Research article

Some results for a variation-inequality problem with fourth order p(x)-Kirchhoff operator arising from options on fresh agricultural products

  • Received: 26 October 2022 Revised: 20 December 2022 Accepted: 23 December 2022 Published: 09 January 2023
  • MSC : 35K99, 97M30

  • In this paper, we study variation-inequality initial-boundary value problems with fouth order $ p(x) $-Kirchhoff operators. First, an operator is constructed based on the Leray Schauder principle, and the existence of solutions is obtained. Secondly, the stability and uniqueness of the solution are analyzed after the conditions are appropriately relaxed on the Kirchhoff operators.

    Citation: Tao Wu. Some results for a variation-inequality problem with fourth order p(x)-Kirchhoff operator arising from options on fresh agricultural products[J]. AIMS Mathematics, 2023, 8(3): 6749-6762. doi: 10.3934/math.2023343

    Related Papers:

  • In this paper, we study variation-inequality initial-boundary value problems with fouth order $ p(x) $-Kirchhoff operators. First, an operator is constructed based on the Leray Schauder principle, and the existence of solutions is obtained. Secondly, the stability and uniqueness of the solution are analyzed after the conditions are appropriately relaxed on the Kirchhoff operators.



    加载中


    [1] W. Chen, T. Zhou, Existence of solutions for p-Laplacian parabolic Kirchhoff equation, Appl. Math. Lett., 122 (2021), 107527. http://dx.doi.org/10.1016/j.aml.2021.107527 doi: 10.1016/j.aml.2021.107527
    [2] I. Lasiecka, J. H. Rodrigues, Weak and strong semigroups in structural acoustic Kirchhoff-Boussinesq interactions with boundary feedback, J. Differ. Equations, 298 (2021), 387–429. http://dx.doi.org/10.1016/j.jde.2021.07.009 doi: 10.1016/j.jde.2021.07.009
    [3] C. Vetro, Variable exponent $p(x)$-Kirchhoff type problem with convection, J. Math. Anal. Appl., 506 (2022), 125721. http://dx.doi.org/10.1016/j.jmaa.2021.125721 doi: 10.1016/j.jmaa.2021.125721
    [4] N. D. Phuong, N. H. Tuan, Z. Hammouch, R. Sakthivel, On a pseudo-parabolic equations with a non-local term of the Kirchhoff type with random Gaussian white noise, Chaos Soliton. Fract., 145 (2021), 110771. http://dx.doi.org/10.1016/j.chaos.2021.110771 doi: 10.1016/j.chaos.2021.110771
    [5] M. Xiang, D. Hu, D. Yang, Least energy solutions for fractional Kirchhoff problems with logarithmic nonlinearity, Nonlinear Anal., 198 (2020), 111899. http://dx.doi.org/10.1016/j.na.2020.111899 doi: 10.1016/j.na.2020.111899
    [6] M. Xiang, D. Yang, Nonlocal Kirchhoff problems: Extinction and non-extinction of solutions, J. Math. Anal. Appl., 477 (2019), 133–152. http://dx.doi.org/10.1016/j.jmaa.2019.04.020 doi: 10.1016/j.jmaa.2019.04.020
    [7] Y. Han, Q. Li, Threshold results for the existence of global and blow-up solutions to Kirchhoff equations with arbitrary initial energy, Comput. Math. Appl., 75 (2018), 3283–3297. http://dx.doi.org/10.48550/arXiv.1703.09094 doi: 10.48550/arXiv.1703.09094
    [8] B. Guo, H. Zhou, Output feedback stabilization for multi-dimensional Kirchhoff plate with general corrupted boundary observation, Eur. J. Control, 28 (2016), 38–48. http://dx.doi.org/10.1016/j.ejcon.2015.12.004 doi: 10.1016/j.ejcon.2015.12.004
    [9] I. Lasiecka, M. Pokojovy, X. Wand, Global existence and exponential stability for a nonlinear thermoelastic Kirchhoff-Love plate, Nonlinear Anal.-Real, 38 (2017), 184–221. http://dx.doi.org/10.1016/J.NONRWA.2017.04.001 doi: 10.1016/J.NONRWA.2017.04.001
    [10] M. Ghisi, M. Gobbino, Optimal decay-error estimates for the hyperbolic-parabolic singular perturbation of a degenerate nonlinear equation, J. Differ. Equations, 254 (2013), 911–932. http://dx.doi.org/10.1016/j.jde.2012.10.005 doi: 10.1016/j.jde.2012.10.005
    [11] Z. Yang, Longtime behavior of the Kirchhoff type equation with strong damping on RN, J. Differ. Equations, 242 (2007), 269–286. http://dx.doi.org/10.1016/j.jde.2007.08.004 doi: 10.1016/j.jde.2007.08.004
    [12] I. Lasiecka, M. Pokojovy, X. Wan, Long-time behavior of quasilinear thermoelastic Kirchhoff-Love plates with second sound, Nonlinear Anal., 186 (2019), 219–258. http://dx.doi.org/10.48550/arXiv.1811.01138 doi: 10.48550/arXiv.1811.01138
    [13] T. Boudjeriou, M. K. Hamdani, M. Bayrami-Aminloue, Global existence, blow-up and asymptotic behavior of solutions for a class of $p(x)$-Choquard diffusion equations in RN, J. Math. Anal. Appl., 506 (2022), 125720. http://dx.doi.org/10.1016/j.jmaa.2021.125720 doi: 10.1016/j.jmaa.2021.125720
    [14] Y. Sun, H. Wang, Study of weak solutions for a class of degenerate parabolic variational inequalities with variable exponent, Symmetry, 14 (2022), 1255. http://dx.doi.org/10.3390/sym14061255 doi: 10.3390/sym14061255
    [15] D. Adak, G. Manzini, S. Natarajan, Virtual element approximation of two-dimensional parabolic variational inequalities, Comput. Math. Appl., 116 (2022), 48–70. http://dx.doi.org/10.1016/j.camwa.2021.09.007 doi: 10.1016/j.camwa.2021.09.007
    [16] J. Dabaghi, V. Martin, M. Vohralík, A posteriori estimates distinguishing the error components and adaptive stopping criteria for numerical approximations of parabolic variational inequalities, Comput. Method. Appl. M., 367 (2020), 113105. http://dx.doi.org/10.1016/j.cma.2020.113105 doi: 10.1016/j.cma.2020.113105
    [17] J. Li, C. Bi, Study of weak solutions of variational inequality systems with degenerate parabolic operators and quasilinear terms arising Americian option pricing problems, AIMS Math., 7 (2022), 19758–19769. http://dx.doi.org/10.3934/math.20221083 doi: 10.3934/math.20221083
    [18] X. Chen, F. Yi, Parabolic variational inequality with parameter and gradient constraints, J. Math. Anal. Appl., 385 (2012), 928–946. http://dx.doi.org/10.1016/j.jmaa.2011.07.025 doi: 10.1016/j.jmaa.2011.07.025
    [19] X. Chen, F. Yi, L. Wang, American lookback option with fixed strike price 2-D parabolic variational inequality, J. Differ. Equations, 251 (2011), 3063–3089. http://dx.doi.org/10.1016/j.jde.2011.07.027 doi: 10.1016/j.jde.2011.07.027
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1142) PDF downloads(53) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog