Research article

Fitted mesh method for singularly perturbed fourth order differential equation of convection diffusion type with integral boundary condition

  • Received: 14 March 2023 Revised: 23 April 2023 Accepted: 04 May 2023 Published: 12 May 2023
  • MSC : 65L10, 34B10

  • This article focuses on a class of fourth-order singularly perturbed convection diffusion equations (SPCDE) with integral boundary conditions (IBC). A numerical method based on a finite difference scheme using Shishkin mesh is presented. The proposed method is close to the first-order convergent. The discrete norm yields an error estimate and theoretical estimations are tested by numerical experiments.

    Citation: V. Raja, E. Sekar, S. Shanmuga Priya, B. Unyong. Fitted mesh method for singularly perturbed fourth order differential equation of convection diffusion type with integral boundary condition[J]. AIMS Mathematics, 2023, 8(7): 16691-16707. doi: 10.3934/math.2023853

    Related Papers:

    [1] M. Chandru, T. Prabha, V. Shanthi, H. Ramos . An almost second order uniformly convergent method for a two-parameter singularly perturbed problem with a discontinuous convection coefficient and source term. AIMS Mathematics, 2024, 9(9): 24998-25027. doi: 10.3934/math.20241219
    [2] Nien-Tsu Hu, Sekar Elango, Chin-Sheng Chen, Murugesan Manigandan . Computational methods for singularly perturbed differential equations with advanced argument of convection-diffusion type. AIMS Mathematics, 2024, 9(8): 22547-22564. doi: 10.3934/math.20241097
    [3] Şuayip Toprakseven, Seza Dinibutun . Error estimations of a weak Galerkin finite element method for a linear system of $ \ell\geq 2 $ coupled singularly perturbed reaction-diffusion equations in the energy and balanced norms. AIMS Mathematics, 2023, 8(7): 15427-15465. doi: 10.3934/math.2023788
    [4] Zhongdi Cen, Jian Huang, Aimin Xu . A posteriori mesh method for a system of singularly perturbed initial value problems. AIMS Mathematics, 2022, 7(9): 16719-16732. doi: 10.3934/math.2022917
    [5] Abdulghani R. Alharbi . Numerical solutions to two-dimensional fourth order parabolic thin film equations using the Parabolic Monge-Ampere method. AIMS Mathematics, 2023, 8(7): 16463-16478. doi: 10.3934/math.2023841
    [6] Ruby, Vembu Shanthi, Higinio Ramos . A numerical approach to approximate the solution of a quasilinear singularly perturbed parabolic convection diffusion problem having a non-smooth source term. AIMS Mathematics, 2025, 10(3): 6827-6852. doi: 10.3934/math.2025313
    [7] Essam R. El-Zahar, Ghaliah F. Al-Boqami, Haifa S. Al-Juaydi . Piecewise approximate analytical solutions of high-order reaction-diffusion singular perturbation problems with boundary and interior layers. AIMS Mathematics, 2024, 9(6): 15671-15698. doi: 10.3934/math.2024756
    [8] Ram Shiromani, Carmelo Clavero . An efficient numerical method for 2D elliptic singularly perturbed systems with different magnitude parameters in the diffusion and the convection terms, part Ⅱ. AIMS Mathematics, 2024, 9(12): 35570-35598. doi: 10.3934/math.20241688
    [9] Fujun Cao, Dongfang Yuan . A class of HOC finite difference method for elliptic interface problems with imperfect contact. AIMS Mathematics, 2023, 8(3): 5789-5815. doi: 10.3934/math.2023292
    [10] Muhammad Asim Khan, Norma Alias, Umair Ali . A new fourth-order grouping iterative method for the time fractional sub-diffusion equation having a weak singularity at initial time. AIMS Mathematics, 2023, 8(6): 13725-13746. doi: 10.3934/math.2023697
  • This article focuses on a class of fourth-order singularly perturbed convection diffusion equations (SPCDE) with integral boundary conditions (IBC). A numerical method based on a finite difference scheme using Shishkin mesh is presented. The proposed method is close to the first-order convergent. The discrete norm yields an error estimate and theoretical estimations are tested by numerical experiments.



    A singularly perturbed problem (SPP) is a differential equation, for which the solution is affected by a small parameter that multiplies the leading derivative term. The solutions to these problems undergo fast changes in small portions of the domain, hence the traditional numerical approaches are ineffective for SPP. For these types of situations, it is required to develop suitable numerical approaches such that the error estimates are independent of the parameter. A technique that provides parameter-uniform numerical solutions is found in [6,19]. In such cases, the most effective and simplest approach is the Shiskin mesh (piecewise uniform mesh).

    Nonlocal boundary value issues are differential equations having conditions that link the values of the unknown solution at the boundary with values inside the equation. Of these, the differential equation with IBC is the essential problem that has been researched so far. A few years ago, research was carried out by the authors of [4,7,8,12,16,17,28,32] to analyze the behavior of solutions to the higher-order differential equations with IBC that are not singularly perturbed. This article concentrates on singularly perturbed fourth-order convection diffusion differential equations with IBC.

    Later, Debela and Duressa suggested a computational method for the class of SPCDE with IBC using the fitted operator method and the Richardson extrapolation technique in [3]. A singularly perturbed linear system of the Fredholm integro-differential problem with IBC is considered in [5]. They investigated a second-order convergent by applying the finite difference approach using the trapezoidal rule in both the equation and the initial condition. In [14], a uniform first-order solution is obtained by imposing a Bakhvalov mesh for the first order parameterized singularly perturbed differential equation with IBC, whereas the authors of [15] prove a second order convergent. Raja and Tamilselvan [22] discussed the finite difference scheme on Shishkin mesh for a system of singularly perturbed convection diffusion equations with IBC.

    The numerical method for the fourth-order SPP is considered in [9,23,27]. A quintic B-spline approach for solving the fourth-order singularly perturbed boundary value problem provides a solution without reducing the order. An initial value technique for the fourth-order singularly perturbed boundary value problems was examined by Mishra in [20]. Research articles [18,21,24,25,26] deal with third-order convection differential equations. Zen et al. [2] presented a numerical technique to solve a nonlinear SPP with IBC. The authors of [11] discussed SPP with boundary turning points. The numerical methods for higher-order differential equations, fractional integro-differential equations, and biharmonic problems are discussed in [1,10,13,29,30,31].

    The organisation of this article is as follows: Section 2 defines the problem's statement, as supported to Section 3, which establishes the maximum principle, the stability finding, and the estimations of the analytical solutions that were produced. The numerical scheme is provided in Section 4, while Section 5 yields the error estimates for each numerical solution and Section 6 offers the numerical experiments. The research article is concluded with a discussion given in Section 7.

    Inspired by [7,20,27] works, we take into account the ensuing fourth order SPCDE with IBC:

    εyiv(t)+a(t)y(t)+b(t)y(t)+c(t)y(t)=f(t),t(0,1)=Ω, (2.1)
    y(0)=l1,y(1)=l2, (2.2)
    y(0)=l3,y(1)=ε10g(t)y(t)dtl4, (2.3)

    where 0<ε<<1, a(t)α1>α+2>3, b(t)β0, θc(t)θ00, β+2θ>0, g(t) is non negative with 10g(t)dt<1, a(t),b(t),c(t),f(t),g(t) are sufficiently smooth on [0,1]=ˉΩ and yC4(Ω)C2(ˉΩ).

    Through out the paper, we assume that εCN1 and yD=supxD|y(x)|. C is independent constant of ε.

    The Eqs (2.1)–(2.3) may be changed into the following problem:

    L1ˉy(t)=y1(t)y2(t)=0,tΩ, (3.1)
    L2ˉy(t)=εy2(t)+a(t)y2(t)+b(t)y2(t)+c(t)y1(t)=f(t),tΩ, (3.2)

    where ˉy(t)=(y1(t),y2(t)) with the boundary conditions

    y1(0)=l1,y1(1)=l2 (3.3)
    y2(0)=l3,By2(1)=y2(1)ε10g(t)y2(t)dt=l4. (3.4)

    Theorem 3.1. (Maximum Principle) Let ˉy(t) be any function satisfying y1(0)0,y1(1)0, y2(0)0,By2(1)0, L1ˉy(t)0 and L2ˉy(t)0,tΩ. Then ˉy(t)0, t¯Ω.

    Proof. Define ˉs(t)=(s1(t),s2(t))ass1(t)=2(1t22),s2(t)=1. Note that ˉs(t)>0,t¯Ω, ˉL1ˉs(t)>0,L2ˉs(t)>0tΩ, s1(0)>0,s2(0)>0,s1(1)>0 and Bs2(1)>0. Further we define

    γ=max{maxtˉΩ(y1(t)s1(t)),maxtˉΩ(y2(t)s2(t))}.

    Then there exists at least one t0Ω, such that (y1(t0)s1(t0))=γ or (y2(t0)s2(t0))=γ or both. Also (ˉy+γˉs)(t)ˉ0,tˉΩ. Without loss of generality we assume that (y1(t0)s1(t0))=γ. Then (y1+γs1) attains its minimum at t=t0. It is simple to see that for every t¯Ω, ˉy(t)0 if γ0. Now we will show that indeed γ0. Suppose γ>0.

    Case (ⅰ): If (y1+γs1)(t0)=0, for t0=0, Then,

    0<(y1+γs1)(0)=y1(0)+γs1(0)=0.

    Case (ⅱ): If (y1+γs1)(t0)=0, for t0Ω, Then,

    0<L1(ˉy+γˉs)(t0)=(y1+γs1)(t0)(y2+γs2)(t0)0.

    Case (ⅲ): If (y1+γs1)(1)=0, Then,

    0<(y1+γs1)(1)=y1(1)+γs1(1)=0.

    Case (ⅳ): If (y2+γs2)(1)=0, Then,

    0<(y2+γs2)(0)=y2(0)+γs2(0)=0.

    Case (ⅴ): If (y2+γs2)(t0)=0, for t0Ω. Therefore (y2+γs2) attains its minimum at t=t0. Then,

    0<L2(ˉy+γˉs)(t0)=ε(y2+γs2)(t0)+a(t0)(y2+γs2)(t0)+b(t0)(y2+γs2)(t0)+c(t0)(y1+γs1)(t0)0.

    Case (ⅵ): Assume that (y2+γs2)(1)=0, Then,

    0<B(y2+γs2)(1)=(y2+γs2)(1)ε10g(t)(y2+γs2)(t)dt0.

    Be aware that we reached a contradiction in each and every situation. Therefore, γ>0 cannot exist. This demonstrates that y1(t)0, y2(t)0. Hence ˉy(t)0,tˉΩ.

    Lemma 3.2. (Stability Result) The solution to the problem (3.1)–(3.4) is ˉy(t), fulfils the condition.

    |yi(t)|Cmax{|y1(0)|,|y2(0)|,|y1(1)|,|By2(1)|,||L1ˉy||Ω,||L2ˉy||Ω},t¯Ω,i=1,2.

    Proof. Define ψ±i(t)=CMsi(t)±ui(t),t¯Ω,i=1,2, where

    M=max{|y1(0)|,|y2(0)|,|y1(1)|,|By2(1)|,||L1ˉy||Ω,||L2ˉy||Ω}.

    Note that ψ±1(0)0, ψ±1(1)0, ψ±2(0)0 and Bψ±2(1)0. Observe that L1ˉψ±(t)0, L2ˉψ±(t)0. The desired outcome is then obtained using the maximal principle.

    The following lemma gives bounds for the derivatives of ˉy(t).

    Lemma 3.3. Let (2.1) and (2.2) be the solution, and let ˉy(t) be the solution. Then, for 1k3,

    ||y(k)1(t)||Cε(k2),||y(k)2(t)||Cεk,t¯Ω.

    Proof. This lemma may be demonstrated by applying the arguments provided in [6] and corollary 3.2 in that order.

    The sharper constraints on the derivatives of the solution ˉy(t) may be used to calculate the uniform error estimate. We formulate the analytical solution in the form ˉy(t)=ˉv(t)+ˉw(t) to get sharper constraints, where ˉv(t)=(v1(t),v2(t)) and ˉw(t)=(w1(t),w2(t)). The regular component ˉv(t) can be written as ˉv(t)=ˉv0(t)+εˉv1(t)+ε2ˉv2(t), where ˉv0(t)=(v01(t),v02(t)), ˉv1(t)=(v11(t),v12(t)), ˉv2(t)=(v21(t),v22(t)) respectively satisfy the following equations:

    {v01(t)v02(t)=0,a(t)v02(t)+b(t)v02(t)+c(t)v01(t)=f(t),v01(0)=y1(0),v01(1)=y1(1),v02(0)=y2(0), (3.5)
    {v11(t)v12(t)=0,a(t)v12(t)+b(t)v12(t)+c(t)v11(t)=v02(t),v11(0)=0,v11(1)=0,v12(0)=0, (3.6)
    {v21(t)v22(t)=0,εv22(t)+a(t)v22(t)+b(t)v22(t)+c(t)v21(t)=v12(t),v21(0)=0,v21(1)=0,v22(0)=0,Bv22(1)=0. (3.7)

    Consequently, the regular component ˉv(t) is the solution to

    {L1ˉv(t)=v1(t)v2(t)=0,L2ˉv(t)=εv2(t)+a(t)v2(t)+b(t)v2(t)+c(t)v1(t)=f(t),v1(0)=y1(0),v1(1)=y1(1),v2(0)=y2(0),Bv2(1)=Bv02(1)+εBv12(1), (3.8)

    and layer component ˉw(t) is the solution of

    {L1ˉw(t)=w1(t)w2(t)=0,L2ˉw(t)=εw2(t)+a(t)w2(t)+b(t)w2(t)+c(t)w1(t)=0,w1(0)=0,w1(1)=0,w2(0)=0,Bw2(1)=By2(1)Bv2(1). (3.9)

    Theorem 3.4. Let ˉv0(t) be the solution to the reduced problem ˉv0(t) and ˉy(t) be the solution to the problem (2.1) and (2.2). Then

    |yj(t)v0j(t)|Cε,t¯Ω,j=1,2.

    Proof. Consider ˉψ±(t)=(ψ±1(t),ψ±2(t)), where

    ψ±1(t)=C(εs1(t)+Cε2[112eα(1t)/ε]±(y1(t)v01(t)),t¯Ω.
    ψ±2(t)=C(εs2(t)+Ceα(1t)/ε)±(u2(t)v02(t)),t¯Ω.

    Note that ψ±1(0)0, ψ±1(1)0, ψ±2(0)0 Further

    Bψ±2(1)=ψ±2(1)ε10g(t)ψ±2(x)dt±B(y2v02)(1)Cε(110g(t)dt)C(110g(t)dt)±(By2(1)Bv02(1))0.

    Let t(0,1). Then

    L1ˉψ±(t)=C[ε+eα(1t)/ε(α21)]0L2ˉψ±(t)=C([αε(a(t)α)+b(t)+ε2c(t)]eα(1t)/ε+ε(b(t)s2(t)+c(t)s1(t)))±εv02C([αε(α1α)+β+ε2θ]eα(1t)/ε+ε(β+2θ))±Cε0.

    The maximal principle then gives us ˉψ±(x)0,t¯Ω.

    Lemma 3.5. The solution ˉy(t) to the problem (3.1)–(3.4) satisfies the following constraints in its regular and singular components, respectively:

    ||v(k)1||ˉΩC(1+ε(4k)), (3.10)
    ||v(k)2||ˉΩC(1+ε(2k)), (3.11)
    |w(k)1(t)|Cε2keα(1t)/ε,tˉΩ, (3.12)
    |w(k)2(t)|Cεkeα(1t)/ε,tˉΩ,k=0,1,2,3. (3.13)

    Proof. With the method described in [6], the necessary limits on ˉv, ˉw, and their derivatives are obtained.

    Note: It is simple to observe from the aforementioned theorem that,

    |yj(t)vj(t)|Ceα(1t)/ε,t¯Ω,j=1,2. (3.14)

    On ˉΩ, a piecewise uniform Shishkin mesh with mesh intervals of N (4) is produced. Two subintervals are created for the domain ˉΩ: [0,1σ] and [1σ,1] where σ is the transitional parameter and σ=min{12,2εlnNα} specifies it. With regard to [0,1σ] and [1σ,1]. A homogeneous mesh with N2 mesh spacing is put in place. The interior mesh points are shown by

    ΩN={ti:1iN2}{ti:N2+1iN}.

    Clearly, ˉΩN={ti}N0.The mesh step should be hi=titi1, and the bar step should be i=hi+1+hi2.

    The discrete problem that results from (2.1) and (2.2) is:

    Find ˉY=(Y1(ti),Y2(ti)) such that

    {LN1ˉY(ti)=δ2Y1(ti)Y2(ti)=0,tiΩNLN2ˉY(ti)=εδ2Y2(ti)+a(ti)DY2(ti)+b(ti)Y1(ti)+c(ti)U1(ti)=f(ti),tiΩN. (4.1)
    {Y1(t0)=l1,Y1(tN)=l2,Y2(t0)=l3,BNY2(tN)=Y2(tN)εNi=1g(ti1)Y2(ti1)+g(ti)Y2(ti)2hi=l4,tiΩN, (4.2)

    where

    δ2Yj(ti)=1¯hi(Yj(ti+1)Yj(ti)hi+1Yj(ti)Yj(ti1)hi),DYj(ti)=Yj(ti)Yj(ti1)hi1,j=1,2.

    Theorem 4.1. (Discrete maximum principle) Let ˉΨ(ti)=(Ψ1(ti),Ψ2(ti)) be the mesh function satisfying Ψ1(t0)0,Ψ2(t0)0,Ψ1(tN)0,BNΨ2(tN)0,LN1ˉΨ(ti)0, and LN2ˉΨ(ti)0. Then ˉΨ(ti)0, ti¯ΩN.

    Proof. Let ˉS(ti)=(S1(ti),S2(ti)) where

    S1(ti)=2(1t2i2),ti¯ΩN,

    S2(ti)=1,ti¯ΩN.

    Note that ˉS(ti)>0,ti¯ΩN, S1(t0)>0,S1(tN)>0,S2(t0)>0,BNS2(tN)>0,LN1ˉS1(ti)>0 and LN1ˉS1(ti)>0, tiΩN. Let

    γ=max{maxti¯ΩN(Ψ1(ti)S1(ti)),maxti¯ΩN(Ψ2(ti)S2(ti))}.

    Then there exists one tk¯ΩN such that Ψ1(tk)+γS1(tk)=0 or Ψ2(tk)+γS2(tk)=0 or both. We have Ψj(ti)+γSj(ti)0,ti¯ΩN,j=1,2. Therefore either (Ψ1+γS1) or (Ψ1+γS1) attains minimum at ti=tk. Suppose the theorem does not hold true, then γ>0.

    Case (ⅰ): If (Ψ1+γS1)(t0)=0, Then,

    0<(Ψ1+μS1)(tk)=(Ψ1)(tk)+μ(S1)(tk)=0.

    Case (ⅱ): If (Ψ1+γS1)(tk)=0, for tkΩN. Then,

    0<LN1(ˉΨ+μˉS)(tk)=δ2(Ψ1+μS1)(tk)(Ψ2+μS2)(tk)0.

    Case (ⅲ): If (Ψ1+γS1)(tN)=0, Then,

    0<(Ψ1+μS1)(tk)=(Ψ1)(tk)+μ(S1)(tk)=0.

    Case (ⅳ): If (Ψ2+γS2)(t0)=0, Then,

    0<(Ψ2+μS2)(tk)=(Ψ2)(tk)+μ(S2)(tk)=0.

    Case (ⅴ): If (Ψ2+γS2)(tk)=0, for tkΩN. Then,

    0<LN2(ˉΨ+μˉS)(tk)=εδ2(Ψ2+μS2)(tk)+a(tk)D(Ψ2+μS2)(tk)+b(tk)(Ψ2+μS2)(tk)+c(tk)(Ψ1+μS1)(tk)0.

    Case (ⅵ): If (Ψ2+γS2)(tN)=0, Then,

    0<BN(Ψ2+μS2)(tk)=(Ψ2+μS2)(tk)εNi=1(Ψ2+μS2)(ti1)g(ti1)+(Ψ2+μS2)(ti)g(ti)2hi0.

    Note that we got to a contradiction in each and every situation. In light of this, γ>0 cannot exist. According to this, Ψ1(ti)0, Ψ2(ti)0. Hence ˉΨ(ti)0,ti¯ΩN.

    Lemma 4.2. (Discrete stability result) Let ˉY(ti)=(Y1(ti),Y2(ti)) be any mesh function. Then

    |Yj(ti)|Cmax{|Y1(t0)|,|Y2(t0)|,|Y1(tN)|,|BY2(tN),|maxtiΩN|LN1ˉY(ti)|maxtiΩN|LN2ˉY(ti)|},ti¯ΩN,j=1,2.

    Proof. One may prove the aforementioned inequality by utilising Theorem 4.1, and proper barrier functions.

    Similar to the continuous case, the discrete solution ˉU(xi) may be broken down into ˉY(ti)=ˉV(ti)+ˉW(ti), where V(ti) and W(ti) are the answers to the following problems, respectively:

    {LN1ˉV(ti)=δ2V1(ti)V2(ti)=0,tiΩN,LN2ˉV(ti)=εδ2V2(ti)+a(ti)DV2(ti)+b(ti)V2(xi)+c(ti)V1(ti),tiΩN,V1(t0)=v1(0),V1(tN)=v1(1),V2(t0)=v2(0),BNV2(tN)=Bv2(1) (4.3)

    and

    {LN1ˉW(ti)=δ2W1(ti)W2(ti)=0,tiΩN,LN2ˉW(ti)=εδ2W2(ti)+a(ti)DW2(ti)+b(ti)W2(ti)+c(ti)W1(ti),tiΩN,W1(x0)=w1(0),w1(tN)=w1(1),W2(t0)=w2(0),BNW2(tN)=Bw2(1). (4.4)

    The theory that follows provides an estimation for the difference between the answers of (4.1)–(4.3).

    Theorem 4.3. Let ˉY be the numerical solution to the equation (2.1) and (2.2) as specified by (4.1) and (4.2). A numerical solution of (3.8) defined by (4.3) and ˉV. Then

    |Y1(ti)V1(ti)|C{N1,i=0,1,,N2N1+|l2V1(tN)|,i=N2+1,,N..
    |Y2(ti)V2(ti)|C{N1,i=0,1,,N2N1+|l4BNV2(tN)|,i=N2+1,,N..

    Proof. Consider ˉΨ±(ti)=(Ψ±1(ti),Ψ±2(ti)), where

    Ψ±1(ti)=CN1S1(ti)+CS1(ti)φ1(ti)±(Y1(ti)V1(ti)),tiˉΩN,
    Ψ±2(ti)=CN1S2(ti)+CS2(ti)φ2(ti)±(Y2(ti)V2(ti)),tiˉΩN,
    φ1(ti)={0,i=0,1,,N2|l2V1(tN)|,i=N2+1,,N.
    φ2(ti)={0,i=0,1,,N2|l4BNV2(tN)|,i=N2+1,,N.

    Now

    LN1ˉΨ±(ti)=CN1[δ2S1(ti)S2(ti)]+C[δ2S1(ti)φ1(ti)S2(ti)φ2(ti)]±00,LN2ˉΨ±(ti)=CN1[b(ti)S2(ti)+c(ti)S1(ti)]+C[b(ti)S2(ti)φ2(ti)+c(ti)S1(ti)φ1(ti)]0,tiΩN,BNΨ±2(tN)=Ψ±2(tN)εi=Ni=1g2(ti1)Ψ±2(ti1)+g2(ti) Ψ±2(ti)2hi0.

    Then we arrive at the conclusion using Theorem 4.1.

    For each component of the numerical solution, we get a different estimate of the error.

    Lemma 5.1. Assume that ˉV(ti) is a numerical solution to the Eq (3.8) as specified by (4.3). Then

    |(vjVj)(ti)|CN1,ti¯ΩN,j=1,2.

    Proof. Now

    LN1(ˉv(ti)ˉV(ti))=(δ2d2dt2)v1(ti),LN2(ˉv(ti)ˉV(ti))=ε(δ2d2dt2)v2(ti)+a(ti)(Dddt)v2(ti).

    Therefore

    LNj(ˉv(ti)ˉV(ti))CN1,tiΩN,j=1,2.

    Further

    BN(v2V2)(tN)=BNv2(tN)BNV2(tN)=BNv2(tN)Bv2(1)|BN(v2V2)(tN)|Cε(h31v(χ1)++h3Nv(χN))CN2

    where ti1χiti, 1iN. Then, as a result of discrete stability, we have |(vj(ti)Vj(ti))|CN1,tiˉΩN,j=1,2.

    Lemma 5.2. Let (3.9) defined in (3.9) have a numerical solution, ˉW(ti). Then

    |(wjWj)(ti)|CN1(lnN)2,ti¯ΩN,j=1,2.

    Proof. Observe that

    |wj(ti)Wj(ti)||yj(ti)Yj(ti)|+|vj(ti)Vj(ti)|,j=1,2.

    Then by (3.14), Theorem 3.4 and Lemma 5.1, we have

    |yj(ti)Yj(ti)||Yj(ti)Vj(ti)|+|vj(ti)Vj(ti)|+|yj(ti)vj(ti)|,j=1,2.

    Therefore

    |wj(ti)Wj(ti)||yj(ti)Yj(ti)|+|vj(ti)Vj(ti)|Ceα(1ti)/ε+CN1Ceασ/ε+CN1CN1,0iN2.

    Consider ˉΨ±(ti)=(Ψ±1(ti),Ψ±2(ti)),ti[1σ,1], where

    Ψ±1(ti)=CN1S1(ti)+CN1σε2(S1(ti)(1σ))±(w1(ti)W1(ti)),
    Ψ±2(xi)=CN1S2(ti)+CN1σε2(ti(1σ))±(w2(ti)W2(ti)).
    LN1ˉΨ±(ti)=CN1[δ2S1(ti)S2(ti)]+CN1σε2[δ2S1(ti)(ti(1σ))]±(LN1L1)ˉw(ti),=CN1[21]+CN1σε2[2(ti(1σ))]±00.LN1ˉΨ±(ti)=CN1[b(ti)S2(ti)+c(ti)S1(ti)]+CN1σε2[b(ti)(ti(1σ))+2c(ti)]±(LN2L2)(ˉw(xi))0,BNΨ±2(tN)=Ψ±2(tN)εi=Ni=N/2g(ti1)Ψ±2(xi1)+g(ti) Ψ±2(ti)2hi0.

    In consideration of the discrete maximum concept, we therefore have Ψ±j(ti)0, ti[1σ,1],j=1,2.

    Therefore |wj(ti)Wj(ti)|CN1(lnN)2,ti[1σ,1],j=1,2.

    Theorem 5.3. Let (2.1) and (2.2) be the solution as defined in (4.1) and (4.2), and let ˉY(ti) be the result. Then

    |yj(ti)Yj(ti)|¯ΩNCN1(lnN)2,j=1,2.

    Proof. The proof is finished by combining the Lemmas 5.1 and 5.2.

    Example 6.1.

    εyiv(t)+5y(t)+4y(t)y(t)=1,t(0,1)=Ω,y(0)=0,y(1)=0y(0)=0,y(1)=ε10t2y(t)dt.

    Example 6.2.

    εyiv(t)+5y(t)+(4+x)y(t)y(t)=ex,t(0,1)=Ω,y(0)=0,y(1)=0y(0)=0,y(1)=ε10t2y(t)dt.

    There is no analytical answer for the aforementioned situations. As a result, we use the double mesh principle, which is defined as DNε=maxxi¯ΩNε|UN(xi)U2N(xi)| and DN=maxεDNε, where the numerical solution calculated using N and 2N mesh points is denoted by UN(xi) and U2N(xi). The order of convergence is given by PN=log2(DND2N) based on these values.

    For different values of ε, the approximate solutions for Example 6.1 are plotted in Figure 1 on a Shishkin mesh. Numerical solutions of Example 6.1 are plotted in Figure 2. These figures show that when ε decreases, boundary layers are present near x=1. The most possible pointwise error in the numerical solution is plotted in Figures 3 and 4 for Examples 6.1 and 6.2.

    Figure 1.  Example 6.1 solution graph for ε=214 and N=128 solution graph.
    Figure 2.  The most possible pointwise error in the numerical solution to Example 6.1.
    Figure 3.  Example 6.2 solution graph for ε=27 and N=64 solution graph.
    Figure 4.  The most possible pointwise error in the numerical solution to Example 6.2.

    This article has provided the fitted mesh method for the fourth-order SPCDE with IBC. As a consequence, the approach converges in the discrete maximum norm with ε-uniformity with respect to the perturbation parameter. Maximum absolute errors and convergence rates have been reported for the given numerical results (see Tables 14). According to these observations, the proposed method is uniformly convergent and has almost first-order accuracy on the piecewise uniform mesh. Concisely, the strategy is reliable and well-suited for dealing with such problems. Further, higher-order difference schemes can be proposed to promote numerical investigations.

    Table 1.  The sequence of convergence and maximum pointwise errors of component Y1 for Example 6.1.
    εN 16 32 64 128 256 512 1024
    26 4.6752e-03 2.5695e-03 1.3330e-03 6.7390e-04 3.3775e-04 1.7001e-04 8.7354e-05
    28 4.9910e-03 2.7761e-03 1.4579e-03 7.4498e-04 3.7566e-04 1.8821e-04 9.4010e-05
    210 5.0726e-03 2.8301e-03 1.4912e-03 7.6460e-04 3.8688e-04 1.9448e-04 9.7440e-05
    212 5.0931e-03 2.8437e-03 1.4996e-03 7.6957e-04 3.8974e-04 1.9608e-04 9.8331e-05
    214 5.0982e-03 2.8471e-03 1.5017e-03 7.7082e-04 3.9045e-04 1.9649e-04 9.8555e-05
    216 5.0995e-03 2.8479e-03 1.5022e-03 7.7113e-04 3.9063e-04 1.9659e-04 9.8612e-05
    218 5.0997e-03 2.8481e-03 1.5023e-03 7.7118e-04 3.9066e-04 1.9660e-04 9.8621e-05
    220 5.0999e-03 2.8482e-03 1.5023e-03 7.7122e-04 3.9068e-04 1.9662e-04 9.8628e-05
    222 5.0999e-03 2.8482e-03 1.5024e-03 7.7123e-04 3.9069e-04 1.9662e-04 9.8629e-05
    224 5.0999e-03 2.8482e-03 1.5024e-03 7.7123e-04 3.9069e-04 1.9662e-04 9.8629e-05
    226 5.0999e-03 2.8482e-03 1.5024e-03 7.7123e-04 3.9069e-04 1.9662e-04 9.8629e-05
    228 5.0999e-03 2.8482e-03 1.5024e-03 7.7123e-04 3.9069e-04 1.9662e-04 9.8629e-05
    230 5.0999e-03 2.8482e-03 1.5024e-03 7.7123e-04 3.9069e-04 1.9662e-04 9.8629e-05
    DN1 5.0999e-03 2.8482e-03 1.5024e-03 7.7123e-04 3.9069e-04 1.9662e-04 9.8630e-05
    PN1 8.4043e-01 9.2281e-01 9.6200e-01 9.8114e-01 9.9061e-01 9.9531e-01 -

     | Show Table
    DownLoad: CSV
    Table 2.  The sequence of convergence and maximum pointwise errors of component Y2 for Example 6.1.
    εN 16 32 64 128 256 512 1024
    26 1.3163e-02 1.2712e-02 1.0131e-02 7.1135e-03 4.5748e-03 2.7709e-03 1.6121e-03
    28 1.3177e-02 1.2744e-02 1.0162e-02 7.1355e-03 4.5891e-03 2.7795e-03 1.6170e-03
    210 1.3180e-02 1.2751e-02 1.0169e-02 7.1410e-03 4.5926e-03 2.7817e-03 1.6183e-03
    212 1.3181e-02 1.2753e-02 1.0171e-02 7.1423e-03 4.5935e-03 2.7822e-03 1.6186e-03
    214 1.3181e-02 1.2754e-02 1.0171e-02 7.1427e-03 4.5937e-03 2.7823e-03 1.6187e-03
    216 1.3181e-02 1.2754e-02 1.0171e-02 7.1427e-03 4.5937e-03 2.7824e-03 1.6187e-03
    218 1.3181e-02 1.2754e-02 1.0171e-02 7.1428e-03 4.5938e-03 2.7824e-03 1.6187e-03
    220 1.3181e-02 1.2754e-02 1.0171e-02 7.1428e-03 4.5938e-03 2.7824e-03 1.6187e-03
    222 1.3181e-02 1.2754e-02 1.0171e-02 7.1428e-03 4.5938e-03 2.7824e-03 1.6187e-03
    224 1.3181e-02 1.2754e-02 1.0171e-02 7.1428e-03 4.5938e-03 2.7824e-03 1.6187e-03
    226 1.3181e-02 1.2754e-02 1.0171e-02 7.1428e-03 4.5938e-03 2.7824e-03 1.6187e-03
    228 1.3181e-02 1.2754e-02 1.0171e-02 7.1428e-03 4.5938e-03 2.7824e-03 1.6187e-03
    230 1.3181e-02 1.2754e-02 1.0171e-02 7.1427e-03 4.5938e-03 2.7824e-03 1.6187e-03
    DN2 1.3181e-02 1.2754e-02 1.0171e-02 7.1428e-03 4.5938e-03 2.7824e-03 1.6187e-03
    PN2 4.7581e-02 3.2640e-01 5.0996e-01 6.3680e-01 7.2336e-01 7.8146e-01 -

     | Show Table
    DownLoad: CSV
    Table 3.  The sequence of convergence and maximum pointwise errors of component Y1 for Example 6.2.
    εN 16 32 64 128 256 512 1024
    26 7.1937e-03 3.8939e-03 2.0030e-03 1.0070e-03 5.0193e-04 2.5059e-04 1.2681e-04
    28 7.6646e-03 4.2105e-03 2.1963e-03 1.1183e-03 5.6280e-04 2.8164e-04 1.4056e-04
    210 7.7860e-03 4.2930e-03 2.2475e-03 1.1486e-03 5.8015e-04 2.9136e-04 1.4591e-04
    212 7.8165e-03 4.3139e-03 2.2605e-03 1.1562e-03 5.8456e-04 2.9385e-04 1.4729e-04
    214 7.8242e-03 4.3191e-03 2.2637e-03 1.1582e-03 5.8566e-04 2.9447e-04 1.4764e-04
    216 7.8261e-03 4.3204e-03 2.2645e-03 1.1586e-03 5.8594e-04 2.9463e-04 1.4773e-04
    218 7.8265e-03 4.3207e-03 2.2647e-03 1.1588e-03 5.8601e-04 2.9467e-04 1.4775e-04
    220 7.8267e-03 4.3208e-03 2.2648e-03 1.1588e-03 5.8603e-04 2.9468e-04 1.4775e-04
    222 7.8267e-03 4.3208e-03 2.2648e-03 1.1588e-03 5.8603e-04 2.9468e-04 1.4776e-04
    224 7.8267e-03 4.3208e-03 2.2648e-03 1.1588e-03 5.8603e-04 2.9468e-04 1.4776e-04
    226 7.8267e-03 4.3208e-03 2.2648e-03 1.1588e-03 5.8603e-04 2.9468e-04 1.4776e-04
    228 7.8267e-03 4.3208e-03 2.2648e-03 1.1588e-03 5.8603e-04 2.9468e-04 1.4776e-04
    230 7.8267e-03 4.3208e-03 2.2648e-03 1.1588e-03 5.8603e-04 2.9468e-04 1.4776e-04
    DN1 7.8267e-03 4.3208e-03 2.2648e-03 1.1588e-03 5.8603e-04 2.9468e-04 1.4776e-04
    PN1 8.5710e-01 9.3193e-01 9.6675e-01 9.8357e-01 9.9183e-01 9.9593e-01 -

     | Show Table
    DownLoad: CSV
    Table 4.  The sequence of convergence and maximum pointwise errors of component Y2 for Example 6.2.
    εN 16 32 64 128 256 512 1024
    26 7.8129e-02 7.2397e-02 5.6770e-02 3.9575e-02 2.5366e-02 1.5339e-02 8.9171e-03
    28 7.7501e-02 7.1999e-02 5.6518e-02 3.9416e-02 2.5270e-02 1.5282e-02 8.8843e-03
    210 7.7342e-02 7.1898e-02 5.6454e-02 3.9377e-02 2.5245e-02 1.5268e-02 8.8761e-03
    212 7.7302e-02 7.1872e-02 5.6439e-02 3.9367e-02 2.5239e-02 1.5264e-02 8.8741e-03
    214 7.7292e-02 7.1866e-02 5.6435e-02 3.9364e-02 2.5238e-02 1.5264e-02 8.8736e-03
    216 7.7290e-02 7.1864e-02 5.6434e-02 3.9363e-02 2.5237e-02 1.5263e-02 8.8734e-03
    218 7.7289e-02 7.1864e-02 5.6433e-02 3.9363e-02 2.5237e-02 1.5263e-02 8.8734e-03
    220 7.7289e-02 7.1864e-02 5.6433e-02 3.9363e-02 2.5237e-02 1.5263e-02 8.8734e-03
    222 7.7289e-02 7.1864e-02 5.6433e-02 3.9363e-02 2.5237e-02 1.5263e-02 8.8734e-03
    224 7.7289e-02 7.1864e-02 5.6433e-02 3.9363e-02 2.5237e-02 1.5263e-02 8.8734e-03
    226 7.7289e-02 7.1864e-02 5.6433e-02 3.9363e-02 2.5237e-02 1.5263e-02 8.8734e-03
    228 7.7289e-02 7.1864e-02 5.6433e-02 3.9363e-02 2.5237e-02 1.5263e-02 8.8734e-03
    230 7.7289e-02 7.1864e-02 5.6433e-02 3.9363e-02 2.5237e-02 1.5263e-02 8.8735e-03
    DN2 7.8129e-02 7.2397e-02 5.6770e-02 3.9575e-02 2.5366e-02 1.5339e-02 8.9171e-03
    PN2 1.0994e-01 3.5081e-01 5.2054e-01 6.4167e-01 7.2567e-01 7.8260e-01 -

     | Show Table
    DownLoad: CSV

    The author declares that there is no conflict of interest regarding the publication of this paper.



    [1] H. Chen, X. Feng, Z. Zhang, A recovery-based linear C0 finite element method for a fourth-order singularly perturbed Monge-Ampère equation, Adv. Comput. Math., 47 (2021), 21. https://doi.org/10.1007/s10444-021-09847-w doi: 10.1007/s10444-021-09847-w
    [2] Z. Cen, L. Liu, A. Xu, A second-order adaptive grid method for a nonlinear singularly perturbed problem with an integral boundary condition, J. Comput. Appl. Math., 385 (2021), 113205. https://doi.org/10.1016/j.cam.2020.113205 doi: 10.1016/j.cam.2020.113205
    [3] H. G. Debela, G. F. Duressa, Accelerated exponentially fitted operator method for singularly perturbed problems with integral boundary condition, Int. J. Differ. Equat., 2020 (2020), 9268181. https://doi.org/10.1155/2020/9268181 doi: 10.1155/2020/9268181
    [4] M. Denche, A. Kourta, Boundary value problem for second-order differential operators with integral conditions, Appl. Anal., 84 (2005), 1247–1266. https://doi.org/10.1080/00036810500287255 doi: 10.1080/00036810500287255
    [5] M. E. Durmaz, I. Amirali, G. M. Amiraliyev, An efficient numerical method for a singularly perturbed fredholm integro-differential equation with integral boundary condition, J. Appl. Math. Comput., 69 (2022), 505–528. https://doi.org/10.1007/s12190-022-01757-4 doi: 10.1007/s12190-022-01757-4
    [6] P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O'Riordan, G. I. Shishkin, Robust computational techniques for boundary layers, Boca Raton: CRC Press, 2000.
    [7] F. T. Fen, I. Y. Karaca, Positive solutions of nth-order impulsive differential equations with integral boundary conditions, An. Sti. U. Ovi. Co. Mat., 24 (2016), 243–261. https://doi.org/10.1515/auom-2016-0014 doi: 10.1515/auom-2016-0014
    [8] Y. Fu, H. Yao, The solution of nonlinear fourth-order differential equation with integral boundary conditions, J. Funct. Space., 2014 (2014), 890695. https://doi.org/10.1155/2014/890695 doi: 10.1155/2014/890695
    [9] N. Geetha, A. Tamilselvan, Parameter uniform numerical method for fourth order singularly perturbed turning point problems exhibiting boundary layers, Ain Shams Eng. J., 9 (2018), 845–853. https://doi.org/10.1016/j.asej.2016.04.018 doi: 10.1016/j.asej.2016.04.018
    [10] H. Guo, Z. Zhang, Q. Zou, A c0 linear finite element method for biharmonic problems, J. Sci. Comput., 74 (2018), 1397–1422. https://doi.org/10.1007/s10915-017-0501-0 doi: 10.1007/s10915-017-0501-0
    [11] G. J. Jayalakshmi, A. Tamilselvan, Comparative study on difference schemes for singularly perturbed boundary turning point problems with robin boundary conditions, J. Appl. Math. Comput., 62 (2020), 341–360. https://doi.org/10.1007/s12190-019-01287-6 doi: 10.1007/s12190-019-01287-6
    [12] T. Jankowski, Positive solutions for fourth-order differential equations with deviating arguments and integral boundary conditions, Nonlinear Anal., 73 (2010), 1289–1299. https://doi.org/10.1016/j.na.2010.04.055 doi: 10.1016/j.na.2010.04.055
    [13] Y. Jia, M. Xu, Y. Lin, D. Jiang, An efficient technique based on least-squares method for fractional integro-differential equations, Alex. Eng. J., 64 (2023), 97–105. https://doi.org/10.1016/j.aej.2022.08.033 doi: 10.1016/j.aej.2022.08.033
    [14] M. Kudu, A parameter uniform difference scheme for the parameterized singularly perturbed problem with integral boundary condition, Adv. Differ. Equ., 2018 (2018), 170. https://doi.org/10.1186/s13662-018-1620-0 doi: 10.1186/s13662-018-1620-0
    [15] M. Kudu, I. Amirali, G. M. Amiraliyev, A second order accurate method for a parameterized singularly perturbed problem with integral boundary condition, J. Comput. Appl. Math., 404 (2022), 113894. https://doi.org/10.1016/j.cam.2021.113894 doi: 10.1016/j.cam.2021.113894
    [16] Y. Li, H. Zhang, Positive solutions for a nonlinear higher order differential system with coupled integral boundary conditions, J. Appl. Math., 2014 (2014), 901094. https://doi.org/10.1155/2014/901094 doi: 10.1155/2014/901094
    [17] R. K. Lodhi, H. K. Mishra, Solution of a class of fourth order singular singularly perturbed boundary value problems by quintic b-spline method, J. Nigerian Math. Soc., 35 (2016), 257–265. https://doi.org/10.1016/j.jnnms.2016.03.002 doi: 10.1016/j.jnnms.2016.03.002
    [18] R. Mahendran, V. Subburayan, Fitted finite difference method for third order singularly perturbed delay differential equations of convection diffusion type, Int. J. Comput. Method., 16 (2019), 1840007. https://doi.org/10.1142/S0219876218400078 doi: 10.1142/S0219876218400078
    [19] J. J. H. Miller, E. O'Riordan, G. I. Shishkin, Fitted numerical methods for singular perturbation problems, Singapore: World scientific, 2012.
    [20] H. K. Mishra, Fourth order singularly perturbed boundary value problems via initial value techniques, Appl. Math. Sci., 8 (2014), 619–632. https://doi.org/10.12988/AMS.2014.312676 doi: 10.12988/AMS.2014.312676
    [21] V. Raja, A. Tamilselvan, Fitted finite difference method for third order singularly perturbed convection diffusion equations with integral boundary condition, Arab J. Math. Sci., 25 (2019), 231–242. https://doi.org/10.1016/j.ajmsc.2018.10.002 doi: 10.1016/j.ajmsc.2018.10.002
    [22] V. Raja, A. Tamilselvan, Numerical method for a system of singularly perturbed convection diffusion equations with integral boundary conditions, Commun. Korean Math. Soc., 34 (2019), 1015–1027. https://doi.org/10.4134/CKMS.c180224 doi: 10.4134/CKMS.c180224
    [23] J. Stalin Christy Roja, A. Tamilselvan, Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type, J. Math. Model., 4 (2016), 79–102.
    [24] E. Sekar, Second order singularly perturbed delay differential equations with non-local boundary condition, J. Comput. Appl. Math., 417 (2023), 114498. https://doi.org/10.1016/j.cam.2022.114498 doi: 10.1016/j.cam.2022.114498
    [25] E. Sekar, U. Bundit, Numerical scheme for singularly perturbed mixed delay differential equation on shishkin type meshes, Fractal Fract., 7 (2023), 43. https://doi.org/10.3390/fractalfract7010043 doi: 10.3390/fractalfract7010043
    [26] E. Sekar, A. Tamilselvan, Finite difference scheme for third order singularly perturbed delay differential equation of convection diffusion type with integral boundary condition, J. Appl. Math. Comput., 61 (2019), 73–86. https://doi.org/10.1007/s12190-019-01239-0 doi: 10.1007/s12190-019-01239-0
    [27] V. Shanthi, N. Ramanujam, A numerical method for boundary value problems for singularly perturbed fourth-order ordinary differential equations, Appl. Math. Comput., 129 (2002), 269–294. https://doi.org/10.1016/S0096-3003(01)00040-6 doi: 10.1016/S0096-3003(01)00040-6
    [28] Q. Wang, Y. Guo, Y. Ji, Positive solutions for fourth-order nonlinear differential equation with integral boundary conditions, Discrete Dyn. Nat. Soc., 2013 (2013), 292–297. https://doi.org/10.1155/2013/684962 doi: 10.1155/2013/684962
    [29] M. Xu, R. Lin, Q. Zou, A c0 linear finite element method for a second-order elliptic equation in non-divergence form with cordes coefficients, Numer. Meth. Part. Differ. Equ., 39 (2023), 2244–2269. https://doi.org/10.1002/num.22965 doi: 10.1002/num.22965
    [30] M. Xu, C. Shi, A hessian recovery-based finite difference method for biharmonic problems, Appl. Math. Lett., 137 (2023), 108503. https://doi.org/10.1016/j.aml.2022.108503 doi: 10.1016/j.aml.2022.108503
    [31] M. Xu, E. Tohidi, J. Niu, Y. Fang, A new reproducing kernel-based collocation method with optimal convergence rate for some classes of bvps, Appl. Math. Comput., 432 (2022), 127343. https://doi.org/10.1016/j.amc.2022.127343 doi: 10.1016/j.amc.2022.127343
    [32] Y. Zhu, H. Pang, The shooting method and positive solutions of fourth-order impulsive differential equations with multi-strip integral boundary conditions, Adv. Differ. Equ., 2018 (2018), 5. https://doi.org/10.1186/s13662-017-1453-2 doi: 10.1186/s13662-017-1453-2
  • This article has been cited by:

    1. Sekar Elango, L. Govindarao, J. Mohapatra, R. Vadivel, Nien-Tsu Hu, Numerical analysis for second order differential equation of reaction-diffusion problems in viscoelasticity, 2024, 92, 11100168, 92, 10.1016/j.aej.2024.02.046
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1679) PDF downloads(79) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog