This article offers a general procedure of carrying out estimation and inference under a linear statistical model $ {\bf y} = {\bf X} \pmb{\beta} + \pmb{\varepsilon} $ with an adding-up restriction $ {\bf A} {\bf y} = {\bf b} $ to the observed random vector $ {\bf y} $. We first propose an available way of converting the adding-up restrictions to a linear matrix equation for $ \pmb{\beta} $ and a matrix equality for the covariance matrix of the error term $ \pmb{\varepsilon} $, which can help in combining the two model equations in certain consistent form. We then give the derivations and presentations of analytic expressions of the ordinary least-squares estimator (OLSE) and the best linear unbiased estimator (BLUE) of parametric vector $ {\bf K} \pmb{\beta} $ using various analytical algebraic operations of the given vectors and matrices in the model.
Citation: Yongge Tian. An effective treatment of adding-up restrictions in the inference of a general linear model[J]. AIMS Mathematics, 2023, 8(7): 15189-15200. doi: 10.3934/math.2023775
This article offers a general procedure of carrying out estimation and inference under a linear statistical model $ {\bf y} = {\bf X} \pmb{\beta} + \pmb{\varepsilon} $ with an adding-up restriction $ {\bf A} {\bf y} = {\bf b} $ to the observed random vector $ {\bf y} $. We first propose an available way of converting the adding-up restrictions to a linear matrix equation for $ \pmb{\beta} $ and a matrix equality for the covariance matrix of the error term $ \pmb{\varepsilon} $, which can help in combining the two model equations in certain consistent form. We then give the derivations and presentations of analytic expressions of the ordinary least-squares estimator (OLSE) and the best linear unbiased estimator (BLUE) of parametric vector $ {\bf K} \pmb{\beta} $ using various analytical algebraic operations of the given vectors and matrices in the model.
[1] | I. S. Alalouf, G. P. H. Styan, Characterizations of estimability in the general linear model, Ann. Statist., 7 (1979), 194–200. |
[2] | H. H. Bingham, W. J. Krzanowski, Linear algebra and multivariate analysis in statistics: development and interconnections in the twentieth century, British J. Hist. Math., 37 (2022), 43–63. https://doi.org/10.1080/26375451.2022.2045811 doi: 10.1080/26375451.2022.2045811 |
[3] | H. Haupt, W. Oberhofer, Fully restricted linear regression: A pedagogical note, Econ. Bull., 3 (2002), 1–7. |
[4] | H. Haupt, W. Oberhofer, Generalized adding-up in systems of regression equations, Econ. Lett., 92 (2006), 263–269. https://doi.org/10.1016/j.econlet.2006.03.001 doi: 10.1016/j.econlet.2006.03.001 |
[5] | A. Markiewicz, S. Puntanen, All about the $\perp$ with its applications in the linear statistical models, Open Math., 13 (2015), 33–50. https://doi.org/10.1515/math-2015-0005 doi: 10.1515/math-2015-0005 |
[6] | A. Markiewicz, S. Puntanen, G. P. H. Styan, The legend of the equality of OLSE and BLUE: highlighted by C. R. Rao in 1967, In: A volume in Honor of C. R. Rao on the occasion of his 100th birthday, Methodol. Appl. Statist., 2021, 51–76. |
[7] | G. Marsaglia, G. P. H. Styan, Equalities and inequalities for ranks of matrices, Linear Multilinear Algebra, 2 (1974), 269–292. |
[8] | R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc., 51 (1955), 406–413. https://doi.org/10.1017/S0305004100030401 doi: 10.1017/S0305004100030401 |
[9] | S. Puntanen, G. P. H. Styan, J. Isotalo, Matrix tricks for linear statistical models: our personal top twenty, Berlin: Springer, 2011. |
[10] | B. Ravikumar, S. Ray, N. E. Savin, Robust Wald tests in SUR systems with adding-up restrictions, Econometrica, 68 (2000), 715–719. |
[11] | C. R. Rao, Unified theory of linear estimation, Sankhyā Indian J. Statist. A, 33 (1971), 371–394. |
[12] | C. R. Rao, Representations of best linear unbiased estimators in the Gauss-Markoff model with a singular dispersion matrix, J. Multivariate Anal., 3 (1973), 276–292. https://doi.org/10.1016/0047-259X(73)90042-0 doi: 10.1016/0047-259X(73)90042-0 |
[13] | M. Satchi, A note on adding-up restrictions when modelling trade flows, Econ. Model., 21 (2004), 999–1002. https://doi.org/10.1016/j.econmod.2003.12.002 doi: 10.1016/j.econmod.2003.12.002 |
[14] | S. R. Searle, Matrix algebra useful for statistics, New York: Wiley, 1982. |
[15] | Y. Tian, Some decompositions of OLSEs and BLUEs under a partitioned linear model, Int. Stat. Rev., 75 (2007), 224–248. https://doi.org/10.1111/j.1751-5823.2007.00018.x doi: 10.1111/j.1751-5823.2007.00018.x |
[16] | Y. Tian, On equalities of estimations of parametric functions under a general linear model and its restricted models, Metrika, 72 (2010), 313–330. |
[17] | Y. Tian, Solving optimization problems on ranks and inertias of some constrained nonlinear matrix functions via an algebraic linearization method, Nonlinear Anal., 75 (2012), 717–734. https://doi.org/10.1016/j.na.2011.09.003 doi: 10.1016/j.na.2011.09.003 |
[18] | Y. Tian, On properties of BLUEs under general linear regression models, J. Statist. Plann. Inference, 143 (2013), 771–782. https://doi.org/10.1016/j.jspi.2012.10.005 doi: 10.1016/j.jspi.2012.10.005 |
[19] | Y. Tian, M. Beisiegel, E. Dagenais, C. Haines, On the natural restrictions in the singular Gauss-Markov model, Stat. Papers, 49 (2007), 553–564. https://doi.org/10.1007/s00362-006-0032-5 doi: 10.1007/s00362-006-0032-5 |
[20] | Y. Tian, W. Guo, On comparison of dispersion matrices of estimators under a constrained linear model, Stat. Methods Appl., 25 (2016), 623–649. https://doi.org/10.1007/s10260-016-0350-2 doi: 10.1007/s10260-016-0350-2 |
[21] | Y. Tian, J. Zhang, Some equalities for estimations of partial coefficients under a general linear regression model, Stat. Papers, 52 (2011), 911–920. https://doi.org/10.1007/s00362-009-0298-5 doi: 10.1007/s00362-009-0298-5 |