In this paper, we consider the $ q $-type $ k $-Lidstone series. The series follows from expanding certain classes of entire functions in terms of Jackson $ q^{-1} $- derivatives at integers congruent to r modulo k, where $ k $ is a positive integer. We study the main properties of the fundamental polynomials that appear in the series expansion. We include a detailed study for the case $ k = 3 $ with some examples.
Citation: Zeinab S. I. Mansour, Maryam Al-Towailb. A $ q $-Type $ k $-Lidstone series for entire functions[J]. AIMS Mathematics, 2023, 8(6): 13525-13542. doi: 10.3934/math.2023686
In this paper, we consider the $ q $-type $ k $-Lidstone series. The series follows from expanding certain classes of entire functions in terms of Jackson $ q^{-1} $- derivatives at integers congruent to r modulo k, where $ k $ is a positive integer. We study the main properties of the fundamental polynomials that appear in the series expansion. We include a detailed study for the case $ k = 3 $ with some examples.
[1] | R. Agarwal, P. Wong, Lidstone polynomials and boundary value problems, Comput. Math. Appl., 17 (1989), 1397–1421. |
[2] | M. Al-Towailb, A $q$-difference equation and Fourier series expansions of $q$-Lidstone polynomials, Symmetry, 14 (2022), 782. https://doi.org/10.3390/sym14040782 |
[3] | M. AL-Towailb, A generalization of the $q$-Lidstone series, AIMS Mathematics, 7 (2022), 9339–9352. https://doi.org/10.3934/math.2022518 doi: 10.3934/math.2022518 |
[4] | M. AL-Towailb, Z. S. I. Mansour, The $q$-Lidstone series involving $q$-Bernoulli and $q$-Euler polynomials generated by the third Jackson $q$-Bessel function, Kjm, 2022, In press. |
[5] | R. P. Boas, Representation of functions by Lidstone series, Duke Math. J., 10 (1943), 239–245. |
[6] | R. P. Boas, R. C. Buck, Polynomial expansions of analytic functions, 2 Eds., Berlin: Springer-Verlag, 1964. |
[7] | F. A. Costabile, M. I. Gualtieri, A. Napoli, Lidstone–Euler second-type boundary value problems: Theoretical and computational tools, Mediterr. J. Math., 18 (2021), 180. https://doi.org/10.1007/s00009-021-01822-5 doi: 10.1007/s00009-021-01822-5 |
[8] | A. Erd$\acute{e}$lyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, New York: McGraw-Hill, 1955. |
[9] | G. Gasper, M. Rahman, Basic hypergeometric series, 2Eds., Cambridge: Cambridge University Press, 2004. |
[10] | M. E. Ismail, Classical and quantum orthogonal polynomials in one variable, Cambridge: Cambridge University Press, 2009. |
[11] | M. Ismail, Z. S. I. Mansour, $q$-analogs of Lidstone expansion theorem, two point Taylor expansion theorem, and Bernoulli polynomials, Anal. Appl., 17 (2019), 853–895. https://doi.org/10.1142/S0219530518500264 doi: 10.1142/S0219530518500264 |
[12] | R. Koekoek, R. F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, 1998. Available from: https://arXiv.org/pdf/math/9602214. |
[13] | D. Leeming, A. Sharma, A generalization of the class of completely convex functions, Symp. Inequalities, 3 (1972), 177–199. |
[14] | G. Lidstone, Notes on the extension of Aitken's theorem (for polynomial interpolation) to the Everett types, Proc. Edinburgh Math. Soc., 2 (1929), 16–19. |
[15] | Z. S. I. Mansour, M. AL-Towailb, $q$-Lidstone polynomials and existence results for $q$-boundary value problems, Bound. Value Probl., 2017 (2017), 178. https://doi.org/10.1186/s13661-017-0908-4 doi: 10.1186/s13661-017-0908-4 |
[16] | Z. S. I. Mansour, M. AL-Towailb, The complementary $q$-Lidstone interpolating polynomials and applications, Math. Comput. Appl., 25 (2020), 34. https://doi.org/10.3390/mca25020034 doi: 10.3390/mca25020034 |
[17] | J. G. Mikusinski, Sur les fonctions $k_n(x) = \sum_{v = 0}^\infty(-l)^v x^{n+kv} /(n + kv)!, (k = 1, 2, ...; n = 0, 1, ..., k - 1)$, Ann. Soc. Pol. Math., 21 (1948), 46–51. |
[18] | L. Nachbin, An extension of the notion of integral functions of finite exponential type, Anais Acad. Brasil. Ciencias, 16 (1944), 143–147. |
[19] | H. Portisky, On certain polynomial and other approximations to analytic functions, PNAS, 16 (1930), 83–85. https://doi.org/10.1073/pnas.16.1.83 doi: 10.1073/pnas.16.1.83 |
[20] | J. P. Ramis, About the growth of entire functions solutions of linear algebraic $q$-difference equations, Ann. Fac. Sci. Toulouse: Math., 1 (1992), 53–94. https://doi.org/10.5802/afst.739 doi: 10.5802/afst.739 |
[21] | P. M. Rajkovi$\acute{c}$, S. D. Marinkovi$\acute{c}$, M. S. Stankovi$\acute{c}$, On $q$-analogues of Caputo derivative and Mittag-Leffler function, Fract. Calc. Appl. Anal. 10 (2007), 359–374. |
[22] | I. Schoenberg, On certain two-point expansions of integral functions of exponential type, Bull. Amer. Math. Soc., 42 (1936), 284–288. https://doi.org/10.1090/S0002-9904-1936-06293-2 doi: 10.1090/S0002-9904-1936-06293-2 |
[23] | J.M. Whittaker, On Lidstone' series and two-point expansions of analytic functions, Proc. London Math. Soc., 2 (1934), 451–469. |
[24] | D. Widder, Completely convex functions and Lidstone series, Trans. Am. Math. Soc., 51 (1942), 387–398. |