: 10.1103/PhysRevLett.31.125
    [13] A. Boukarou, K. Zennir, M. Bouye, A. Moumen, Nondecreasing analytic radius for the a Kawahara-Korteweg-de-Vries equation, AIMS Math., 9 (2024), 22414–22434. https://doi.org/10.3934/math.20241090 doi: 10.3934/math.20241090
    [14] A. Boukarou, K. Guerbati, K. Zennir, S. Alodhaibi, S. Alkhalaf, Well-posedness and time regularity for a system of modified Korteweg-de Vries-type equations in analytic Gevrey spaces, Mathematics, 8 (2020), 809. https://doi.org/10.3390/math8050809 doi: 10.3390/math8050809
    [15] J. Cohen, G. Wang, Global well-posedness for a system of KdV-type equations with coupled quadratic nonlinearities, Nagoya Math. J., 215 (2014), 67–149. https://doi.org/10.1017/S0027763000010928 doi: 10.1017/S0027763000010928
    [16] S. G. Georgiev, A. Boukarou, K. Zennir, Classical solutions for the coupled system gKdV equations, Russ. Math., 66 (2022), 1–15. https://doi.org/10.3103/S1066369X22120052 doi: 10.3103/S1066369X22120052
    [17] Y. Katznelson, An introduction to harmonic analysis, New York: Dover Publications, 1976.
    [18] A. Tesfahun, On the radius of spatial analyticity for cubic nonlinear Schrodinger equations, J. Differ. Equations, 263 (2017), 7496–7512. https://doi.org/10.1016/j.jde.2017.08.009 doi: 10.1016/j.jde.2017.08.009
    [19] C. E. Kenig, G. Ponce, L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993), 1–21. https://doi.org/10.1215/S0012-7094-93-07101-3 doi: 10.1215/S0012-7094-93-07101-3
    [20] B. A. Samaniego, X. Carvajal, On the local well-posedness for some systems of coupled KdV equations, Nonlinear Anal.-Theor., 69 (2008), 692–715. https://doi.org/10.1016/j.na.2007.06.009 doi: 10.1016/j.na.2007.06.009
    [21] K. Bouhali, A. Moumen, K. W. Tajer, K. O. Taha, Y. Altayeb, Spatial analyticity of solutions to Korteweg-de Vries type equations, Math. Comput. Appl., 26 (2021), 75. https://doi.org/10.3390/mca26040075 doi: 10.3390/mca26040075
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(338) PDF downloads(51) Cited by(0)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog