We investigate the resonance problem and prove the existence of multiple periodic solutions to a second order parameter-dependent equation $ x''+f(t, x) = sp(t) $. We weaken the usual requirement on the sublinearity of perturbations when $ |x| $ becomes large; and develop a more general method to investigate the rotational characterizations of the Landesman-Lazer conditions. Furthermore, $ f $ does not satisfy the common sign condition, and even the global existence of the solution is not guaranteed.
Citation: Chunlian Liu, Shuang Wang, Fanfan Chen. Resonance with Landesman-Lazer conditions for parameter-dependent equations: a multiplicity result via the Poincaré-Birkhoff theorem[J]. AIMS Mathematics, 2024, 9(10): 28320-28340. doi: 10.3934/math.20241374
We investigate the resonance problem and prove the existence of multiple periodic solutions to a second order parameter-dependent equation $ x''+f(t, x) = sp(t) $. We weaken the usual requirement on the sublinearity of perturbations when $ |x| $ becomes large; and develop a more general method to investigate the rotational characterizations of the Landesman-Lazer conditions. Furthermore, $ f $ does not satisfy the common sign condition, and even the global existence of the solution is not guaranteed.
[1] | M. S. Berger, E. Podolak, On the solutions of a nonlinear Dirichlet problem, Indiana Univ. Math. J., 24 (1975), 837–846. |
[2] | A. C. Lazer, P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev., 32 (1990), 537–578. https://doi.org/ 10.1137/1032120 doi: 10.1137/1032120 |
[3] | C. Fabry, J. Mawhin, M. N. Nkashama, A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations, Bull. London Math. Soc., 18 (1986), 173–180. https://doi.org/10.1112/blms/18.2.173 doi: 10.1112/blms/18.2.173 |
[4] | A. C. Lazer, P. J. McKenna, Large scale oscillatory behaviour in loaded asymmetric systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), 243–274. https://doi.org/10.1016/S0294-1449(16)30368-7 doi: 10.1016/S0294-1449(16)30368-7 |
[5] | R. Ortega, Stability of a periodic problem of Ambrosetti-Prodi type, Differ. Integral Equ., 3 (1990), 275–284. https://doi.org/10.57262/die/1371586143 doi: 10.57262/die/1371586143 |
[6] | M. A. Del Pino, R. F. Manásevich, A. Murua, On the number of $2\pi$ periodic solutions for $u''+g(u) = s(1+h(t))$ using the Poincaré-Birkhoff theorem, J. Differ. Equ., 95 (1992), 240–258. https://doi.org/10.1016/0022-0396(92)90031-h doi: 10.1016/0022-0396(92)90031-h |
[7] | B. Zinner, Multiplicity of solutions for a class of superlinear Sturm-Liouville problems, J. Math. Anal. Appl., 176 (1993), 282–291. https://doi.org/10.1006/jmaa.1993.1213 doi: 10.1006/jmaa.1993.1213 |
[8] | C. Rebelo, F. Zanolin, Multiplicity results for periodic solutions of second order odes with asymmetric nonlinearities, Trans. Amer. Math. Soc., 348 (1996), 2349–2389. https://doi.org/10.1090/S0002-9947-96-01580-2 doi: 10.1090/S0002-9947-96-01580-2 |
[9] | C. Zanini, F. Zanolin, A multiplicity result of periodic solutions for parameter dependent asymmetric non-autonomous equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 12 (2005), 343–361. |
[10] | A. Fonda, L. Ghirardelli, Multiple periodic solutions of scalar second order differential equations, Nonlinear Anal., 72 (2010), 4005–4015. https://doi.org/10.1016/j.na.2010.01.032 doi: 10.1016/j.na.2010.01.032 |
[11] | A. Boscaggin, A. Fonda, M. Garrione, A multiplicity result for periodic solutions of second order differential equations with a singularity, Nonlinear Anal., 75 (2012), 4457–4470. https://doi.org/10.1016/j.na.2011.10.025 doi: 10.1016/j.na.2011.10.025 |
