Research article Special Issues

Locally quasihyperbolic mappings in real Banach spaces

  • Received: 17 June 2024 Revised: 20 September 2024 Accepted: 23 September 2024 Published: 29 September 2024
  • MSC : 30C65, 30F45, 30L10

  • In this paper, we use locally quasihyperbolic mappings to establish a characterization for quasihyperbolic mappings in Banach spaces. More generally, we prove that locally coarsely quasihyperbolic mappings are coarsely quasihyperbolic mappings, while the converse is invalid.

    Citation: Caicai Hu. Locally quasihyperbolic mappings in real Banach spaces[J]. AIMS Mathematics, 2024, 9(10): 28295-28305. doi: 10.3934/math.20241372

    Related Papers:

  • In this paper, we use locally quasihyperbolic mappings to establish a characterization for quasihyperbolic mappings in Banach spaces. More generally, we prove that locally coarsely quasihyperbolic mappings are coarsely quasihyperbolic mappings, while the converse is invalid.



    加载中


    [1] F. W. Gehring, B. G. Osgood, Uniform domains and the quasi-hyperbolic metric, J. Anal. Math., 36 (1979), 50–74. https://doi.org/10.1007/BF02798768 doi: 10.1007/BF02798768
    [2] F. W. Gehring, B. P. Palka, Quasiconformally homogeneous domains, J. Anal. Math., 30 (1976), 172–199. https://doi.org/10.1007/BF02786713 doi: 10.1007/BF02786713
    [3] Y. He, M. Huang, X. Wang, Bilipschitz mappings and quasihyperbolic mappings in real Banach spaces, Ann. Fenn. Math., 46 (2021), 771–779. https://doi.org/10.5186/aasfm.2021.4650 doi: 10.5186/aasfm.2021.4650
    [4] X. Huang, H. Liu, J. Liu, Local properties of quasihyperbolic mappings in metric spaces, Ann. Fenn. Math., 41 (2016), 23–40. https://doi.org/10.5186/aasfm.2016.4106 doi: 10.5186/aasfm.2016.4106
    [5] R. Klén, M. Vuorinen, X. Zhang, Quasihyperbolic metric and Möbius transformations, Proc. Amer. Math. Soc., 142 (2014), 311–322. https://doi.org/10.1090/S0002-9939-2013-11765-X doi: 10.1090/S0002-9939-2013-11765-X
    [6] P. Tukia, J. Väisälä, Quasisymmetric embeddings of metric spaces, Ann. Fenn. Math., 5 (1980), 97–114. https://doi.org/10.5186/aasfm.1980.0531 doi: 10.5186/aasfm.1980.0531
    [7] J. Väisälä, Free quasiconformality in Banach spaces I, Ann. Fenn. Math., 15 (1990), 355–379. https://doi.org/10.5186/aasfm.1990.1527 doi: 10.5186/aasfm.1990.1527
    [8] J. Väisälä, Free quasiconformality in Banach spaces II, Ann. Fenn. Math., 16 (1991), 255–310. https://doi.org/10.5186/aasfm.1991.1629 doi: 10.5186/aasfm.1991.1629
    [9] J. Väisälä, Free quasiconformality in Banach spaces III, Ann. Fenn. Math., 17 (1992), 393–408. https://doi.org/10.5186/aasfm.1992.1732 doi: 10.5186/aasfm.1992.1732
    [10] J. Väisälä, Free quasiconformality in Banach spaces IV, In: Analysis And Topology, 1998,697–717. https://doi.org/10.1142/9789812817297_0040
    [11] J. Väisälä, The free quasiworld. Freely quasiconformal and related maps in Banach spaces, Banach Center Publications, 1999, 55–118. https://doi.org/10.4064/-48-1-55-118
    [12] Q. Zhou, Quasihyperbolic mappings in Banach spaces, Ann. Fenn. Math., 46 (2021), 335–344. https://doi.org/10.5186/aasfm.2021.4619 doi: 10.5186/aasfm.2021.4619
    [13] Q. Zhou, Y. Li, Y. He, Quasihyperbolic mappings in length metric spaces, C. R. Math., 359 (2021), 237–247. https://doi.org/10.5802/crmath.154 doi: 10.5802/crmath.154
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(281) PDF downloads(35) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog