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1. Introduction and preliminaries

A Lidstone series provides a generalization of Taylor’s theorem that approximates an entire function
f of exponential type less than π in a neighborhood of two points instead of one:

f (z) =

∞∑
n=0

[
f (2n)(1)An(z) + f (2n)(0)An(1 − z)

]
, (1.1)

where the polynomials (An(z))n are called Lidstone polynomials (see [14]).
Several authors including Boas [5, 6], Poritsky [19], Schoenberg [22], Whittaker [23], and Widder

[24] gave necessary and sufficient conditions for representation of functions by Lidstone series (1.1).
In [13], Leeming and Sharma introduced an extension of Lidstone series. They proved that for a

given integer k ≥ 2, the following representation holds for a certain class of entire functions:

f (z) =

∞∑
n=0

[
f (kn)(1) Ckn(z) +

k−2∑
v=0

f (kn+v)(1) Akn+v(z)
]
, (1.2)
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where (Ckn(z))n and (Akn+v(z))n are certain polynomials which they called the fundamental polynomials
of the series defined on the right-hand side of (1.2).

Recently, Ismail and Mansour [11] introduced a q-analog of the Lidstone expansion theorem for a
certain class of entire functions as in the following formula:

f (z) =

∞∑
n=0

[
(D2n

q−1 f )(1)An(z) − (D2n
q−1 f )(0)Bn(z)

]
, (1.3)

where (An)n and (Bn)n are the q-Lidstone polynomials defined by the generating functions

Eq(zw) − Eq(−zw)
Eq(w) − Eq(−w)

=

∞∑
n=0

An(z)w2n, (1.4)

Eq(zw)Eq(−w) − Eq(−zw)Eq(w)
Eq(w) − Eq(−w)

=

∞∑
n=0

Bn(z)
wn

[n]q!
, (1.5)

respectively, and Eq(·) is one of Jackson’s q-exponential function defined by

Eq(z) =

∞∑
n=0

q
n(n−1)

2
(z(1 − q))n

(q; q)n
(z ∈ C). (1.6)

On the other hand, Al-Towailb [3] has constructed another q-type Lidstone theorem by expanding
a class of entire functions in terms of q-derivatives of even orders at 0 and q-derivatives of odd orders
at 1. Also, in [3], we proved that

f (z) =

∞∑
n=0

[
(Drn

q−1 f )(1) πn(z; q) + (Dsn

q−1 f )(0) ζn(z; q),
]

where f is an entire function satisfying some prescribed conditions, the sequences (rn)n and (sn)n are
two sequences of non-negative integers, and {πn(z; q), ζn(z; q)}n are the set of polynomials (called a
q−1-standard set) that satisfies the following conditions:

(Drk

q−1 πn) (1) = δn,k and (Dsk

q−1 πn) (0) = 0;

(Dsk

q−1 ζn)(0) = δn,k and (Drk

q−1 ζn)(1) = 0,

where δn,k is the Kronecker delta (k ∈ N). In particular, the set of polynomials {An(z), Bn(z)}n which
defined in (1.4) and (1.5) form a q−1-standard set of polynomials in relation to the pair of sequences
(rn; sn) = (2n; 2n)n∈N0 .

For details and more results to the q-Lidstone’s theorem, we also refer the reader to [2, 4, 15, 16].

Our aim here is to introduce another extension of q-Lidstone series, which will be called q-type k-
Lidstone series, and determine the class of functions for which this series is valid, to obtain a q-analog
of Leeming and Sharma’s result. Furthermore, we consider the problem of expanding an entire function
in the q-type 3-Lidstone series. These results will be derived by using Cauchy’s integral formula and
complex contour integration.
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Throughout this paper, we assume that q is a positive number less than one and N is the set of
positive integers. We follow Gasper and Rahman [9] for the definitions, notations and properties of the
q-shifted factorials (a; q)n, q-gamma function Γq(n), q-numbers [n]q and q-factorial [n]q!.

The Jackson’s q-derivative of a function f is defined by

Dq f (z) :=
f (z) − f (qz)

z − qz
for z , 0,

and Dq f (0) is usually defined as f ′(0) if f is differentiable at zero (see [9]).

We start by stating some definitions in Section 2 and introduce a q analog of the generalized circular
functions of order k (k ∈ N), which we need in our investigation. In Section 3, we state and prove the
principle theorem, and define the fundamental polynomials of a q-type k-Lidstone series. Then, we
present some properties of these polynomials. Section 4 studies the problem of expanding an entire
function in the q-type 3-Lidstone series. Also, we give six tables that deal with the generating functions
of the fundamental polynomials associated with the six kinds of q-type 3-Lidstone series.

2. q-analogs of circular functions of high orders

q-analogs of the trigonometric functions sin z and cos z are defined by

Sinqz :=
Eq(iz) − Eq(−iz)

2i
=

∞∑
n=0

(−1)n qn(2n+1)

(q; q)2n+1
(z(1 − q))2n+1,

Cosqz :=
Eq(iz) + Eq(−iz)

2
=

∞∑
n=0

(−1)n qn(2n−1)

(q; q)2n
(z(1 − q))2n,

(2.1)

respectively, where Eq(z) is defined as in (1.6). q-analogs of the hyperbolic functions Sinhqz and Coshqz
are defined by

Sinhq(z) := −i Sinq(iz), Coshq(z) := Cosq(iz). (2.2)

In 1948, Mikusinski [17] introduced the generalized circular functions of order k (k ∈ N) by

Mk, j(z) =

∞∑
n=0

(−1)n zkn+ j

(kn + j)!
; (2.3)

Nk, j(z) =

∞∑
n=0

zkn+ j

(kn + j)!
. (2.4)

Note that there exists a relationship between these functions and the Mittag-Leffler function

Eα,β(z) =

∞∑
n=0

zn

Γ(β + αn)
, α, β ∈ C, <(α) > 0, <(β) > 0,

(see [8, Section 18.1]), that is

Mk, j(z) = z jEk, j+1(−zk) and Nk, j(z) = z jEk, j+1(zk).
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We consider the following q-special functions Mk, j(z; q) and Nk, j(z; q) (k ∈ N), which are q-analogs
of the functions (2.3) and (2.4), respectively.

Mk, j(z; q) =

∞∑
m=0

(−1)mq
(km+ j)(km+ j−1)

2
zkm+ j

Γq(km + j + 1)
; (2.5)

Nk, j(z; q) =

∞∑
m=0

q
(km+ j)(km+ j−1)

2
zkm+ j

Γq(km + j + 1)
. (2.6)

Observe that M1,0(z; q) = Eq(−z), M2,0(z; q) = Cosqz, and M2,1(z; q) = Sinqz. Also, it is easy to
conclude that

Dk
q−1 Nk, j(z; q) = Nk, j(z; q). (2.7)

Remark 2.1. The function Nk, j(z; q) is a special case of the big q-Mittag-Leffler function which is
introduced in [21], and defined by

Eq;α,β(z; c) =

∞∑
n=0

q(αn+β−1)(αn+β−2)/2

(−c; q)αn+β−1

zαn+β−1 (c/z; q)αn+β−1

(q; q)αn+β−1
,

where q, z, c, α, β ∈ C; <(α) > 0, <(β) > 0 and |q| < 1. More precisely,

Nk, j(z; q) = (1 − q)Eq;k, j+1(
z

1 − q
; 0).

Proposition 2.2. Let k ∈ N, j = 0, 1, . . . , k − 1, and ω = exp(2πi/k). Then, the following results hold:

ω−( j/2)
k−1∑
m=0

ω−m j Eq(ωm+1/2z) = kMk, j(z; q); (2.8)

ω j/2 Mk, j(zω−(1/2); q) = Nk, j(z; q); (2.9)
k−1∑
m=0

ω−m j Eq(ωmz) = kNk, j(z; q). (2.10)

Proof. To prove Eq (2.8), we use (1.6) to obtain

k−1∑
m=0

ω−m j Eq(ωm+1/2z) =

∞∑
n=0

q
n(n−1)

2
zn ωn/2

Γq(n + 1)

k−1∑
m=0

ωm(n− j). (2.11)

Since ω = exp(2πi/k), then ωk = 1 and 1 + ω + ω2 + . . . + ωk−1 = 0. Therefore,

k−1∑
n=0

ω(i− j)n =

{
k, i = j (mod k);
0, i , j (mod k).

(2.12)

We obtain the required result by substituting from (2.12) into (2.11) and then multiplying (2.11)
with ω−( j/2).

Formula (2.9) follows immediately from definitions (2.5) and (2.6). Finally, we get (2.10) and
complete the proof from the results (2.8) and (2.9). �
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Now, we consider the following boundary value problems:

Dk
q−1y(x) + λky(x) = 0,

y(0) = Dq−1y(0) = D2
q−1y(0) = . . . = Dk−2

q−1 y(0) = y(1) = 0,
(2.13)

and the adjoint problem:

(−1)kqkDk
qz(x) + λkz(x) = 0,

z(1) = Dqz(1) = D2
qz(1) = . . . = Dk−2

q z(1) = z(0) = 0.
(2.14)

Then, the real eigenvalues (λm)∞m=1 are zeros of the q-circular function Mk,k−1(x; q) (defined in
Eq (2.5)). The eigenfunctions of Problem (2.13) are

{Mk,k−1(λmx; q)}∞m=1,

and the eigenfunctions of Problem (2.14) are {M̃k,k−1(x, λk; q)}∞m=1, where in general

M̃k, j(x, λ; q) :=
∞∑

n=0

(−1)nq
(nk+ j)(nk+ j−1)

2
(−λx)nk+ j(1/x; q)nk+ j

Γq(nk + j + 1)
. (2.15)

Notice, Ismail in [10] defined a q-translation operator by

εy
qxn = xn(−y/x; q)n,

and acts on polynomials as a linear operator. Therefore, one can verify that

M̃k, j(x, λ; q) = ε−1
q Mk, j(λx; q).

We use M̃k, j(x; q) to denote M̃k, j(x, 1; q). One can also verify that

Dr
q−1 Mk, j(x) =

{
Mk, j−r(x), r ≤ j,
−Mk, j−r+k(x), j < r < k.

In the following, we construct the addition formula of the q-circular functions. For this, we define
the function

Kk, j(x, λ, y; q) :=
∞∑

m=0

(−1)m λkm+ j

Γq(km + j + 1)

km+ j∑
r=0

[
km + j

r

]
q
q(r

2)xr(−y)km+ j−r(1/y; q)km+ j−r.

One can verify that Kk, j(x, λ, 1; q) = Mk, j(λx), Kk, j(0, λ, y; q) = M̃k, j(y, λ; q). Moreover,

Dr
q−1 Kk, j(x, λ, y) =

{
Kk, j−r(x, λ, y), 0 ≤ r ≤ j ≤ k − 1;
−Kk,k−r+ j(x, λ, y), k > r > j.

Theorem 2.3. The following result hold for j = 0, 1, . . . , k − 1.

Kk, j(x, λ, y; q) =

j∑
l=0

M̃k, j−l(y, λ; q)Mk,l(λx; q) −
k−1∑

l= j+1

M̃k,k− j+l(y, λ; q)Mk,l(λ x; q).
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Proof. For fixed y, the functions {y j = Kk, j(x, λ, y)}k−1
j=0 form a fundamental set of solutions of the initial

value problem

Dk
q−1y j(x) + λky j(x) = 0, Dr

q−1y j(0) = δ j,r, { j, r} ⊂ {0, 1, . . . , k − 1}.

Therefore, there exist some constants cn (0 ≤ n ≤ k − 1) such that

Kk, j(x, λ, y) = c0Mk,0(λx; q) + c1Mk,1(λx; q) + . . . + ck−1Mk,k−1(λx; q).

Hence, for r ∈ {0, 1, . . . , k − 1}

Dr
q−1 Kk, j(x, λ, y; q) =

c0Dr
q−1,xMk,0(λx; q) + c1Dr

q−1,xMk,1(λx; q) + . . . + ck−1Dr
q−1,xMk,k−1(λx; q)

= −

r−1∑
l=0

clMk,k−r+l(λx; q) +

k−1∑
l=r

clMk,l−r(λx; q).

If we set x = 0 on the previous identity, we get

cr = Dr
q−1 Kk, j(x, λ, y; q)|x=0 =

{
−M̃k,k−r+ j(y, λ; q), k > r > j,

M̃k, j−r(y, λ; q), 0 ≤ r ≤ j.

�

Theorem 2.4. The following biorthogonal property holds:∫ 1

0
Mk,k−1(xλm; q)M̃k,k−1(x, λ j; q) dqx = −

Mk,k−2(λm)
k

δ j,m,

where δ j,m is the Kronecker’s delta, and (λm)∞m=1 are the set of the real zeros of the function Mk,k−1(x; q).

Proof. We set y(x) = Mk,k−1(λx; q), z(x) = M̃k,k−1(y, λ; q). Then, we have

(−1)kqkDk
qz(x) = −λkz(x),

Dk
q−1y(x) = −λky(x).

(2.16)

Consequently, ∫ 1

0

[
z(x)Dk

q−1y(x) + (−1)kqky(x)Dk
qz(x)

]
dqx = −2λk

∫ 1

0
y(x)z(x) dqx. (2.17)

Applying the q-integration by parts on Eq (2.17) j times, we obtain

k−1∑
j=1

∫ 1

0

[
(−1) jq jD j

qz(x)Dk− j
q−1 y(z) + (−1)k− jqk − jD j

q−1y(x)Dk− j
q z(x)

]
dqx

= −2(k − 1)λk
∫ 1

0
y(x)z(x) dqx.
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That is,

2
∫ 1

0

k−1∑
j=1

(−1) jq jD j
qz(x)Dk− j

q−1 y(x) dqx = −2(k − 1)λk
∫ 1

0
y(x)z(x) dqx.

But
k−1∑
j=1

(−1) jq jD j
qz(x)Dk− j

q−1 y(x) = λk
k−1∑
j=1

Mk,k−1− j(λx; q)M̃k, j−1(y, λ; q)

=

k−2∑
j=0

Mk,k−2− j(λx; q)M̃k, j(y, λ; q) = Kk,k−2(x, λ, x; q) + y(x)z(x).

Set (x ∗ y)n :=
∑n

k=0

[
n
k

]
q
q(k

2)xk(−y)n−k(1/y; q)n−k. Then

(x ∗ x)n = xn
n∑

k=0

[
n
k

]
q
q(k

2)(−1)n−k(1/x; q)n−k

= xnqn(n−1)/2
n∑

k=0

(q−n; q)k

(q; q)k
(1/x; q)kqk = qn(n−1)/2.

(2.18)

Hence, Kk,k−2(x, λ, x; q) = Mk,k−2(λ; q), and then we obtain∫ 1

0
y(x)z(x) dqx =

Mk,k−2(λ; q)
−k

.

�

3. q-type k-Lidstone expansion theorem

Recall that Ψ is a comparison function if Ψ(t) =
∑∞

n=0 Ψntn and Ψn > 0 (n ∈ N0) such that
(
Ψn+1/Ψn

)
is a decreasing sequence that converges to zero (see [6]). We denote by RΨ, the class of all entire
functions f such that, for some numbers τ,

| f (reiθ)| ≤ MΨ(τ r), (3.1)

as r → ∞. The infimum of the numbers τ for which (3.1) holds is the Ψ-type of the function f . This
type can be computed by applying Nachbin’s theorem [18] which states that a function f (z) =

∑∞
n=0 fnzn

is of Ψ-type τ if and only if

τ = lim sup
n→∞

∣∣∣∣ fn

Ψn

∣∣∣∣ 1
n
.

We will use the following result from [6, Theorem 2.9].

Theorem 3.1. Let Ψ be a comparison function and f is a function in the class RΨ. Suppose that

ψ(z) =

∞∑
n=0

ψnzn and f (z) =

∞∑
n=0

fnzn.
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If D( f ) is a closed set consisting of the union of all singular points of F and all points exterior to
the domain of F, then

f (z) =
1

2πi

∫
Γ

Ψ(zw)F(w) dw,

where Γ encloses D( f ) and

F(w) =

∞∑
n=0

fn

Ψnwn+1 .

Ramis [20] defined an entire function f to have a q-exponential growth (q > 1) of order γ and a
finite type if there exist positive numbers α and K > 0 such that

| f (z)| < K|z|α exp
(γ ln2

|z|
2 ln2 q

)
. (3.2)

Also, from [20, Lemma 2.2], if the series f (z) :=
∑∞

n=0 anzn satisfies (3.2), then

|an| ≤ Kq
(n−α)2

2γ (n ∈ N). (3.3)

Proposition 3.2. Let µ1 be the zero with the smallest positive absolute magnitude of Nk,k−1(w; q),
defined in (2.5), and let w be a complex number such that |w| < |µ1|. Assume that

Eq(wz) =

k−2∑
j=0

w j ψ j(z,wk) + Eq(w)ϕ(z,wk) (k ≥ 2), (3.4)

where Eq is the q-exponential function defined in (1.6). Then, for j ∈ {0, 1, . . . , k − 2}:

w jψ j(z,wk) = Nk, j(wz; q) − Nk, j(w; q)
[Nk,k−1(wz; q)

Nk,k−1(w; q)

]
;

ϕ(z,wk) =
Nk,k−1(wz; q)
Nk,k−1(w; q)

,

(3.5)

where Nk, j(z; q) are the functions defined in (2.6).

Proof. Replace w in Eq (3.4) by ωw, ω2w, . . . , ωk−1w, with ωk = 1 (ω , 1), and note that the functions
ϕ and ψ j remain unchanged. Then, we obtain the following system of k equations:

Eq(ωnwz) = Eq(ωnw)ϕ(z,wk) +

k−2∑
j=0

ωn jw j ψ j(z,wk), (3.6)

where n ∈ {0, 1, . . . , k − 1}. If we multiply Eq (3.6) by ω−n j and then adding these equations for
n ∈ {0, 1, . . . , k − 1}, we obtain

k−1∑
n=0

ω−n jEq(ωnwz) =

k−1∑
n=0

ω−n jEq(ωnw)ϕ(z,wk) +

k−2∑
i=0

wi ψi(z,wk)
k−1∑
n=0

ω(i− j)n.
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Therefore, from (2.10), we get

k−1∑
n=0

ω−n jEq(ωnwz) = kNk, j(z; q)ϕ(z,wk) +

k−2∑
i=0

wi ψi(z,wk)
k−1∑
n=0

ω(i− j)n.

Thus, the result follows at once from (2.12).
Obviously, ϕ(z,wk) and w jψ j(z,wk) are analytic functions for |w| < |µ1|. �

According to the above results, we can prove the following main theorem.

Theorem 3.3. Let µ1 be the zero with the smallest positive absolute magnitude of Nk,k−1(w; q), defined
in (2.5). If f is an entire function of q−1-exponential growth of order less than 1, or of order 1 and a
finite type α such that

α <
(1
2
−

log|µ1(1 − q)|
log q

)
, (3.7)

then, for all z ∈ C, the following representation holds

f (z) =

∞∑
n=0

[
(Dkn

q−1 f )(1) Akn(z) +

k−2∑
j=0

(Dkn+ j
q−1 f )(0) Bkn+ j(z)

]
, (3.8)

where Akn(z) and Bkn+ j(z) are the polynomials defined by the following generating functions:

∞∑
n=0

wknAkn(z) =
Nk,k−1(wz; q)
Nk,k−1(w; q)

≡ ϕ(z,wk),

∞∑
n=0

wkn+ jBkn+ j(z) = Nk, j(wz; q) − Nk, j(w; q)
[Nk,k−1(wz; q)

Nk,k−1(w; q)

]
≡ w jψ j(z,wk) (k ≥ 2, j = 0, 1, . . . , k − 2),

(3.9)

and w is a complex number such that |w| <|µ1|. Furthermore, the series on right-hand side of (3.8)
converges to f (z) uniformly on all compact subsets of the plane.

Proof. We apply Theorem 3.1. Set Ψ(z) = Eq(z) and f (z) :=
∑∞

n=0 anzn. Then

Ψn =
q

n(n−1)
2

Γq(n + 1)
,

Ψn+1

Ψn
=

qn(1 − q)
1 − qn+1 =

qn

[n + 1]q

is decreasing and vanishes at ∞. Since Ψ(z) has a q−1-exponential growth of order 1, then Eq (3.1)
holds if f is a function of q−1-exponential growth γ, γ ≤ 1. Then from (3.3), the type τ of the function
f , τ ≥ 0 of the function f has the upper bound

τ := lim sup
n→∞

∣∣∣∣ an

Ψn

∣∣∣∣ 1
n

≤
q

1
2−α

(1 − q)
lim sup

n→∞

(
K (q; q)nqα

2/2
) 1

n q
n
2 ( 1

γ−1).
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Consequently, if γ < 1, then τ = 0, if γ = 1, then τ ≤ q
1
2 −α

1−q . So, D( f ) lies in the closed disk

|w| ≤ τ ≤
q

1
2−α

1 − q
< µ1 and we choose Γ to be the circle |w| = τ + ε < µ1, ε > 0 which encloses D( f ).

Note that the inequality q
1
2 −α

1−q < |µ1| satisfies the condition (3.7) on the type of f (z). Then, we obtain

f (z) =
1

2πi

∫
Γ

Eq(zw)F(w) dw.

Therefore,

Dkn
q−1 f (1) =

1
2πi

∫
Γ

wkn Eq(w)F(w) dw,

Dkn+ j
q−1 f (0) =

1
2πi

∫
Γ

wkn+ j F(w) dw j = 0, 1, . . . , k − 2.

By setting
∞∑

n=0

wknAkn(z) ≡ ϕ(z,wk),
∞∑

n=0

wkn+ jBkn+ j(z) ≡ w jψ j(z,wk),

and using Proposition 3.2, we have

∞∑
n=0

[
(Dkn

q−1 f )(1) Akn(z) +

k−2∑
j=0

(Dkn+ j
q−1 f )(0) Bkn+ j(z)

]
=

1
2π i

∫
Γ

Eq(w)
∞∑

n=0

wknAkn(z) +

∞∑
n=0

k−2∑
j=0

wkn+ j Bkn+ j(z)

 F(w) dw

=
1

2π i

∫
Γ

Eq(w)ϕ(z,wk) +

k−2∑
j=0

w j ψ j(z,wk)

 F(w) dw

=
1

2π i

∫
Γ

Eq(wz)F(w) dw = f (z).

Finally, from the definitions of φ and ψ j, we have that the right-hand side of (3.4) is analytic in the
disk |w| < |µ1|. Therefore, the series defined by φ and ψ j converges uniformly in every compact subset
of the disk |w| < |µ1|. �

We will say that the formula (3.8) is q-type of k-Lidstone series of the function f , and the functions
Akn(z) and Bkn+ j(z) ( j = 0, 1, . . . , k − 2) are the fundamental polynomials of this series.

Remark 3.4. If we set k = 2 in Eq (3.8), we have the q-Lidstone series expansion (1.3).

The following result gives some properties of the fundamental polynomials of the q-type k-Lidstone
series.

Proposition 3.5. For n ∈ N, k ≥ 2, and j ∈ {0, 1, 2, . . . , k − 2}, the fundamental polynomials of the
q-type of k-Lidstone series, Akn(x) and Bkn+ j(x), satisfy the following properties:

AIMS Mathematics Volume 8, Issue 6, 13525–13542.



13535

(i) A0(x) = xk−1 and B0(x) = 1 − xk−1;

(ii) Dk
q−1 Akn(x) = Ak(n−1)(x) and Dk

q−1 Bkn+ j(x) = Bk(n−1)+ j(x);

(iii) Akn(1) = 0 and Bkn+ j(1) = 0;

(iv) Dr
q−1 Akn(0) = 0 and Dr

q−1 Bkn+ j(0) = 0 for r ∈ {0, 1, . . . , k − 2}.

Proof. The proof of (i) follows from the substitution with w = 0 in the generating functions in (3.9). To
prove (ii), we act on the two sides of (3.9) by the operator Dk

q−1,x and use (2.7). To prove the first identity
in (iii), we substitute with z = 1 in the first equation in (3.9) and using that A0(1) = 1, consequently,∑∞

n=1 wknAkn(1) = 0, This yields Akn(1) = 0. The substitution with z = 1 in the second identity in (3.9)
yields

∑∞
n=0 wkn+ jBkn+ j(1) = 0. Hence, Bkn+ j(1) = 0 for all n ∈ N0. Finally, the proof of (iv) follows at

once from (ii) and (iii). �

4. Special case: A q-type 3-Lidstone series

In this section, we give several problems that illustrate the q-type of 3-Lidstone series. One of them
can be derived immediately from Theorem 3.3 (see Table 1).

In the following, we discuss another problem of expanding an entire function in a q-type 3-Lidstone
series.

