This paper is concerned with a class of viscoelastic plate equations with past history. We first transform the original initial-boundary value problem into an equivalent one by means of the history space framework. Then we use the perturbed energy method to establish a stabilizability estimate. By employing the gradient property and quasi-stability of the dynamical system, we obtain the existence of a global attractor with finite fractal dimension.
Citation: Quan Zhou, Yang Liu, Dong Yang. Global attractors for a class of viscoelastic plate equations with past history[J]. AIMS Mathematics, 2024, 9(9): 24887-24907. doi: 10.3934/math.20241212
This paper is concerned with a class of viscoelastic plate equations with past history. We first transform the original initial-boundary value problem into an equivalent one by means of the history space framework. Then we use the perturbed energy method to establish a stabilizability estimate. By employing the gradient property and quasi-stability of the dynamical system, we obtain the existence of a global attractor with finite fractal dimension.
[1] | J. E. Lagnese, Boundary stabilization of thin plates, Philadelphia, PA: SIAM, 1989. https://doi.org/10.1137/1.9781611970821 |
[2] | J. E. Lagnese, J. L. Lions, Modelling analysis and control of thin plates, Paris: Masson, 1988. |
[3] | C. Giorgi, F. M. Vegni, Uniform energy estimates for a semilinear evolution equation of the Mindlin-Timoshenko beam with memory, Math. Comput. Model., 39 (2004), 1005–1021. https://doi.org/10.1016/S0895-7177(04)90531-6 doi: 10.1016/S0895-7177(04)90531-6 |
[4] | W. Weaver, S. P. Timoshenko, D. H. Young, Vibration problems in engineering, 5 Eds., New York: John Wiley and Sons, 1990. |
[5] | M. Fabrizio, C. Giorgi, V. Pata, A new approach to equations with memory, Arch. Rational Mech. Anal., 198 (2010), 189–232. https://doi.org/10.1007/S00205-010-0300-3 doi: 10.1007/S00205-010-0300-3 |
[6] | F. Alabau-Boussouira, P. Cannarsa, A general method for proving sharp energy decay rates for memory-dissipative evolution equations, C. R. Math., 347 (2009), 867–872. https://doi.org/10.1016/J.CRMA.2009.05.011 doi: 10.1016/J.CRMA.2009.05.011 |
[7] | J. E. Muñoz Rivera, E. C. Lapa, R. Barreto, Decay rates for viscoelastic plates with memory, J. Elasticity, 44 (1996), 61–87. https://doi.org/10.1007/BF00042192 doi: 10.1007/BF00042192 |
[8] | J. E. Muñoz Rivera, L. H. Fatori, Smoothing effect and propagations of singularities for viscoelastic plates, J. Math. Anal. Appl., 206 (1997), 397–427. https://doi.org/10.1006/JMAA.1997.5223 doi: 10.1006/JMAA.1997.5223 |
[9] | M. M. Cavalcanti, V. N. Domingos Cavalcanti, T. F. Ma, Exponential decay of the viscoelastic Euler-Bernoulli equation with a nonlocal dissipation in general domains, Differ. Integral Equ., 17 (2004), 495–510. https://doi.org/10.57262/DIE/1356060344 doi: 10.57262/DIE/1356060344 |
[10] | F. Alabau-Boussouira, P. Cannarsa, D. Sforza, Decay estimates for second order evolution equations with memory, J. Funct. Anal., 254 (2008), 1342–1372. https://doi.org/10.1016/J.JFA.2007.09.012 doi: 10.1016/J.JFA.2007.09.012 |
[11] | P. Cannarsa, D. Sforza, Integro-differential equations of hyperbolic type with positive definite kernels, J. Differ. Equations, 250 (2011), 4289–4335. https://doi.org/10.1016/J.JDE.2011.03.005 doi: 10.1016/J.JDE.2011.03.005 |
[12] | Z. Hajjej, General decay of solutions for a viscoelastic suspension bridge with nonlinear damping and a source term, Z. Angew. Math. Phys., 72 (2021), 90. https://doi.org/10.1007/S00033-021-01526-6 doi: 10.1007/S00033-021-01526-6 |
[13] | M. A. Jorge Silva, J. E. Muñoz Rivera, R. Racke, On a class of nonlinear viscoelastic Kirchhoff plates: well-posedness and general decay rates, Appl. Math. Optim., 73 (2016), 165–194. https://doi.org/10.1007/S00245-015-9298-0 doi: 10.1007/S00245-015-9298-0 |
[14] | E. H. Gomes Tavares, M. A. Jorge Silva, T. F. Ma, Sharp decay rates for a class of nonlinear viscoelastic plate models, Commun. Contemp. Math., 20 (2018), 1750010. https://doi.org/10.1142/S0219199717500109 doi: 10.1142/S0219199717500109 |
[15] | M. A. Jorge Silva, T. F. Ma, On a viscoelastic plate equation with history setting and perturbation of $p$-Laplacian type, IMA J. Appl. Math., 78 (2013), 1130–1146. https://doi.org/10.1093/IMAMAT/HXS011 doi: 10.1093/IMAMAT/HXS011 |
[16] | D. C. Pereira, G. M. Araújo, C. A. Raposo, V. R. Cabanillas, Blow-up results for a viscoelastic beam equation of $p$-Laplacian type with strong damping and logarithmic source, Math. Method. Appl. Sci., 46 (2023), 8831–8854. https://doi.org/10.1002/mma.9020 doi: 10.1002/mma.9020 |
[17] | A. Merah, F. Mesloub, On a viscoelastic plate equation with a polynomial source term and $\overrightarrow{p}(x, t)$-Laplacian operator in the presence of delay term, J. Innov. Appl. Math. Comput. Sci., 2 (2022), 92–107. |
[18] | R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, 3 Eds., New York: Springer, 1997. https://doi.org/10.1007/978-1-4612-0645-3 |
[19] | A. V. Babin, M. I. Vishik, Attractors of evolution equations, Amsterdam: North-Holland Publishing Co., 1992. |
[20] | O. Ladyzhenskaya, Attractors for semigroups and evolution equations, Cambridge: Cambridge University Press, 1991. https://doi.org/10.1017/9781009229814 |
[21] | J. K. Hale, Asymptotic behavior of dissipative systems, Providence, RI: American Mathematical Society, 1988. https://doi.org/10.1090/SURV/025 |
[22] | Q. F. Ma, S. H. Wang, C. K. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana Univ. Math. J., 51 (2002), 1541–1570. https://doi.org/10.1512/IUMJ.2002.51.2255 doi: 10.1512/IUMJ.2002.51.2255 |
[23] | X. M. Peng, Y. D. Shang, H. F. Di, Long-time dynamics for a nonlinear viscoelastic Kirchhoff plate equation, Chin. Ann. Math. Ser. B, 41 (2020), 627–644. https://doi.org/10.1007/S11401-020-0222-9 doi: 10.1007/S11401-020-0222-9 |
[24] | I. Chueshov, I. Lasiecka, Von Karman evolution equations, New York: Springer, 2010. https://doi.org/10.1007/978-0-387-87712-9 |
[25] | B. Feng, M. A. Jorge Silva, A. H. Caixeta, Long-time behavior for a class of semi-linear viscoelastic Kirchhoff beams/plates, Appl. Math. Optim., 82 (2020), 657–686. https://doi.org/10.1007/S00245-018-9544-3 doi: 10.1007/S00245-018-9544-3 |
[26] | G. W. Liu, M. A. Jorge Silva, Attractors and their properties for a class of Kirchhoff models with integro-differential damping, Appl. Anal., 101 (2022), 3284–3307. https://doi.org/10.1080/00036811.2020.1846722 doi: 10.1080/00036811.2020.1846722 |
[27] | M. Conti, V. Danese, C. Giorgi, V. Pata, A model of viscoelasticity with time-dependent memory kernels, Amer. J. Math., 140 (2018), 349–389. https://doi.org/10.1353/AJM.2018.0008 doi: 10.1353/AJM.2018.0008 |
[28] | F. Di Plinio, V. Pata, S. Zelik, On the strongly damped wave equation with memory, Indiana Univ. Math. J., 57 (2008), 757–780. https://doi.org/10.1512/IUMJ.2008.57.3266 doi: 10.1512/IUMJ.2008.57.3266 |
[29] | Y. Liu, Global attractors for a nonlinear plate equation modeling the oscillations of suspension bridges, Commun. Anal. Mech., 15 (2023), 436–456. https://doi.org/10.3934/CAM.2023021 doi: 10.3934/CAM.2023021 |
[30] | Y. Liu, L. Zhang, On a viscoelastic Kirchhoff equation with fractional Laplacian, Discrete Contin. Dyn. Syst. Ser. S, 17 (2024), 2543–2565. https://doi.org/10.3934/DCDSS.2024007 doi: 10.3934/DCDSS.2024007 |