Research article

On the nonlocal hybrid $ ({\mathsf{k}}, {\rm{\mathsf{φ}}}) $-Hilfer inverse problem with delay and anticipation

  • Received: 18 May 2024 Revised: 02 July 2024 Accepted: 08 July 2024 Published: 24 July 2024
  • MSC : 26A33, 34A08, 34A12

  • This paper focused on establishing results regarding the existence of solutions for a class of nonlocal terminal value problems involving hybrid implicit nonlinear fractional differential equations with the $ ({\mathsf{k}}, {\rm{\mathsf{φ}}}) $-Hilfer fractional derivative, which includes both finite delay and anticipation arguments. Our analysis was based on the Banach fixed point technique, and the Schauder and Krasnoselskii fixed point theorems. Moreover, illustrative examples were considered to support our new results.

    Citation: Abdelkrim Salim, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez. On the nonlocal hybrid $ ({\mathsf{k}}, {\rm{\mathsf{φ}}}) $-Hilfer inverse problem with delay and anticipation[J]. AIMS Mathematics, 2024, 9(8): 22859-22882. doi: 10.3934/math.20241112

    Related Papers:

  • This paper focused on establishing results regarding the existence of solutions for a class of nonlocal terminal value problems involving hybrid implicit nonlinear fractional differential equations with the $ ({\mathsf{k}}, {\rm{\mathsf{φ}}}) $-Hilfer fractional derivative, which includes both finite delay and anticipation arguments. Our analysis was based on the Banach fixed point technique, and the Schauder and Krasnoselskii fixed point theorems. Moreover, illustrative examples were considered to support our new results.



    加载中


    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 2006.
    [2] M. Benchohra, S. Bouriah, A. Salim, Y. Zhou, Fractional differential equations: a coincidence degree approach, Boston: De Gruyter, 2024. https://doi.org/10.1515/9783111334387
    [3] M. Benchohra, E. Karapınar, J. E. Lazreg, A. Salim, Fractional differential equations: new advancements for generalized fractional derivatives, Springer, 2023. https://doi.org/10.1007/978-3-031-34877-8
    [4] K. Liu, J. Wang, D. O'Regan, Ulam-Hyers-Mittag-Leffler stability for $\psi$-Hilfer fractional-order delay differential equations, Adv. Differ. Equations, 2019 (2019), 50. https://doi.org/10.1186/s13662-019-1997-4 doi: 10.1186/s13662-019-1997-4
    [5] J. P. Kharade, K. D. Kucche, On the impulsive implicit $\psi$-Hilfer fractional differential equations with delay, Math. Methods Appl. Sci., 43 (2020), 1938–1952. https://doi.org/10.1002/mma.6017 doi: 10.1002/mma.6017
    [6] R. Diaz, C. Teruel, ${q, {k}}$-generalized gamma and beta functions, J. Nonlinear Math. Phys., 12 (2005), 118–134. https://doi.org/10.2991/jnmp.2005.12.1.10 doi: 10.2991/jnmp.2005.12.1.10
    [7] S. Mubeen, G. M. Habibullah, ${k}$-fractional integrals and application, Int. J. Contemp. Math. Sci., 7 (2012), 89–94.
    [8] Y. M. Chu, M. U. Awan, S. Talib, M. A. Noor, K. I. Noor, Generalizations of Hermite-Hadamard like inequalities involving $\chi _{{\kappa }}$-Hilfer fractional integrals, Adv. Differ. Equations, 2020 (2020), 594. https://doi.org/10.1186/s13662-020-03059-0 doi: 10.1186/s13662-020-03059-0
    [9] J. V. da C. Sousa, E. C. de Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005
    [10] A. Salim, M. Benchohra, J. E. Lazreg, J. Henderson, On ${k}$-generalized $\psi$-Hilfer boundary value problems with retardation and anticipation, Adv. Theory Nonlinear Anal. Appl., 6 (2022), 173–190. https://doi.org/10.31197/atnaa.973992 doi: 10.31197/atnaa.973992
    [11] A. Salim, M. Benchohra, J. E. Lazreg, E. Karapınar, On ${k}$-generalized $\psi$-Hilfer impulsive boundary value problem with retarded and advanced arguments, J. Math. Ext., 15 (2021), 1–39. https://doi.org/10.30495/JME.SI.2021.2187 doi: 10.30495/JME.SI.2021.2187
    [12] A. Boutiara, S. Etemad, S. T. M. Thabet, S. K. Ntouyas, S. Rezapour, J. Tariboon, A mathematical theoretical study of a coupled fully hybrid ($\kappa, \varphi$)-fractional order system of BVPs in generalized Banach spaces, Symmetry 15 (2023), 1041. https://doi.org/10.3390/sym15051041
    [13] S. Krim, S. Abbas, M. Benchohra, E. Karapinar, Terminal value problem for implicit Katugampola fractional differential equations in $b$-metric spaces, J. Funct. Spaces, 2021 (2021), 1–7. https://doi.org/10.1155/2021/5535178 doi: 10.1155/2021/5535178
    [14] A. Almalahi, K. Panchal, On the theory of $\psi$-Hilfer nonlocal Cauchy problem, J. Sib. Fed. Univ. Math. Phys., 14 (2021), 161–177. https://doi.org/10.17516/1997-1397-2021-14-2-161-177 doi: 10.17516/1997-1397-2021-14-2-161-177
    [15] S. Rashid, M. A. Noor, K. I. Noor, Y. M. Chu, Ostrowski type inequalities in the sense of generalized $\mathcal{K}$-fractional integral operator for exponentially convex functions, AIMS Math., 5 (2020), 2629–2645. https://doi.org/10.3934/math.2020171 doi: 10.3934/math.2020171
    [16] J. E. N. Valdés, Generalized fractional Hilfer integral and derivative, Contrib. Math., 2 (2020), 55–60. https://doi.org/10.47443/cm.2020.0036 doi: 10.47443/cm.2020.0036
    [17] A. Granas, J. Dugundji, Fixed point theory, Springer-Verlag, 2003. https://doi.org/10.1007/978-0-387-21593-8
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(551) PDF downloads(39) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog