Processing math: 93%
Research article

On the nonlocal hybrid (k,φ)-Hilfer inverse problem with delay and anticipation

  • Received: 18 May 2024 Revised: 02 July 2024 Accepted: 08 July 2024 Published: 24 July 2024
  • MSC : 26A33, 34A08, 34A12

  • This paper focused on establishing results regarding the existence of solutions for a class of nonlocal terminal value problems involving hybrid implicit nonlinear fractional differential equations with the (k,φ)-Hilfer fractional derivative, which includes both finite delay and anticipation arguments. Our analysis was based on the Banach fixed point technique, and the Schauder and Krasnoselskii fixed point theorems. Moreover, illustrative examples were considered to support our new results.

    Citation: Abdelkrim Salim, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez. On the nonlocal hybrid (k,φ)-Hilfer inverse problem with delay and anticipation[J]. AIMS Mathematics, 2024, 9(8): 22859-22882. doi: 10.3934/math.20241112

    Related Papers:

    [1] Yuna Oh, Jun Moon . The infinite-dimensional Pontryagin maximum principle for optimal control problems of fractional evolution equations with endpoint state constraints. AIMS Mathematics, 2024, 9(3): 6109-6144. doi: 10.3934/math.2024299
    [2] Sabbavarapu Nageswara Rao, Mahammad Khuddush, Ahmed H. Msmali, Ali H. Hakami . Persistence and stability in an SVIR epidemic model with relapse on timescales. AIMS Mathematics, 2025, 10(2): 4173-4204. doi: 10.3934/math.2025194
    [3] Khalid K. Ali, Mohamed S. Mohamed, M. Maneea . Exploring optical soliton solutions of the time fractional q-deformed Sinh-Gordon equation using a semi-analytic method. AIMS Mathematics, 2023, 8(11): 27947-27968. doi: 10.3934/math.20231429
    [4] Nattapong Kamsrisuk, Sotiris K. Ntouyas, Bashir Ahmad, Ayub Samadi, Jessada Tariboon . Existence results for a coupled system of $ (k, \varphi) $-Hilfer fractional differential equations with nonlocal integro-multi-point boundary conditions. AIMS Mathematics, 2023, 8(2): 4079-4097. doi: 10.3934/math.2023203
    [5] Igal Sason . On $ \mathsf{{H}} $-intersecting graph families and counting of homomorphisms. AIMS Mathematics, 2025, 10(3): 6355-6378. doi: 10.3934/math.2025290
    [6] Weerawat Sudsutad, Wicharn Lewkeeratiyutkul, Chatthai Thaiprayoon, Jutarat Kongson . Existence and stability results for impulsive $ (k, \psi) $-Hilfer fractional double integro-differential equation with mixed nonlocal conditions. AIMS Mathematics, 2023, 8(9): 20437-20476. doi: 10.3934/math.20231042
    [7] Bahar UYAR DÜLDÜL . On some new frames along a space curve and integral curves with Darboux q-vector fields in $ \mathbb{E}^3 $. AIMS Mathematics, 2024, 9(7): 17871-17885. doi: 10.3934/math.2024869
    [8] Ahmed Alsaedi, Bashir Ahmad, Afrah Assolami, Sotiris K. Ntouyas . On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions. AIMS Mathematics, 2022, 7(7): 12718-12741. doi: 10.3934/math.2022704
    [9] Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for $ \psi $-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244
    [10] Yanli Ma, Hamza Khalil, Akbar Zada, Ioan-Lucian Popa . Existence theory and stability analysis of neutral $ \psi $–Hilfer fractional stochastic differential system with fractional noises and non-instantaneous impulses. AIMS Mathematics, 2024, 9(4): 8148-8173. doi: 10.3934/math.2024396
  • This paper focused on establishing results regarding the existence of solutions for a class of nonlocal terminal value problems involving hybrid implicit nonlinear fractional differential equations with the (k,φ)-Hilfer fractional derivative, which includes both finite delay and anticipation arguments. Our analysis was based on the Banach fixed point technique, and the Schauder and Krasnoselskii fixed point theorems. Moreover, illustrative examples were considered to support our new results.



    Fractional calculus has proven in recent years to be a helpful method of tackling the complexity of complex systems from various scientific and engineering branches. It involves the generalization of the integer order differentiation and integration of a function to non-integer order, see [1]. In recent years, there has been considerable interest in fractional differential equations, with numerous works dedicated to the topic. Notable examples include the books by Benchohra et al. [2,3]. The authors of [4,5] investigated the qualitative theorems of solutions to diverse fractional differential equations and inclusions about memory effects and predictive behavior arguments.

    In a recent publication [6], Diaz introduced novel definitions for the special functions k-gamma and k-beta. Interested readers can refer to additional sources such as [7,8] to delve deeper into this topic. Furthermore, in another work [9], Sousa et al. presented the φ-Hilfer derivative of fractional order and elucidated some crucial properties related to this type of fractional operator. Drawing inspiration from the various papers cited earlier, we have introduced a new extension of the renowned Hilfer fractional derivative [10,11,12].

    On the other hand, delay differential equations are a type of functional differential equation that arise in various biological and physical applications and often require consideration of variable or state-dependent delays. The study of functional differential equations with delay has garnered significant attention in recent years due to their crucial applications in mathematical models of real-world phenomena. For examples, see [4,5] and the references therein.

    In [13], Krim et al. studied the problem

    {(ρDϑ20++ϑ1)(ϱ)=g(ϱ,ϑ1(ϱ),(ρDϑ20++ϑ1)(ϱ)),ϱI:=[0,T],ϑ1(T)=ϑ1TR,

    where ρDϑ20+ is the Katugampola derivative of fractional order ϑ2(0,1], and

    g:I×R×RR

    is a continuous function.

    Using the Picard operator method, Krasnoselskii fixed point approach, and Gronwall's inequality lemma, Almalahi et al. [14] established the existence and stability theories for the problem:

    {HDϑ1,ϑ2;φ0+y(ϱ)=g(ϱ,y(ϱ),y(ˆg(ϱ)),  ϱ(0,a2],I1ϑ3;φ0+y(0+)=kȷ=1cȷy(kȷ),kȷ(0,a2),y(ϱ)=δ(ϱ),ϱ[ϑ2,0],

    where HDϑ1,ϑ2;φ0+() is the φ-Hilfer derivative of fractional order ϑ1(0,1) and type ϑ2[0,1],I1ϑ3,φ0+() is the φ-Riemann-Liouville integral of fractional order (1ϑ3),

    ϑ3=ϑ1+ϑ2(1ϑ1),0<ϑ3<1,kȷ,ȷ=1,2,,k

    are prefixed points satisfying 0<k1k2kȷ<a2, and cȷR,δC[ϑ2,0], the function

    g:(0,a2]×R×RR

    is continuous, and

    ˆgC(0,a2][ϑ2,a2]

    with ˆg(ϱ)ϱ,ϑ2>0.

    In light of the above studies, we focus on a terminal-valued hybrid problem governed by a nonlinear implicit (k,φ)-Hilfer fractional differential equation with mixed-type arguments (retarded and advanced):

    (HkDϑ1,ϑ2;φa1+ψy)(ϱ)=g(ϱ,yϱ(),(HkDϑ1,ϑ2;φa1+ψy)(ϱ)),  ϱ(a1,a2], (1.1)
    y(a2)=˜nȷ=1αȷy(ϵȷ), (1.2)
    y(ϱ)=χ(ϱ),  ϱ[a1d,a1], d>0, (1.3)
    y(ϱ)=˜χ(ϱ),  ϱ[a2,a2+˜d], ˜d>0, (1.4)

    where HkDϑ1,ϑ2;φa1+ is the (k,φ)-Hilfer derivative of fractional order ϑ1(0,k) and type ϑ2[0,1] defined in Section 2. Furthermore,

    ϑ3=1k(ϑ2(kϑ1)+ϑ1),k>0,g:[a1,a2]×C([d,˜d],R)×RR,ψC([a1,a2],R{0}),ϵȷ,ȷ=1,,˜n

    are pre-fixed points satisfying a1<ϵ1ϵ˜n<a2, and αȷ,ȷ=1,,˜n are real numbers. For each function y defined on [a1d,a2+˜d] and for any ϱ(a1,a2], we denote by yϱ the element defined by

    yϱ(s)=y(ϱ+s),  s[d,˜d].

    The following are the primary novelties of the current paper:

    ● Given the diverse conditions imposed on problems (1.1)–(1.4), our study can be seen as both a continuation and a generalization of the studies mentioned above, such as the papers [13,14].

    ● The introduced (k,φ)-Hilfer operator serves as an extension, encompassing previously established fractional derivatives such as the Caputo, Hadamard, and Hilfer fractional derivatives already present in the existing literature.

    ● The number of papers addressing a nonlocal condition combined with retarded and advanced arguments is very limited. Therefore, our work aims to fill this gap in the literature.

    ● The introduced (k,φ)-Hilfer operator serves as an extension, encompassing previously established fractional derivatives such as the Caputo, Hadamard, and Hilfer fractional derivatives already present in the existing literature.

    The structure of this paper is as follows: Section 2 presents certain notations and preliminaries about the φ-Hilfer fractional derivative, the functions k-gamma and k-beta, and some auxiliary results. Further, we give the definition of the (k,φ)-Hilfer type fractional derivative and some essential theorems and lemmas. In Section 3, we present three existence and uniqueness results for the problems (1.1)–(1.4) that are founded on the Banach contraction principle, the Schauder and Krasnoselskii fixed point theorems. In the last section, illustrative examples are provided in support of the results obtained.

    First, we present the weighted spaces, notations, definitions, and preliminary facts that are used in this article. Please refer to [3] for all details on these spaces and notations.

    Let

    0<a1<a2<,T=[a1,a2],ϑ1(0,k),ϑ2[0,1],k>0

    and

    ϑ3=1k(ϑ2(kϑ1)+ϑ1).

    The Banach space of continuous functions is denoted by C(T,R) with the norm

    y=sup{|y(ϱ)|:ϱT}.

    Let ACn(T,R), Cn(T,R) be the spaces of continuous functions, n-times absolutely continuous, and n-times continuously differentiable functions on T, respectively.

    Let

    C([d,˜d],R),C=C([a1d,a1],R)

    and

    ˜C=C([a2,a2+˜d],R)

    be the spaces gifted, respectively, with the norms

    y[d,˜d]=sup{|y(ϱ)|:ϱ[d,˜d]},yC=sup{|y(ϱ)|:ϱ[a1d,a1]},y˜C=sup{|y(ϱ)|:ϱ[a2,a2+˜d]}.

    Let φC([a1,a2],R) be an increasing function such that φ(ϱ)0, for all ϱT.

    Now, let the weighted Banach space be defined as

    Cϑ3,k;φ(T)={y:(a1,a2]R:ϱΨφϑ3(ϱ,a1)y(ϱ)C(T,R)},

    where

    Ψφϑ3(ϱ,a1)=(φ(ϱ)φ(a1))1ϑ3

    with the norm

    yCϑ3,k;φ=supϱT|Ψφϑ3(ϱ,a1)y(ϱ)|,

    and

    Cnϑ3,k;φ(T)={yCn1(T):y(n)Cϑ3,k;φ(T)},nN,C0ϑ3,k;φ(T)=Cϑ3,k;φ(T)

    with the norm

    yCnϑ3,k;φ=n1ȷ=0y(ȷ)+y(n)Cϑ3,k;φ.

    Next, let us define the Banach space

    F={y:[a1d,a2+˜d]R:y|[a1d,a1]C,y|[a2,a2+˜d]˜C and y|(a1,a2]Cϑ3,k;φ(T)}

    with the norm

    yF=max{yC,y˜C,yCϑ3,k;φ}.

    Denote Xpφ(a1,a2), (1p) to the space of each real-valued Lebesgue measurable functions ˆg on [a1,a2] such that ˆgXpφ<, with the norm given as

    ˆgXpφ=(a2a1φ(ϱ)|ˆg(ϱ)|pdϱ)1p,

    where φ is a non-deceasing and non-negative function on [a1,a2], such that φ is continuous on [a1,a2] with φ(0)=0.

    Definition 2.1. [6] The k-gamma function is given as

    Γk(α)=0ϱα1eϱkkdϱ,   α>0,

    where

    Γk(α+k)=αΓk(α),Γk(α)=kαk1Γ(αk),Γk(k)=Γ(1)=1,

    and for k1, then

    Γ(α)=Γk(α).

    Furthermore the k-beta function is defined as follows:

    Bk(α,a)=1k10ϱαk1(1ϱ)ak1dϱ,

    so that

    Bk(α,a)=1kB(αk,ak)

    and

    Bk(α,a)=Γk(α)Γk(a)Γk(α+a).

    Definition 2.2. [15] Let

    ˆgXpφ(a1,a2),   φ(ϱ)>0

    be a non-decreasing function on (a1,a2] and φ(ϱ)>0 be continuous on (a1,a2) and ϑ1>0. The generalized k-fractional integral operators of a function ˆg of order ϑ1 are defined by

    Jϑ1,k;φa1+ˆg(ϱ)=ϱa1ˉΨk,φϑ1(ϱ,s)φ(s)ˆg(s)ds,Jϑ1,k;φa2ˆg(ϱ)=a2ϱˉΨk,φϑ1(s,ϱ)φ(s)ˆg(s)ds

    with k>0 and

    ˉΨk,φϑ1(ϱ,s)=(φ(ϱ)φ(s))ϑ1k1kΓk(ϑ1).

    Additionally, the authors of the work [16] extended these operators and defined the generalized fractional integrals by

    Jϑ1,k;φG,a1+ˆg(ϱ)=1kΓk(ϑ1)ϱa1φ(s)ˆg(s)dsG(φ(ϱ)φ(s),ϑ1k),Jϑ1,k;φG,a2ˆg(ϱ)=1kΓk(ϑ1)a2ϱφ(s)ˆg(s)dsG(φ(s)φ(ϱ),ϑ1k),

    where G(z,ϑ1)AC[a1,a2].

    Theorem 2.3. [16] Let ϑ1>0, k>0, and consider the integrable function ˆg: [a1,a2]R. Then Jϑ1,k;φG,a1+ˆg exists for all ϱ[a1,a2].

    Theorem 2.4. [16] Let ˆgXpφ(a1,a2) and take ϑ1>0 and k>0. Then Jϑ1,k;φG,a1+ˆgC([a1,a2],R).

    Lemma 2.5. [10,11] Consider ϑ1>0, ϑ2>0, and k>0. Then, one has

    Jϑ1,k;φa1+Jϑ2,k;φa1+g(ϱ)=Jϑ1+ϑ2,k;φa1+g(ϱ)=Jϑ2,k;φa1+Jϑ1,k;φa1+g(ϱ)

    and

    Jϑ1,k;φa2Jϑ2,k;φa2g(ϱ)=Jϑ1+ϑ2,k;φa2g(ϱ)=Jϑ2,k;φa2Jϑ1,k;φa2g(ϱ).

    Lemma 2.6. [10,11] Let ϑ1,ϑ2>0 and k>0. Then, we have

    Jϑ1,k;φa1+ˉΨk,φϑ2(ϱ,a1)=ˉΨk,φϑ1+ϑ2(ϱ,a1)

    and

    Jϑ1,k;φa2ˉΨk,φϑ2(a2,ϱ)=ˉΨk,φϑ1+ϑ2(a2,ϱ).

    Theorem 2.7. [10,11] Let 0<a1<a2<,ϑ1>0,0ϑ3<1, k>0, and yCϑ3,k;φ(T). If

    ϑ1k>1ϑ3,

    then

    (Jϑ1,k;φa1+y)(a1)=limϱa1+(Jϑ1,k;φa1+y)(ϱ)=0.

    Definition 2.8. ((k,φ)-Hilfer derivative [10,11]) Let

    n1<ϑ1kn

    with nN, T=[a1,a2] an interval such that

    a1<a2

    and

    ˆg,φCn([a1,a2],R)

    are two functions such that φ is increasing and φ(ϱ)0, for all ϱT. The (k,φ)-Hilfer fractional derivative HkDϑ1,ϑ2;φa1+() and HkDϑ1,ϑ2;φa2() of a function ˆg of order ϑ1 and type 0ϑ21, with k>0 is defined by

    HkDϑ1,ϑ2;φa1+ˆg(ϱ)=(Jϑ2(knϑ1),k;φa1+(1φ(ϱ)ddϱ)n(knJ(1ϑ2)(knϑ1),k;φa1+ˆg))(ϱ)=(Jϑ2(knϑ1),k;φa1+δnφ(knJ(1ϑ2)(knϑ1),k;φa1+ˆg))(ϱ),

    where

    δnφ=(1φ(ϱ)ddϱ)n.

    Lemma 2.9. [10,11] Let ϱ>a1, ϑ1>0,0ϑ21, and k>0. Thus, for

    0<ϑ3<1,ϑ3=1k(ϑ2(kϑ1)+ϑ1),

    and one has

    [HkDϑ1,ϑ2;φa1+(Ψφϑ3(s,a1))1](ϱ)=0.

    Theorem 2.10. [10,11] If

    gCnϑ3,k;φ[a1,a2],n1<ϑ1k<n,0ϑ21,

    where nN and k>0, then

    (Jϑ1,k;φa1+ HkDϑ1,ϑ2;φa1+g)(ϱ)=g(ϱ)nȷ=1(φ(ϱ)φ(a1))ϑ3ȷkȷnΓk(k(ϑ3ȷ+1)){δnȷφ(Jk(nϑ3),k;φa1+g(a1))},

    where

    ϑ3=1k(ϑ2(knϑ1)+ϑ1).

    Particularly, for n=1, one gets

    (Jϑ1,k;φa1+ HkDϑ1,ϑ2;φa1+g)(ϱ)=g(ϱ)(φ(ϱ)φ(a1))ϑ31Γk(ϑ2(kϑ1)+ϑ1)J(1ϑ2)(kϑ1),k;φa1+g(a1).

    Lemma 2.11. [10,11] Let ϑ1>0,0ϑ21, and yC1ϑ3,k;φ(T), where k>0, then for ϱ(a1,a2], we have

    (HkDϑ1,ϑ2;φa1+ Jϑ1,k;φa1+y)(ϱ)=y(ϱ).

    We start this section by taking the next fractional differential problem:

    (HkDϑ1,ϑ2;φa1+ψy)(ϱ)=δ(ϱ),  ϱ(a1,a2], (3.1)

    such that 0<ϑ1<k,0ϑ21, subjected to the conditions

    y(a2)=˜nȷ=1αȷy(ϵȷ), (3.2)
    y(ϱ)=χ(ϱ),   ϱ[a1d,a1], d>0, (3.3)
    y(ϱ)=˜χ(ϱ),   ϱ[a2,a2+˜d], ˜d>0, (3.4)

    where

    ϑ3=ϑ2(kϑ1)+ϑ1k,

    k>0, αȷ,ȷ=1,,˜n, belong to R, α˜n+1=1 and ϵȷ,ȷ=1,,˜n+1, are pre-fixed points verifying

    a1<ϵ1ϵ˜n<a2=ϵ˜n+1,

    such that

    ˜n+1ȷ=1αȷΨφϑ3(ϵȷ,a1)0,

    and where δ()C(T,R), χ()C, ψC([a1,a2],R{0}), and ˜χ()˜C.

    Theorem 3.1. The function y verifies (3.1)–(3.4) if and only if

    y(ϱ)={1ψ(ϱ)[˜n+1ȷ=1αȷψ(ϵȷ)(Jϑ1,k;φa1+δ)(ϵȷ)˜n+1ȷ=1αȷΨφϑ3(ϱ,a1)ψ(ϵȷ)Ψφϑ3(ϵȷ,a1)+(Jϑ1,k;φa1+δ)(ϱ)],ϱ(a1,a2],χ(ϱ),  ϱ[a1d,a1],˜χ(ϱ),  ϱ[a2,a2+˜d]. (3.5)

    Proof. Assume that y satisfies Eqs (3.1)–(3.4), and by implementing the integral operator Jϑ1,k;φa1+() of fractional order ϑ1 on both sides of (3.1), we have

    (Jϑ1,k;φa1+ HkDϑ1,ϑ2;φa1+ψy)(ϱ)=(Jϑ1,k;φa1+δ)(ϱ).

    Using Theorem 2.10, we get

    y(ϱ)=1ψ(ϱ)[Jk(1ϑ3),k;φa1+y(a1)Ψφϑ3(ϱ,a1)Γk(kϑ3)+(Jϑ1,k;φa1+δ)(ϱ)]. (3.6)

    In what follows, by putting ϱ=ϵȷ into (3.6), and applying αȷ to both sides, one gets

    αȷy(ϵȷ)=1ψ(ϵȷ)[αȷJk(1ϑ3),k;φa1+y(a1)Ψφϑ3(ϵȷ,a1)Γk(kϑ3)+αȷ(Jϑ1,k;φa1+δ)(ϵȷ)].

    By (3.2) and (3.6) with ϱ=a2, we have

    Jk(1ϑ3),k;φa1+y(a1)˜nȷ=1αȷψ(ϵȷ)Ψφϑ3(ϵȷ,a1)Γk(kϑ3)+˜nȷ=1αȷψ(ϵȷ)(Jϑ1,k;φa1+δ)(ϵȷ)=1ψ(a2)[Jk(1ϑ3),k;φa1+y(a1)Ψφϑ3(a2,a1)Γk(kϑ3)+(Jϑ1,k;φa1+δ)(a2)],

    which implies

    Jk(1ϑ3),k;φa1+y(a1)=(Jϑ1,k;φa1+δ)(a2)ψ(a2)+˜nȷ=1αȷψ(ϵȷ)(Jϑ1,k;φa1+δ)(ϵȷ)1ψ(a2)Ψφϑ3(a2,a1)Γk(kϑ3)˜nȷ=1αȷψ(ϵȷ)Ψφϑ3(ϵȷ,a1)Γk(kϑ3)=˜n+1ȷ=1αȷψ(ϵȷ)(Jϑ1,k;φa1+δ)(ϵȷ)˜n+1ȷ=1αȷψ(ϵȷ)Ψφϑ3(ϵȷ,a1)Γk(kϑ3). (3.7)

    Substituting (3.7) into (3.6), we obtain (3.5).

    Now, we show that y verifies Eq (3.5), it follows that it also verifies (3.1)–(3.4). Applying HkDϑ1,ϑ2;φa1+() on both sides of (3.5), we get

    (HkDϑ1,ϑ2;φa1+ψy)(ϱ)= HkDϑ1,ϑ2;φa1+(˜n+1ȷ=1αȷψ(ϵȷ)(Jϑ1,k;φa1+δ)(ϵȷ)˜n+1ȷ=1αȷΨφϑ3(ϱ,a1)ψ(ϵȷ)Ψφϑ3(ϵȷ,a1))+(HkDϑ1,ϑ2;φa1+Jϑ1,k;φa1+δ)(ϱ).

    In view of Lemmas 2.9 and 2.11, we find Eq (3.1). Now, taking ϱ=a2 in Eq (3.5), we have

    ψ(a2)y(a2)=˜n+1ȷ=1αȷψ(ϵȷ)(Jϑ1,k;φa1+δ)(ϵȷ)˜n+1ȷ=1αȷΨφϑ3(a2,a1)ψ(ϵȷ)Ψφϑ3(ϵȷ,a1)+(Jϑ1,k;φa1+δ)(a2). (3.8)

    Substituting ϱ=ϵȷ into (3.5), we get

    ψ(ϵȷ)y(ϵȷ)=˜n+1ȷ=1αȷψ(ϵȷ)(Jϑ1,k;φa1+δ)(ϵȷ)Ψφϑ3(ϵȷ,a1)˜n+1ȷ=1αȷψ(ϵȷ)Ψφϑ3(ϵȷ,a1)+(Jϑ1,k;φa1+δ)(ϵȷ).

    Then, we have

    ˜nȷ=1αȷy(ϵȷ)=˜n+1ȷ=1αȷψ(ϵȷ)(Jϑ1,k;φa1+δ)(ϵȷ)˜n+1ȷ=1αȷψ(ϵȷ)Ψφϑ3(ϵȷ,a1)˜nȷ=1αȷψ(ϵȷ)Ψφϑ3(ϵȷ,a1)+˜nȷ=1αȷψ(ϵȷ)(Jϑ1,k;φa1+δ)(ϵȷ),

    and thus,

    ˜nȷ=1αȷy(ϵȷ)=(Jϑ1,k;φa1+δ)(a2)ψ(a2)˜nȷ=1αȷψ(ϵȷ)(Jϑ1,k;φa1+δ)(ϵȷ)1ψ(a2)Ψφϑ3(a2,a1)˜nȷ=1αȷψ(ϵȷ)Ψφϑ3(ϵȷ,a1)+1+˜nȷ=1αȷψ(ϵȷ)(Jϑ1,k;φa1+δ)(ϵȷ)=(Jϑ1,k;φa1+δ)(a2)ψ(a2)˜nȷ=1αȷψ(ϵȷ)(Jϑ1,k;φa1+δ)(ϵȷ)ψ(a2)Ψφϑ3(a2,a1)˜nȷ=1αȷψ(ϵȷ)Ψφϑ3(ϵȷ,a1)1ψ(a2)Ψφϑ3(a2,a1)˜nȷ=1αȷψ(ϵȷ)Ψφϑ3(ϵȷ,a1)+1=((Jϑ1,k;φa1+δ)(a2)ψ(a2)˜nȷ=1αȷψ(ϵȷ)(Jϑ1,k;φa1+δ)(ϵȷ)ψ(a2)Ψφϑ3(a2,a1)˜nȷ=1αȷψ(ϵȷ)Ψφϑ3(ϵȷ,a1))×(ψ(a2)Ψφϑ3(a2,a1)˜nȷ=1αȷψ(ϵȷ)Ψφϑ3(ϵȷ,a1)˜n+1ȷ=1αȷψ(a2)Ψφϑ3(a2,a1)ψ(ϵȷ)Ψφϑ3(ϵȷ,a1))=(Jϑ1,k;φa1+δ)(a2)Ψφϑ3(a2,a1)˜nȷ=1αȷψ(ϵȷ)Ψφϑ3(ϵȷ,a1)˜nȷ=1αȷψ(ϵȷ)(Jϑ1,k;φa1+δ)(ϵȷ)˜n+1ȷ=1αȷψ(a2)Ψφϑ3(a2,a1)ψ(ϵȷ)Ψφϑ3(ϵȷ,a1).

    Then,

    ˜nȷ=1αȷy(ϵȷ)=˜n+1ȷ=1αȷψ(ϵȷ)(Jϑ1,k;φa1+δ)(ϵȷ)˜n+1ȷ=1αȷψ(a2)Ψφϑ3(a2,a1)ψ(ϵȷ)Ψφϑ3(ϵȷ,a1)+(Jϑ1,k;φa1+δ)(a2)ψ(a2). (3.9)

    From (3.8) and (3.9), we find that

    y(a2)=˜nȷ=1αȷy(ϵȷ),

    which implies that argument (3.2) holds.

    In sequel, we present the following finding as a consequence of Theorem 3.1.

    Lemma 3.2. Let

    ϑ3=ϑ2(kϑ1)+ϑ1k,

    such that 0<ϑ1<k and 0ϑ21, and suppose that χ()C, ˜χ()˜C, and

    g:T×C([d,˜d],R)×RR

    is a continuous function. Then, yF is a solution of problems (1.1)–(1.4) iff y is a fixed point of the mapping k: FF defined by

    (ky)(ϱ)={1ψ(ϱ)[˜n+1ȷ=1αȷψ(ϵȷ)(Jϑ1,k;φa1+δ)(ϵȷ)˜n+1ȷ=1αȷΨφϑ3(ϱ,a1)ψ(ϵȷ)Ψφϑ3(ϵȷ,a1)+(Jϑ1,k;φa1+δ)(ϱ)],ϱ(a1,a2],χ(ϱ),  ϱ[a1d,a1],˜χ(ϱ),  ϱ[a2,a2+˜d], (3.10)

    where δ is a function verifying

    δ(ϱ)=g(ϱ,yϱ(),δ(ϱ))

    and

    α˜n+1=1,ϵ˜n+1=a2.

    Next, we present the following hypotheses for using in the sequel analysis:

    (Ax1)

    g:T×C([d,˜d],R)×RR

    is a continuous function.

    (Ax2) There exist real numbers ζ1>0 and 0<ζ2<1, where

    |g(ϱ,y1,ˆy1)g(ϱ,y2,ˆy2)|ζ1y1y2[d,˜d]+ζ2|ˆy1ˆy2|

    for any

    y1,y2C([d,˜d],R),   ˆy1,ˆy2R,

    and ϱ(a1,a2].

    (Ax3) There exist functions m1,m2,m3C(T,R+) with

    m1=supϱTm1(ϱ), m2=supϱTm2(ϱ), m3=supϱTm3(ϱ)<1,

    such that

    |g(ϱ,y,ˆy)|m1(ϱ)+m2(ϱ)y[d,˜d]+m3(ϱ)|ˆy|

    for any

    yC([d,˜d],R),   ˆyR

    and ϱ(a1,a2].

    (Ax4) The function ψ is continuous on T and there exists G>0 such that

    |ψ(ϱ)|G.

    Now, we will study the uniqueness theorem for problems (1.1)–(1.4) by utilizing the Banach fixed point technique [17].

    Theorem 3.3. Suppose that (Ax1), (Ax2), and (Ax4) are satisfied. If

    L=2ζ1(φ(a2)φ(a1))1ϑ3+ϑ1kGΓk(ϑ1+k)(1ζ2) <1, (3.11)

    then, problems (1.1)–(1.4) have a unique solution in F.

    Proof. In order to prove that the mapping k given in (3.10) possesses one fixed point in F. Let us take y,ˆyF, thus for any

    ϱ[a1d,a1][a2,a2+˜d],

    we have

    |ky(ϱ)kˆy(ϱ)|=0.

    Thus

    kykˆyC=kykˆy˜C=0. (3.12)

    Further, for ϱ(a1,a2], we have

    |ky(ϱ)kˆy(ϱ)|1|ψ(ϱ)|[˜n+1ȷ=1|αȷ||ψ(ϵȷ)|(Jϑ1,k;φa1+|δ1(s)δ2(s)|)(ϵȷ)˜n+1ȷ=1|αȷ|Ψφϑ3(ϱ,a1)|ψ(ϵȷ)|Ψφϑ3(ϵȷ,a1)+(Jϑ1,k;φa1+|δ1(s)δ2(s)|)(ϱ)],

    where δ1 and δ2 are functions satisfying the functional equations

    δ1(ϱ)=g(ϱ,yϱ(),δ1(ϱ)),δ2(ϱ)=g(ϱ,ˆyϱ(),δ2(ϱ)).

    By (Ax2), we have

    |δ1(ϱ)δ2(ϱ)|=|g(ϱ,yϱ,δ1(ϱ))g(ϱ,ˆyϱ,δ2(ϱ))|ζ1yϱˆyϱ[d,˜d]+ζ2|δ1(ϱ)δ2(ϱ)|.

    Then,

    |δ1(ϱ)δ2(ϱ)|ζ11ζ2yϱˆyϱ[d,˜d].

    Therefore, for each ϱ(a1,a2],

    |ky(ϱ)kˆy(ϱ)|ζ1˜n+1ȷ=1|αȷ|(Jϑ1,k;φa1+ysˆys[d,˜d])(ϵȷ)G(1ζ2)˜n+1ȷ=1|αȷ|Ψφϑ3(ϱ,a1)Ψφϑ3(ϵȷ,a1)+ζ1G(1ζ2)(Jϑ1,k;φa1+ysˆys[d,˜d])(ϱ)ζ1yˆyFG(1ζ2)[˜n+1ȷ=1|αȷ|(Jϑ1,k;φa1+(1))(ϵȷ)˜n+1ȷ=1|αȷ|Ψφϑ3(ϱ,a1)Ψφϑ3(ϵȷ,a1)+(Jϑ1,k;φa1+(1))(ϱ)].

    By Lemma 2.6, we have

    |ky(ϱ)kˆy(ϱ)|ζ1yˆyFG(1ζ2)[˜n+1ȷ=1|αȷ|(φ(ϵȷ)φ(a1))ϑ1kΓk(ϑ1+k)˜n+1ȷ=1|αȷ|Ψφϑ3(ϱ,a1)Ψφϑ3(ϵȷ,a1)+(φ(ϱ)φ(a1))ϑ1kΓk(ϑ1+k)].

    Hence,

    |Ψφϑ3(ϱ,a1)(ky(ϱ)kˆy(ϱ))|ζ1yˆyFG(1ζ2)[˜n+1ȷ=1|αȷ|(φ(ϵȷ)φ(a1))ϑ1kΓk(ϑ1+k)˜n+1ȷ=1|αȷ|Ψφϑ3(ϵȷ,a1)+(φ(ϱ)φ(a1))1ϑ3+ϑ1kΓk(ϑ1+k)],

    which implies that

    kykˆyCϑ3,k;φ2ζ1(φ(a2)φ(a1))1ϑ3+ϑ1kGΓk(ϑ1+k)(1ζ2)yˆyF.

    Thus,

    kykˆyCϑ3,k;φLyˆyF. (3.13)

    By (3.12) and (3.13), we obtain

    kykˆyFLyˆyF.

    Based on (3.11), the mapping k is a contraction on F. Therefore, by the Banach fixed point technique, k owns one fixed point yF, which is a unique solution for problems (1.1)–(1.4).

    Our subsequent existence theorem for problems (1.1)–(1.4) will be proved by the Schauder fixed point technique [17].

    Theorem 3.4. Suppose that (Ax1), (Ax3), and (Ax4) are verified. If

    =2m2(φ(a2)φ(a1))1ϑ3+ϑ1kG(1m3)Γk(ϑ1+k) <1, (3.14)

    then, problems (1.1)–(1.4) have at least one solution in F.

    Proof.

    We will split the proof into several steps.

    Step 1. The mapping k is continuous.

    Consider {yn} to be a convergent sequence to y in F. For each

    ϱ[a1d,a1][a2,a2+˜d],

    we have

    |kyn(ϱ)ky(ϱ)|=0.

    For ϱ(a1,a2], we have

    |ky(ϱ)kˆy(ϱ)|1|ψ(ϱ)|[˜n+1ȷ=1|αȷ||ψ(ϵȷ)|(Jϑ1,k;φa1+|δn(s)δ(s)|)(ϵȷ)˜n+1ȷ=1|αȷ|Ψφϑ3(ϱ,a1)|ψ(ϵȷ)|Ψφϑ3(ϵȷ,a1)+(Jϑ1,k;φa1+|δn(s)δ(s)|)(ϱ)],

    where δ and δn are functions satisfying the functional equations

    δ(ϱ)=g(ϱ,yϱ(),δ(ϱ)),δn(ϱ)=g(ϱ,ynϱ(),δn(ϱ)).

    Since yny, then we get δn(ϱ)δ(ϱ) as n for each ϱ(a1,a2], and since g is continuous, then we have

    kynkyF0 as n.

    Step 2. We show k(BM)BM.

    Consider M to be a positive real number, where

    Mmax{m1m2(1),χC,˜χ˜C}.

    Now, we present the next closed bounded ball

    BM={yF:yFM}.

    Then, for each ϱ[a1d,a1], we have

    |ky(ϱ)|χC,

    and for each ϱ[a2,a2+˜d], we have

    |ky(ϱ)|˜χ˜C.

    Further, for each ϱ(a1,a2], (3.10) implies that

    |ky(ϱ)|1|ψ(ϱ)|[˜n+1ȷ=1|αȷ||ψ(ϵȷ)|(Jϑ1,k;φa1+|g(s,ys,δ(s))|)(ϵȷ)˜n+1ȷ=1|αȷ|Ψφϑ3(ϱ,a1)|ψ(ϵȷ)|Ψφϑ3(ϵȷ,a1)+(Jϑ1,k;φa1+|g(s,ys,δ(s))|)(ϱ)]. (3.15)

    By hypothesis (Ax3), for ϱ(a1,a2], we have

    |δ(ϱ)|=|g(ϱ,yϱ,δ(ϱ))|m1(ϱ)+m2(ϱ)yϱ[d,˜d]+m3(ϱ)|δ(ϱ)|,

    which implies that

    |δ(ϱ)|m1+m2M+m3|δ(ϱ)|,

    then

    |δ(ϱ)|m1+m2M1m3:=Δ.

    Thus for ϱ(a1,a2], from (3.15) we get

    |Ψφϑ3(ϱ,a1)ky(ϱ)|Δ˜n+1ȷ=1|αȷ|(Jϑ1,k;φa1+(1))(ϵȷ)G˜n+1ȷ=1|αȷ|Ψφϑ3(ϵȷ,a1)+ΔGΨφϑ3(ϱ,a1)(Jϑ1,k;φa1+(1))(ϱ).