[12] | C. L. Liu, S. Wang, Multiple periodic solutions of second order parameter-dependent equations via rotation numbers, AIMS Math., 8 (2023), 25195–25219. https://doi.org/ 10.3934/math.20231285 doi: 10.3934/math.20231285 |
[13] | A. Calamai, A. Sfecci, Multiplicity of periodic solutions for systems of weakly coupled parametrized second order differential equations, Nonlinear Differ. Equ. Appl., 24 (2017), 1–17. https://doi.org/10.1007/s00030-016-0427-5 doi: 10.1007/s00030-016-0427-5 |
[14] | E. M. Landesman, A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech., 19 (1970), 609–623. |
[15] | C. Fabry, A. Fonda, Periodic solutions of nonlinear differential equations with double resonance, Ann. Mat. Pura Appl., 157 (1990), 99–116. https://doi.org/10.1007/BF01765314 doi: 10.1007/BF01765314 |
[16] | C. Fabry, Landesman-Lazer conditions for periodic boundary value problems with asymmetric nonlinearities, J. Differ. Equ., 116 (1995), 405–418. https://doi.org/ 10.1006/jdeq.1995.1040 doi: 10.1006/jdeq.1995.1040 |
[17] | A. Fonda, M. Garrione, Double resonance with Landesman-Lazer conditions for planar systems of ordinary differential equations, J. Differ. Equ., 250 (2011), 1052–1082. https://doi.org/10.1016/j.jde.2010.08.006 doi: 10.1016/j.jde.2010.08.006 |
[18] | A. Boscaggin, M. Garrione, Resonance and rotation numbers for planar Hamiltonian systems: multiplicity results via the Poincaré-Birkhoff theorem, Nonlinear Anal., 74 (2011), 4166–4185. https://doi.org/10.1016/j.na.2011.03.051 doi: 10.1016/j.na.2011.03.051 |
[19] | M. Garrione, A. Margheri, C. Rebelo, Nonautonomous nonlinear ODEs: nonresonance conditions and rotation numbers, J. Math. Anal. Appl., 473 (2019), 490–509. https://doi.org/ 10.1016/j.jmaa.2018.12.063 doi: 10.1016/j.jmaa.2018.12.063 |
[20] | C. L. Liu, D. B. Qian, P. J. Torres, Non-resonance and double resonance for a planar system via rotation numbers, Results Math., 76 (2021), 1–23. https://doi.org/10.1007/s00025-021-01401-w doi: 10.1007/s00025-021-01401-w |
[21] | A. Fonda, A. J. Ureña, A higher dimensional Poincaré-Birkhoff theorem for Hamiltonian flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 679–698. https://doi.org/ 10.1016/j.anihpc.2016.04.002 doi: 10.1016/j.anihpc.2016.04.002 |
[22] | D. B. Qian, P. J. Torres, P. Y. Wang, Periodic solutions of second order equations via rotation numbers, J. Differ. Equ., 266 (2019), 4746–4768. https://doi.org/10.1016/j.jde.2018.10.010 doi: 10.1016/j.jde.2018.10.010 |
[23] | F. F. Chen, D. B. Qian, An extension of the Poincaré-Birkhoff theorem for Hamiltonian systems coupling resonant linear components with twisting components, J. Differ. Equ., 321 (2022), 415–448. https://doi.org/10.1016/j.jde.2022.03.016 doi: 10.1016/j.jde.2022.03.016 |
[24] | Q. B. Yin, Y. Guo, D. Wu, X. B. Shu, Existence and multiplicity of mild solutions for first-order Hamilton random impulsive differential equations with Dirichlet boundary conditions, Qual. Theory Dyn. Syst., 22 (2023), 47. https://doi.org/10.1007/s12346-023-00748-5 doi: 10.1007/s12346-023-00748-5 |
[25] | S. Wang, Periodic solutions of weakly coupled superlinear systems with indefinite terms, Nonlinear Differ. Equ. Appl., 29 (2022), 36. https://doi.org/10.1007/s00030-022-00768-1 doi: 10.1007/s00030-022-00768-1 |
[26] | C. Rebelo, A note on the Poincaré-Birkhoff fixed point theorem and periodic solutions of planar systems, Nonlinear Anal., 29 (1997), 291–311. https://doi.org/10.1016/S0362-546X(96)00065-X doi: 10.1016/S0362-546X(96)00065-X |