Theorem 4.1. Let µ1,3 be the zero with the smallest positive absolute magnitude of M3,0(z; q) which
defined in (2.5). Then, for every entire function f (z) of q−1-exponential growth of order less than 1, or
of order 1 and a finite type α such that α <

(
1
2 −

log |µ1,3(1−q)|
log q

)
the following representation holds:

f (z) =

∞∑
n=0

[
D3n

q−1 f (1) Ã3n(z) + D3n+1
q−1 f (0) B̃3n+1(z) + D3n+2

q−1 f (0) B̃3n+2(z)
]
, (4.1)

where Ã3n(z), B̃3n+1(z) and B̃3n+2(z) are polynomials defined by the following generating functions:

∞∑
n=0

w3nÃ3n(z) =
N3,0(wz; q)
N3,0(w; q)

,

∞∑
n=0

w3n+1B̃3n+1(z) = N3,1(wz; q) − N3,1(w; q)
[N3,0(wz; q)

N3,0(w; q)

]
,

∞∑
n=0

w3n+2B̃3n+2(z) = N3,2(wz; q) − N3,2(w; q)
[N3,0(wz; q)

N3,0(w; q)

]
.

(4.2)

The series on (4.1) converges to f (z) for all z and the convergence is uniform on all compact subsets
of the plane.
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Proof. First, we consider the functions
∑∞

n=0 w3nÃ3n(z) = ϕ̃(z,w3) ≡ ϕ̃,

∞∑
n=0

w3n+1B̃3n+1(z) = w ψ̃1(z,w3) ≡ w ψ̃1,

∞∑
n=0

w3n+2B̃3n+2(z) = w2 ψ̃2(z,w3) ≡ w2 ψ̃2,

and assume that the function Eq(wz) has the following representation:

Eq(wz) = Eq(w)ϕ + wψ1 + w2ψ2. (4.3)

Let ω3 = 1 with ω , 1 and replacing w by ωw and ω2w in Eq (4.3), we obtain

Eq(wωz) = Eq(wω)ϕ̃ + wωψ̃1 + w2ω2ψ̃2, (4.4)
Eq(wω2z) = Eq(wω2)ϕ̃ + wω2ψ̃1 + w2ωψ̃2. (4.5)

If we add the Eqs (4.3)–(4.5), we obtain ϕ̃. In order to get the function wψ̃1, we multiply the
Eqs (4.3)–(4.5) by 1, ω−1 and ω−2, respectively and add. w2ψ̃2 obtained by multiplying the same
equations by 1, ω−2 and ω−1, respectively. The proof is then completed similar to the proof of
Theorem 3.3. �

Corollary 4.2. For n ∈ N, the polynomials Ã3n and B̃3n+ j ( j = 1, 2) satisfy the q-difference equations

D3
q−1 Ã3n(z) = Ã3(n−1)(z), D3

q−1 B̃3n+ j(z) = B̃3(n−1)+ j(z),

with the boundary conditions

Ã3n(1) = 0 = B̃3n+ j(1), Dq−1 Ã3n(0) = 0 = Dq−1 B̃3n+ j(0),
D2

q−1 Ã3n(0) = 0 = D2
q−1 B̃3n+ j(0).

Proof. The proof follows by using the generating functions in (4.2). �

Remark 4.3. According to formula (4.1), if P any polynomial of degree less than or equals to 6, then
we have

P(z) = P(1)Ã0(z) + D3
q−1 P(1) Ã3(z) + D6

q−1 P(1) Ã6(z)+

Dq−1 P(0) B̃1(z) + D2
q−1 P(0) B̃2(z) + D4

q−1 P(0) B̃4(z) + D5
q−1 P(0) B̃5(z).

(4.6)

So, by setting P(z) = 1, z, . . . , z6, successively, in (4.6) we get

Ã0(z) = 1, B̃1(z) = z − 1, B̃2(z) =
q

[2]q!
(z2 − 1), Ã3(z) =

q3

[3]q!
(z3 − 1),

B̃4(z) =
q6

[4]q!
(z4 − 1) −

q3

[3]q!
(z3 − 1), B̃5(z) =

q10

[5]q!
(z5 − 1) −

q4

[3]q! [2]q!
(z3 − 1),

Ã6(z) =
q15

[6]q!
(z6 − 1) −

q6

[3]q! [3]q!
(z2 − 1).
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Example 4.4. We apply Theorem 4.1 on the function f (z) = (z; q)3n (n ∈ N) and using that for any
m ∈ N0,

Dk
q−1(z; q)m =

 (−1)k [m]q!
[m − k]q!

(z; q)m−k, k ≤ m,

0, k > m.

This gives

(z; q)3n

[3n]q!
= (−1)nA3n(z; q) +

n−1∑
k=0

(−1)k+1 B̃3k+1(z)
[3n − 3k − 1]q!

+

n−1∑
k=0

(−1)k B̃3k+2(z)
[3n − 3k − 2]q!

.

Example 4.5. Consider the Al-Salam-Carlitz II polynomials (see [12]) defined by

V (a)
n (x; q) = (−a)nq(−n

2 )
n∑

k=0

(q−n, x; q)k

(q; q)k

(
qn

a

)k

.

Since, Dk
q−1V

(a)
m (x; q) = q−(

m
2)+(m−k

2 ) [m]q!
[m−k]q!V

(a)
m−k(x; q) if 0 ≤ k ≤ m, we obtain

Dk
q−1V (a)

m (1; q) = q−(
m
2) [m]q!

[m − k]q!
(−a)m−k,

Dk
q−1V (a)

m (0; q) = q−(
m
2) [m]q!

[m − k]q!
(−a)m−k(1/a; q)m−k,

for k ≤ m. Consequently, applying Theorem 4.1 yields

(−a)−3nq(3n
2 ) V (a)

3n (x; q)
[3n]q!

=

n∑
k=0

(−a)−3k

[3n − 3k]q!
Ã3k(x) +

n−1∑
k=0

(−a)−3k−1

[3n − 3k − 1]q!
B̃3k+1(x)

+

n−1∑
k=0

(−a)−3k−2

[3n − 3k − 2]q!
B̃3k+2(x).

Remark 4.6. For the q-type of 3-Lidstone series, we can consider six problems:
∞∑

n=0

[
D3n

q−1 f (1) A(1)
3n (z) + D3n

q−1 f (0) B(1)
3n (z) + D3n+1

q−1 f (0) B(1)
3n+1(z)

]
,

∞∑
n=0

[
D3n

q−1 f (1)A(2)
3n (z) + D3n+1

q−1 f (0)B(2)
3n+1(z) + D3n+2

q−1 f (0) B(2)
3n+2(z)

]
,

∞∑
n=0

[
D3n+1

q−1 f (1)A(3)
3n+1(z) + D3n

q−1 f (0)B(3)
3n (z) + D3n+2

q−1 f (0) B(3)
3n+2(z)

]
,

∞∑
n=0

[
D3n+2

q−1 f (1)A(4)
3n+2(z) + D3n

q−1 f (0)B(4)
3n (z) + D3n+1

q−1 f (0) B(4)
3n+1(z)

]
,

∞∑
n=0

[
D3n

q−1 f (1) A(5)
3n (z) + D3n

q−1 f (0) B(5)
3n (z) + D3n+2

q−1 f (0) B(5)
3n+2(z)

]
,

∞∑
n=0

[
D3n+1

q−1 f (1)A(6)
3n+1(z) + D3n

q−1 f (0)B(6)
3n (z) + D3n+1

q−1 f (0) B(6)
3n+1(z)

]
,
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where f is assumed to be entire function and satisfies the conditions on Theorem 4.1.

The tables below give the generating functions of the q-type fundamental polynomials and the
values at n = 0 in these problems, respectively.

Table 1. q-type 3-Lidstone series (1).
The functions The results

∞∑
n=0

w3nA(1)
3n (z) =

N3,2(wz; q)
N3,2(w; q)

Generating ∞∑
n=0

w3nB(1)
3n (z) = N3,0(wz; q) − N3,0(w; q)

N3,2(wz; q)
N3,2(w; q)

∞∑
n=0

w3n+1B(1)
3n+1(z) = N3,1(wz; q) − N3,1(w; q)

N3,2(wz; q)
N3,2(w; q)

A(1)
0 (z) = z2, B(1)

0 (z) = 1 − z2 and B(1)
1 (z) = z(1 − z)q-Polynomials

Table 2. q-type 3-Lidstone series (2).
The functions The results

∞∑
n=0

w3nA(2)
3n (z) =

N3,0(wz; q)
N3,0(w; q)

Generating ∞∑
n=0

w3n+1B(2)
3n+1(z) = N3,1(wz; q) − N3,1(w; q)

N3,0(wz; q)
N3,0(w; q)

∞∑
n=0

w3n+2B(2)
3n+2(z) = N3,2(wz; q) − N3,2(w; q)

N3,0(wz; q)
N3,0(w; q)

A(2)
0 (z) = 1, B(2)

1 (z) = z − 1 and B(2)
2 (z) =

q
[2]q!

(z2 − 1)q-Polynomials

Table 3. q-type 3-Lidstone series (3).

The functions The results
∞∑

n=0

w3n+1A(3)
3n+1(z) =

N3,1(wz; q)
N3,0(w; q)

Generating ∞∑
n=0

w3nB(3)
3n (z) = N3,0(wz; q) − N3,2(w; q)

N3,1(wz; q)
N3,0(w; q)

∞∑
n=0

w3n+2B(3)
3n+2(z) = N3,2(wz; q) − N3,1(w; q)

N3,1(wz; q)
N3,0(w; q)

A(3)
1 (z) = z, B(3)

0 (z) = 1 and B(3)
2 (z) =

q
[2]q

z2 − zq-Polynomials
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Table 4. q-type 3-Lidstone series (4).

The functions The results
∞∑

n=0

w3n+2A(4)
3n+2(z) =

N3,2(wz; q)
N3,0(w; q)

Generating ∞∑
n=0

w3nB(4)
3n (z) = N3,0(wz; q) − N3,1(w; q)

N3,2(wz; q)
N3,0(w; q)

∞∑
n=0

w3n+1B(4)
3n+1(z) = N3,1(wz; q) − N3,2(w; q)

N3,2(wz; q)
N3,0(w; q)

A(4)
2 (z) =

q z2

[2]q
, B(4)

0 (z) = 1 and B(4)
1 (z) = zq-Polynomials

Table 5. q-type 3-Lidstone series (5).

The functions The results
∞∑

n=0

w3nA(5)
3n (z) =

N3,1(wz; q)
N3,1(w; q)

Generating ∞∑
n=0

w3nB(5)
3n (z) = N3,0(wz; q) − N3,0(w; q)

N3,1(wz; q)
N3,1(w; q)

∞∑
n=0

w3n+2B(5)
3n+2(z) = N3,2(wz; q) − N3,2(w; q)

N3,1(wz; q)
N3,1(w; q)

A(5)
0 (z) = z, B(5)

0 (z) = 1 − z and B(5)
2 (z) =

q z(z−1)
[2]q

q-Polynomials

Table 6. q-type 3-Lidstone series (6).

The functions The results
∞∑

n=0

w3n+1A(6)
3n+1(z) =

N3,2(wz; q)
N3,1(w; q)

Generating ∞∑
n=0

w3nB(6)
3n (z) = N3,0(wz; q) − N3,2(w; q)

N3,2(wz; q)
N3,1(w; q)

∞∑
n=0

w3n+1B(6)
3n+1(z) = N3,1(wz; q) − N3,0(w; q)

N3,2(wz; q)
N3,1(w; q)

A(6)
1 (z) =

q z2

[2]q
B(6)

0 (z) = 1 and B(6)
1 (z) =

z([2]q−qz)
[2]q

q-Polynomials

AIMS Mathematics Volume 8, Issue 6, 13525–13542.



13540

5. Conclusions

In this paper, we introduced an extension of q-Lidstone series which was called a q-type k-Lidstone
series:

f (z) =

∞∑
n=0

[
Dkn

q−1 f (1) Akn(z) +

k−2∑
j=0

Dkn+ j
q−1 f (0) Bkn+ j(z)

]
, (5.1)

where (Akn(z))n and (Bkn+ j(z))n are polynomials defined by the following generating functions:

∞∑
n=0

wknAkn(z) =
Nk,k−1(wz; q)
Nk,k−1(w; q)

(k ≥ 2),

∞∑
n=0

wkn+ jBkn+ j(z) = Nk, j(wz; q) − Nk, j(w; q)
[Nk,k−1(wz; q)

Nk,k−1(w; q)

]
,

and determined the class of functions for which (5.1) is valid.
Notice, by following the same manner as a proof of (5.1), we can conclude that the function f can be

given also by the convergent another q-type k-Lidstone series expansion with different q-polynomials.
More precisely, we can obtain the following result.

Theorem 5.1. Let µ1 be the zero with the smallest positive absolute magnitude of Nk,0(w; q) which
defined in (2.5). If the function f (z) is an entire function of q−1-exponential growth of order less than
1, or of order 1 and a finite type α such that

α <
(1
2
−

log |µ1(1 − q)|
log q

)
,

then, for all z ∈ C the following representation holds

f (z) =

∞∑
n=0

[
Dkn

q−1 f (0) Ckn(z) +

k−1∑
j=1

Dkn+ j
q−1 f (1) Pkn+ j(z)

]
,

where (Ckn(z))n and (Pkn+ j(z))n are polynomials defined by the following generating functions:

∞∑
n=0

wknCkn(z) =
1
k

Nk,0(wz; q),

∞∑
n=0

wkn+ jPkn+ j(z) =
[Nk, j(wz; q)

Nk,0(w; q)

]
(k ≥ 1, j = 1, 2, . . . , k − 1).

As a special case, we considered six problems of expanding an entire function in the q-type
3-Lidstone series. The Lidstone polynomials are used in many interpolation and boundary value
problems. See for example, [1, 7]. We studied boundary value problems includes the 2 type
q-Lidstone polynomials in [15], and we aim to study boundary value problems associated with the k
type q-Lidstone polynomials, k > 2.
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Mittag-Leffler function, Fract. Calc. Appl. Anal. 10 (2007), 359–374.

22. I. Schoenberg, On certain two-point expansions of integral functions of exponential type, Bull.
Amer. Math. Soc., 42 (1936), 284–288. https://doi.org/10.1090/S0002-9904-1936-06293-2

23. J.M. Whittaker, On Lidstone’ series and two-point expansions of analytic functions, Proc. London
Math. Soc., 2 (1934), 451–469.

24. D. Widder, Completely convex functions and Lidstone series, Trans. Am. Math. Soc., 51 (1942),
387–398.

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 6, 13525–13542.

http://dx.doi.org/https://doi.org/10.1186/s13661-017-0908-4
http://dx.doi.org/https://doi.org/10.1186/s13661-017-0908-4
http://dx.doi.org/https://doi.org/10.3390/mca25020034
http://dx.doi.org/https://doi.org/10.1073/pnas.16.1.83
http://dx.doi.org/https://doi.org/10.5802/afst.739
http://dx.doi.org/https://doi.org/10.1090/S0002-9904-1936-06293-2
http://creativecommons.org/licenses/by/4.0

	Introduction and preliminaries
	 q-analogs of circular functions of high orders 
	q-type k-Lidstone expansion theorem
	Special case: A q-type 3-Lidstone series
	Conclusions