    By Lemma 2.6, we have

    |Ψφϑ3(ϱ,a1)ky(ϱ)|ΔG[˜n+1ȷ=1|αȷ|(φ(ϵȷ)φ(a1))ϑ1kΓk(ϑ1+k)˜n+1ȷ=1|αȷ|Ψφϑ3(ϵȷ,a1)+(φ(ϱ)φ(a1))1ϑ3+ϑ1kΓk(ϑ1+k)].

    Thus

    |Ψφϑ3(ϱ,a1)ky(ϱ)|2Δ(φ(a2)φ(a1))1ϑ3+ϑ1kGΓk(ϑ1+k)M.

    Then, for each

    ϱ[a1d,a2+˜d],

    we obtain

    kyFM.

    Step 3. We prove that the set k(BM) is relatively compact.

    Let

    k1,k2(a1,a2],   k1<k2

    and let yBM. Then,

    |Ψφϑ3(k1,a1)ky(k1)Ψφϑ3(k2,a1)ky(k2)||1ψ(k1)1ψ(k2)|×[˜n+1ȷ=1|αȷ||ψ(ϵȷ)||(Jϑ1,k;φa1+δ)(ϵȷ)|˜n+1ȷ=1|αȷ||ψ(ϵȷ)|Ψφϑ3(ϵȷ,a1)]+|Ψφϑ3(k1,a1)ψ(k1)(Jϑ1,k;φa1+δ(s))(k1)Ψφϑ3(k2,a1)ψ(k2)(Jϑ1,k;φa1+δ(s))(k2)||1ψ(k1)1ψ(k2)|×[˜n+1ȷ=1|αȷ||ψ(ϵȷ)||(Jϑ1,k;φa1+δ)(ϵȷ)|˜n+1ȷ=1|αȷ||ψ(ϵȷ)|Ψφϑ3(ϵȷ,a1)]+k1a1|Ψφϑ3(k1,a1)ˉΨk,φϑ1(k1,s)ψ(k1)Ψφϑ3(k2,a1)ˉΨk,φϑ1(k2,s)ψ(k2)||φ(s)y(s)|ds+|Ψφϑ3(k2,a1)ψ(k2)(Jϑ1,k;φk+1|y(s)|)(k2)|.

    By Lemma 2.6, we get

    |Ψφϑ3(k1,a1)ky(k1)Ψφϑ3(k2,a1)ky(k2)||1ψ(k1)1ψ(k2)|×[˜n+1ȷ=1|αȷ||ψ(ϵȷ)||(Jϑ1,k;φa1+δ)(ϵȷ)|˜n+1ȷ=1|αȷ||ψ(ϵȷ)|Ψφϑ3(ϵȷ,a1)]+Δk1a1|Ψφϑ3(k1,a1)ˉΨk,φϑ1(k1,s)ψ(k1)Ψφϑ3(k2,a1)ˉΨk,φϑ1(k2,s)ψ(k2)||φ(s)|ds+ΔΨφϑ3(k2,a1)(φ(k2)φ(k1))ϑ1kGΓk(ϑ1+k).

    As \(k_1 \rightarrow k_2 \), the right side of the above inequality tends to zero. From Steps 1–3, using the Arzela-Ascoli theorem, we infer that k: FF is a continuous and compact mapping. Consequently, we deduce that \({\Bbbk}\) owns at least one fixed point, which is a solution for problems \((1.1)\)–\((1.4)\).

    Our third outcome depends on the Krasnoselskii fixed point technique [17].

    Theorem 3.5. Suppose that (Ax1)(Ax4) are verified. If

    ζ1(φ(a2)φ(a1))1ϑ3+ϑ1kGΓk(ϑ1+k)(1ζ2)<1, (3.16)

    then, problems (1.1)–(1.4) have a solution in F.

    Proof. Let us assume that the ball

    Bω={yF:||y||Fω},ωr1+r2

    with

    r1:=(m1+m2ω)(φ(a2)φ(a1))1ϑ3+ϑ1kG(1m3)Γk(ϑ1+k),r2:=max{χC,˜χ˜C,(m1+m2ω)(φ(a2)φ(a1))1ϑ3+ϑ1kG(1m3)Γk(ϑ1+k)}.

    {Next, we introduce the mappings} 1 and 2 on Bω as follows:

    1y(ϱ)={˜n+1ȷ=1αȷψ(ϵȷ)(Jϑ1,k;φa1+δ)(ϵȷ)ψ(ϱ)˜n+1ȷ=1αȷΨφϑ3(ϱ,a1)ψ(ϵȷ)Ψφϑ3(ϵȷ,a1),ϱ(a1,a2],0,  ϱ[a1d,a1],0,  ϱ[a2,a2+˜d], (3.17)

    and

    2y(ϱ)={(Jϑ1,k;φa1+δ)(ϱ)ψ(ϱ),ϱ(a1,a2],χ(ϱ),  ϱ[a1d,a1],˜χ(ϱ),  ϱ[a2,a2+˜d], (3.18)

    where δ is a function verifying

    δ(ϱ)=g(ϱ,yϱ(),δ(ϱ)).

    Then (3.10) can be written as

    ky(ϱ)=1y(ϱ)+2y(ϱ),  yF.

    Step 1. We prove that

    1y+2ˆyBω

    for any y,ˆyBω.

    By (Ax3) and from (3.10), for ϱ(a1,a2], we have

    |δ(ϱ)|=|g(ϱ,yϱ,δ(ϱ))|m1(ϱ)+m2(ϱ)yϱ[d,˜d]+m3(ϱ)|δ(ϱ)|,

    which implies that

    |δ(ϱ)|m1+m2ω+m3|δ(ϱ)|,

    and then

    |δ(ϱ)|m1+m2ω1m3:=A.

    Thus, for ϱ(a1,a2] and by (3.17), we have

    |Ψφϑ3(ϱ,a1)1y(ϱ)|A(φ(a2)φ(a1))1ϑ3+ϑ1kGΓk(ϑ1+k).

    Then, for each ϱ[a1d,a2+˜d], we obtain

    1yFA(φ(a2)φ(a1))1ϑ3+ϑ1kGΓk(ϑ1+k). (3.19)

    For ϱ(a1,a2] and by (3.18), we have

    |Ψφϑ3(ϱ,a1)2ˆy(ϱ)|A(φ(a2)φ(a1))1ϑ3+ϑ1kGΓk(ϑ1+k).

    For each ϱ[a1d,a1], we have

    |2ˆy(ϱ)|χC,

    and for each ϱ[a2,a2+˜d], we have

    |2ˆy(ϱ)|˜χ˜C.

    Then, for each ϱ[a1d,a2+˜d], we get

    2ˆyFmax{χC,˜χ˜C,A(φ(a2)φ(a1))1ϑ3+ϑ1kGΓk(ϑ1+k)}. (3.20)

    From (3.19) and (3.20), for each ϱ[a1d,a2+˜d], we have

    1y+2ˆyF1yF+2ˆyFr1+r2ω,

    which infers that

    1y+2ˆyBω.

    Step 2. The mapping 1 is a contraction.

    In view of the condition (3.16) and Theorem 3.3, the mapping 1 is a contraction on F with the norm F.

    Step 3. 2 is continuous and compact.

    Let {yn} be a sequence such that yny in F. For each

    ϱ[a1d,a1][a2,a2+˜d],

    we have

    |2yn(ϱ)2y(ϱ)|=0.

    For ϱ(a1,a2], we have

    |2yn(ϱ)2y(ϱ)|1|ψ(ϱ)|(Jϑ1,k;φa1+|δn(s)δ(s)|)(ϱ),

    such that δ and δn are functions verifying the functional equations

    δ(ϱ)=g(ϱ,yϱ(),δ(ϱ)),δn(ϱ)=g(ϱ,ynϱ(),δn(ϱ)).

    Since yny, then we get δn(ϱ)δ(ϱ) as n for each ϱ(a1,a2], and since g is continuous, then we have

    2yn2yF0 as n.

    Then 2 is continuous. Next we prove that 2 is uniformly bounded on Bω. For each

    ϱ[a1d,a2+˜d]

    and any ˆyBω, we get

    2ˆyFmax{χC,˜χ˜C,A(φ(a2)φ(a1))1ϑ3+ϑ1kGΓk(ϑ1+k)}.

    This implies that the mapping 2 is uniformly bounded on Bω. In order to show the compactness of 2, we take k1,k2(a1,a2] such that k1<k2, and yBω. Then

    |Ψφϑ3(k1,a1)2y(k1)Ψφϑ3(k2,a1)2y(k2)||Ψφϑ3(k1,a1)ψ(k1)(Jϑ1,k;φa1+δ(s))(k1)Ψφϑ3(k2,a1)ψ(k2)(Jϑ1,k;φa1+δ(s))(k2)|k1a1|Ψφϑ3(k1,a1)ˉΨk,φϑ1(k1,s)ψ(k1)Ψφϑ3(k2,a1)ˉΨk,φϑ1(k2,s)ψ(k2)||φ(s)y(s)|ds+|Ψφϑ3(k2,a1)ψ(k2)(Jϑ1,k;φk+1|y(s)|)(k2)|.

    By Lemma 2.6, we get

    |Ψφϑ3(k1,a1)2y(k1)Ψφϑ3(k2,a1)2y(k2)|Ak1a1|Ψφϑ3(k1,a1)ˉΨk,φϑ1(k1,s)ψ(k1)Ψφϑ3(k2,a1)ˉΨk,φϑ1(k2,s)ψ(k2)||φ(s)|ds+AΨφϑ3(k2,a1)(φ(k2)φ(k1))ϑ1kGΓk(ϑ1+k).

    Note that

    |Ψφϑ3(k1,a1)2y(k1)Ψφϑ3(k2,a1)2y(k2)|0   as   k1k2.

    This proves that 2Bω is equicontinuous on (a1,a2]. Therefore, 2 is compact. Thus, based on the Krasnoselskii fixed point technique, we conclude that k possesses a fixed point, which satisfies problems (1.1)–(1.4).

    We give various examples of (1.1)–(1.4), with

    T=[1,π],ϑ3=1k(ϑ2(kϑ1)+ϑ1),g(ϱ,y,ˆy)=1105+125eπϱ[1+ˆy3+|ˆy|y1+y],ψ(ϱ)=313e5(ϱ+sin(ϱ)+2),

    where ϱT, yC([d,˜d],R), and ˆyR.

    Example 4.1. Taking ϑ212, ϑ1=12, k=1, φ(ϱ)=πϱ, α1=1, α2=2, α3=3, ϵ1=54, ϵ2=43, ϵ3=32, ˜n=3, d=˜d=13, and ϑ3=34, we have the system below:

    (H1D12,12;φ1+ψy)(ϱ)=g(ϱ,yϱ(),(H1D12,12;φ1+ψy)(ϱ)),   ϱ(1,π], (4.1)
    y(π)=y(54)+2x(43)+3x(32), (4.2)
    y(ϱ)=χ(ϱ),   ϱ[23,1], (4.3)
    y(ϱ)=˜χ(ϱ),   ϱ[π,π+13]. (4.4)

    We have

    Cϑ3,k;φ(T)=C34,1;φ(T)={y:(1,π]R:(πϱπ)14yC(T,R)},

    and then

    F={y:[23,π+13]R:y|[23,1]C, y|[π,π+13]˜C and y|(1,π]C34,1;φ(T)}.

    By continuity of the function g, the hypothesis (Ax1) holds. For every

    yC([13,13],R),ˆyRandϱT,

    one has

    |g(ϱ,y,ˆy)|1105+125eπϱ(1+y[d,˜d]+|ˆy|).

    Then, the condition (Ax3) is satisfied with

    m1(ϱ)=m2(ϱ)=m3(ϱ)=1105+125eπϱ

    and

    m1=m2=m3=1230.

    The condition (Ax4) is verified since we have that

    |ψ(ϱ)|613e5.

    We have

    =52e5(πππ)341374π 0.001995278633 <1.

    Hence, in view of Theorem 3.4, we infer that problems (4.1)(4.4) possess a solution in F.

    Example 4.2. Considering ϑ20, ϑ1=12, k=1, φ(ϱ)=ϱρ, α1=1, α2=1, α3=5, ϵ1=32, ϵ2=2, ϵ3=52, ˜n=3, d=˜d=12, ρ=12, and ϑ3=12, we have the next system:

    (H1D12,0;φ1+ψy)(ϱ)=(ρD12,01+y)(ϱ)=g(ϱ,yϱ(),(ρD12,01+ψy)(ϱ)),   ϱ(1,3], (4.5)
    \begin{align} {\mathsf{y}}(3)& = {\mathsf{y}}(\tfrac{3}{2})+{\mathsf{y}}(2)+5x(\tfrac{5}{2}), \end{align} (4.6)
    \begin{align} {\mathsf{y}}({\varrho})& = e^{\varrho}, \ \ \ {\varrho}\in\left[\frac{1}{2}, 1\right], \end{align} (4.7)
    \begin{align} {\mathsf{y}}({\varrho})& = e^{\varrho}, \ \ \ {\varrho}\in\left[3, \frac{7}{2}\right]. \end{align} (4.8)

    We have

    C_{{\vartheta_3}, {\mathsf{k}} ;{\rm{\mathsf{φ}}}}({ \mathbb{T}}) = C_{\frac{1}{2}, 1;{\rm{\mathsf{φ}}}}({ \mathbb{T}}) = \left\{{\mathsf{y}}:(1, 3]\rightarrow {{\mathbb R}}:\sqrt{(\sqrt{{\varrho}}-1)}{\mathsf{y}}\in C({ \mathbb{T}}, {{\mathbb R}})\right\},

    and then

    \mathbb{F} = \left\{{\mathsf{y}}:\left[\frac{1}{2}, \frac{7}{2}\right]\rightarrow {{\mathbb R}}: \left.{\mathsf{y}}\right|_{\left[\frac{1}{2}, 1\right]}\in \mathcal{C}, \ \left.{\mathsf{y}}\right|_{\left[3, \frac{7}{2}\right]}\in \tilde{\mathcal{C}}\ \ \text{and}\ \ \left.{\mathsf{y}}\right|_{(1, 3]}\in C_{\frac{3}{4}, 1;{\rm{\mathsf{φ}}}}({ \mathbb{T}})\right\}.

    Additionally, for every

    {\mathsf{y}}_1, {\widehat{\mathsf{y}}}_1\in C\left(\left[-\frac{1}{2}, \frac{1}{2}\right], {{\mathbb R}}\right), \ \ {\mathsf{y}}_2, {\widehat{\mathsf{y}}}_2\in{{\mathbb R}}, \; \; \text{and}\; \; {\varrho}\in { \mathbb{T}},

    one has

    |{\mathfrak{g}}({\varrho}, {\mathsf{y}}_1, {\mathsf{y}}_2)-{\mathfrak{g}}({\varrho}, {\widehat{\mathsf{y}}}_1, {\widehat{\mathsf{y}}}_2)|\leq \frac {1}{105+125e^{\pi-{\varrho}}}\left(\|{\mathsf{y}}_1-{\widehat{\mathsf{y}}}_1\|_{\left[-\mathsf{d}, \tilde{\mathsf{d}}\right]}+|{\mathsf{y}}_2-{\widehat{\mathsf{y}}}_2|\right).

    Then, the condition (Ax2) holds with

    \zeta_1 = \zeta_2 = \frac {1}{230}.

    Since

    \begin{equation*} {\mathcal{L}} \approx 0.000105319912 \ < 1. \end{equation*}

    Hence, all of the hypotheses of Theorem 3.3 are verified. It follows that problems (4.5) (4.8) possess one solution in \mathbb{F} .

    Our research considered a class of problems involving nonlinear implicit ({\mathsf{k}}, {\rm{\mathsf{φ}}}) -Hilfer hybrid fractional differential equations with nonlocal terminal conditions. We achieved this by proving the existence and uniqueness of solutions for these equations. Our strategy hinged on powerful mathematical tools: the Banach contraction principle, Schauder's fixed point theorem, and Krasnoselskii's fixed point techniques. To showcase the practical applications of our findings and the ease of using our theorems, we presented some illustrative examples. These illustrations effectively highlight the flexibility and wide-reaching impact of the studied operator across various cases. It is noteworthy that the introduced ({\mathsf{k}}, {\rm{\mathsf{φ}}}) -Hilfer operator operates as an extension, encompassing previously established fractional derivatives such as the Caputo, Hadamard, and Hilfer fractional derivative already present in the existing literature. This broader conceptual framework substantially contributes to the ongoing advancement of fractional calculus, thus laying the groundwork for promising directions of future exploration within this ever-evolving and dynamic domain.

    A. Salim: conceptualization, data curation, formal analysis, investigation, methodology, writing-original draft; S. T. M. Thabet: conceptualization, data curation, formal analysis, methodology, writing-original draft; I. Kedim: data curation, formal analysis, investigation, methodology, writing-review and editing; M. Vivas-Cortez: investigation, writing-review and editing. All authors have read and agreed to the published version of the article.

    The authors declare they have not used artificial intelligence (AI) tools in the creation of this article.

    Pontificia Universidad Católica del Ecuador, Proyecto Título: "Algunos resultados Cualitativos sobre Ecuaciones diferenciales fraccionales y desigualdades integrales" Cod UIO2022. This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2024/R/1446).

    The authors declare that they have no conflicts of interest.



    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 2006.
    [2] M. Benchohra, S. Bouriah, A. Salim, Y. Zhou, Fractional differential equations: a coincidence degree approach, Boston: De Gruyter, 2024. https://doi.org/10.1515/9783111334387
    [3] M. Benchohra, E. Karapınar, J. E. Lazreg, A. Salim, Fractional differential equations: new advancements for generalized fractional derivatives, Springer, 2023. https://doi.org/10.1007/978-3-031-34877-8
    [4] K. Liu, J. Wang, D. O'Regan, Ulam-Hyers-Mittag-Leffler stability for \psi-Hilfer fractional-order delay differential equations, Adv. Differ. Equations, 2019 (2019), 50. https://doi.org/10.1186/s13662-019-1997-4 doi: 10.1186/s13662-019-1997-4
    [5] J. P. Kharade, K. D. Kucche, On the impulsive implicit \psi-Hilfer fractional differential equations with delay, Math. Methods Appl. Sci., 43 (2020), 1938–1952. https://doi.org/10.1002/mma.6017 doi: 10.1002/mma.6017
    [6] R. Diaz, C. Teruel, {q, {k}}-generalized gamma and beta functions, J. Nonlinear Math. Phys., 12 (2005), 118–134. https://doi.org/10.2991/jnmp.2005.12.1.10 doi: 10.2991/jnmp.2005.12.1.10
    [7] S. Mubeen, G. M. Habibullah, {k}-fractional integrals and application, Int. J. Contemp. Math. Sci., 7 (2012), 89–94.
    [8] Y. M. Chu, M. U. Awan, S. Talib, M. A. Noor, K. I. Noor, Generalizations of Hermite-Hadamard like inequalities involving \chi _{{\kappa }}-Hilfer fractional integrals, Adv. Differ. Equations, 2020 (2020), 594. https://doi.org/10.1186/s13662-020-03059-0 doi: 10.1186/s13662-020-03059-0
    [9] J. V. da C. Sousa, E. C. de Oliveira, On the \psi-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005
    [10] A. Salim, M. Benchohra, J. E. Lazreg, J. Henderson, On {k}-generalized \psi-Hilfer boundary value problems with retardation and anticipation, Adv. Theory Nonlinear Anal. Appl., 6 (2022), 173–190. https://doi.org/10.31197/atnaa.973992 doi: 10.31197/atnaa.973992
    [11] A. Salim, M. Benchohra, J. E. Lazreg, E. Karapınar, On {k}-generalized \psi-Hilfer impulsive boundary value problem with retarded and advanced arguments, J. Math. Ext., 15 (2021), 1–39. https://doi.org/10.30495/JME.SI.2021.2187 doi: 10.30495/JME.SI.2021.2187
    [12] A. Boutiara, S. Etemad, S. T. M. Thabet, S. K. Ntouyas, S. Rezapour, J. Tariboon, A mathematical theoretical study of a coupled fully hybrid (\kappa, \varphi)-fractional order system of BVPs in generalized Banach spaces, Symmetry 15 (2023), 1041. https://doi.org/10.3390/sym15051041
    [13] S. Krim, S. Abbas, M. Benchohra, E. Karapinar, Terminal value problem for implicit Katugampola fractional differential equations in b-metric spaces, J. Funct. Spaces, 2021 (2021), 1–7. https://doi.org/10.1155/2021/5535178 doi: 10.1155/2021/5535178
    [14] A. Almalahi, K. Panchal, On the theory of \psi-Hilfer nonlocal Cauchy problem, J. Sib. Fed. Univ. Math. Phys., 14 (2021), 161–177. https://doi.org/10.17516/1997-1397-2021-14-2-161-177 doi: 10.17516/1997-1397-2021-14-2-161-177
    [15] S. Rashid, M. A. Noor, K. I. Noor, Y. M. Chu, Ostrowski type inequalities in the sense of generalized \mathcal{K}-fractional integral operator for exponentially convex functions, AIMS Math., 5 (2020), 2629–2645. https://doi.org/10.3934/math.2020171 doi: 10.3934/math.2020171
    [16] J. E. N. Valdés, Generalized fractional Hilfer integral and derivative, Contrib. Math., 2 (2020), 55–60. https://doi.org/10.47443/cm.2020.0036 doi: 10.47443/cm.2020.0036
    [17] A. Granas, J. Dugundji, Fixed point theory, Springer-Verlag, 2003. https://doi.org/10.1007/978-0-387-21593-8
  • This article has been cited by:

    1. HuiYan Cheng, Akbar Zada, Ioan-Lucian Popa, Afef Kallekh, $(\mathtt{k},\varphi )$-Hilfer fractional Langevin differential equation having multipoint boundary conditions, 2024, 2024, 1687-2770, 10.1186/s13661-024-01918-3
    2. Abdelkrim Salim, Sabri T.M. Thabet, Ava Sh. Rafeeq, Mohammad Esmael Samei, Imed Kedim, Miguel Vivas-Cortez, Exploring the solutions of tempered (κ,ϖ)-Hilfer hybrid implicit boundary value problem, 2025, 119, 11100168, 138, 10.1016/j.aej.2025.01.069
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(887) PDF downloads(44) Cited by(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog