

AIMS Mathematics, 8(6): 13525–13542. DOI: 10.3934/math.2023686 Received: 15 November 2022 Revised: 22 March 2023 Accepted: 27 March 2023 Published: 07 April 2023

http://www.aimspress.com/journal/Math

Research article

A q-Type k-Lidstone series for entire functions

Zeinab S. I. Mansour¹ and Maryam Al-Towailb^{2,*}

- ¹ Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt
- ² Department of Computer Science and Engineering, College of Applied Studies and Community Service, King Saud University, Riyadh, KSA
- * Correspondence: Email: mtowaileb@ksu.edu.sa.

Abstract: In this paper, we consider the *q*-type *k*-Lidstone series. The series follows from expanding certain classes of entire functions in terms of Jackson q^{-1} - derivatives at integers congruent to r modulo k, where *k* is a positive integer. We study the main properties of the fundamental polynomials that appear in the series expansion. We include a detailed study for the case k = 3 with some examples.

Keywords: *q*-calculus; Lidstone series; convergence series; *q*-type Lidstone polynomials; *q*-difference operator **Mathematics Subject Classification:** 05A30, 40A05, 41A58, 41A60

1. Introduction and preliminaries

A Lidstone series provides a generalization of Taylor's theorem that approximates an entire function f of exponential type less than π in a neighborhood of two points instead of one:

$$f(z) = \sum_{n=0}^{\infty} \left[f^{(2n)}(1)A_n(z) + f^{(2n)}(0)A_n(1-z) \right],$$
(1.1)

where the polynomials $(A_n(z))_n$ are called Lidstone polynomials (see [14]).

Several authors including Boas [5,6], Poritsky [19], Schoenberg [22], Whittaker [23], and Widder [24] gave necessary and sufficient conditions for representation of functions by Lidstone series (1.1).

In [13], Leeming and Sharma introduced an extension of Lidstone series. They proved that for a given integer $k \ge 2$, the following representation holds for a certain class of entire functions:

$$f(z) = \sum_{n=0}^{\infty} \left[f^{(kn)}(1) C_{kn}(z) + \sum_{\nu=0}^{k-2} f^{(kn+\nu)}(1) A_{kn+\nu}(z) \right],$$
(1.2)

where $(C_{kn}(z))_n$ and $(A_{kn+\nu}(z))_n$ are certain polynomials which they called the fundamental polynomials of the series defined on the right-hand side of (1.2).

Recently, Ismail and Mansour [11] introduced a *q*-analog of the Lidstone expansion theorem for a certain class of entire functions as in the following formula:

$$f(z) = \sum_{n=0}^{\infty} \left[(D_{q^{-1}}^{2n} f)(1) A_n(z) - (D_{q^{-1}}^{2n} f)(0) B_n(z) \right],$$
(1.3)

where $(A_n)_n$ and $(B_n)_n$ are the q-Lidstone polynomials defined by the generating functions

$$\frac{E_q(zw) - E_q(-zw)}{E_q(w) - E_q(-w)} = \sum_{n=0}^{\infty} A_n(z)w^{2n},$$
(1.4)

$$\frac{E_q(zw)E_q(-w) - E_q(-zw)E_q(w)}{E_q(w) - E_q(-w)} = \sum_{n=0}^{\infty} B_n(z)\frac{w^n}{[n]_q!},$$
(1.5)

respectively, and $E_q(\cdot)$ is one of Jackson's q-exponential function defined by

$$E_q(z) = \sum_{n=0}^{\infty} q^{\frac{n(n-1)}{2}} \frac{(z(1-q))^n}{(q;q)_n} \quad (z \in \mathbb{C}).$$
(1.6)

On the other hand, Al-Towailb [3] has constructed another q-type Lidstone theorem by expanding a class of entire functions in terms of q-derivatives of even orders at 0 and q-derivatives of odd orders at 1. Also, in [3], we proved that

$$f(z) = \sum_{n=0}^{\infty} \left[(D_{q^{-1}}^{r_n} f)(1) \pi_n(z;q) + (D_{q^{-1}}^{s_n} f)(0) \zeta_n(z;q), \right]$$

where *f* is an entire function satisfying some prescribed conditions, the sequences $(r_n)_n$ and $(s_n)_n$ are two sequences of non-negative integers, and $\{\pi_n(z;q),\zeta_n(z;q)\}_n$ are the set of polynomials (called a q^{-1} -standard set) that satisfies the following conditions:

$$(D_{q^{-1}}^{r_k} \pi_n)(1) = \delta_{n,k}$$
 and $(D_{q^{-1}}^{s_k} \pi_n)(0) = 0;$
 $(D_{q^{-1}}^{s_k} \zeta_n)(0) = \delta_{n,k}$ and $(D_{q^{-1}}^{r_k} \zeta_n)(1) = 0,$

where $\delta_{n,k}$ is the Kronecker delta $(k \in \mathbb{N})$. In particular, the set of polynomials $\{A_n(z), B_n(z)\}_n$ which defined in (1.4) and (1.5) form a q^{-1} -standard set of polynomials in relation to the pair of sequences $(r_n; s_n) = (2n; 2n)_{n \in \mathbb{N}_0}$.

For details and more results to the q-Lidstone's theorem, we also refer the reader to [2, 4, 15, 16].

Our aim here is to introduce another extension of q-Lidstone series, which will be called q-type k-Lidstone series, and determine the class of functions for which this series is valid, to obtain a q-analog of Leeming and Sharma's result. Furthermore, we consider the problem of expanding an entire function in the q-type 3-Lidstone series. These results will be derived by using Cauchy's integral formula and complex contour integration.

Throughout this paper, we assume that q is a positive number less than one and \mathbb{N} is the set of positive integers. We follow Gasper and Rahman [9] for the definitions, notations and properties of the q-shifted factorials $(a; q)_n$, q-gamma function $\Gamma_q(n)$, q-numbers $[n]_q$ and q-factorial $[n]_q!$.

The Jackson's q-derivative of a function f is defined by

$$D_q f(z) := \frac{f(z) - f(qz)}{z - qz} \text{ for } z \neq 0,$$

and $D_q f(0)$ is usually defined as f'(0) if f is differentiable at zero (see [9]).

We start by stating some definitions in Section 2 and introduce a q analog of the generalized circular functions of order $k \ (k \in \mathbb{N})$, which we need in our investigation. In Section 3, we state and prove the principle theorem, and define the fundamental polynomials of a q-type k-Lidstone series. Then, we present some properties of these polynomials. Section 4 studies the problem of expanding an entire function in the q-type 3-Lidstone series. Also, we give six tables that deal with the generating functions of the fundamental polynomials associated with the six kinds of q-type 3-Lidstone series.

2. *q*-analogs of circular functions of high orders

q-analogs of the trigonometric functions $\sin z$ and $\cos z$ are defined by

$$Sin_{q}z := \frac{E_{q}(iz) - E_{q}(-iz)}{2i} = \sum_{n=0}^{\infty} (-1)^{n} \frac{q^{n(2n+1)}}{(q;q)_{2n+1}} (z(1-q))^{2n+1},$$

$$Cos_{q}z := \frac{E_{q}(iz) + E_{q}(-iz)}{2} = \sum_{n=0}^{\infty} (-1)^{n} \frac{q^{n(2n-1)}}{(q;q)_{2n}} (z(1-q))^{2n},$$
(2.1)

respectively, where $E_q(z)$ is defined as in (1.6). *q*-analogs of the hyperbolic functions $\sinh_q z$ and $\cosh_q z$ are defined by

$$\operatorname{Sinh}_{q}(z) := -i\operatorname{Sin}_{q}(iz), \quad \operatorname{Cosh}_{q}(z) := \operatorname{Cos}_{q}(iz). \tag{2.2}$$

In 1948, Mikusinski [17] introduced the generalized circular functions of order $k \ (k \in \mathbb{N})$ by

$$M_{k,j}(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{kn+j}}{(kn+j)!};$$
(2.3)

$$N_{k,j}(z) = \sum_{n=0}^{\infty} \frac{z^{kn+j}}{(kn+j)!}.$$
(2.4)

Note that there exists a relationship between these functions and the Mittag-Leffler function

$$E_{\alpha,\beta}(z)=\sum_{n=0}^{\infty}\frac{z^n}{\Gamma(\beta+\alpha n)}, \ \alpha,\beta\in\mathbb{C},\ \Re(\alpha)>0,\ \Re(\beta)>0,$$

(see [8, Section 18.1]), that is

$$M_{k,j}(z) = z^j E_{k,j+1}(-z^k)$$
 and $N_{k,j}(z) = z^j E_{k,j+1}(z^k).$

AIMS Mathematics

We consider the following *q*-special functions $M_{k,j}(z;q)$ and $N_{k,j}(z;q)$ ($k \in \mathbb{N}$), which are *q*-analogs of the functions (2.3) and (2.4), respectively.

$$M_{k,j}(z;q) = \sum_{m=0}^{\infty} (-1)^m q^{\frac{(km+j)(km+j-1)}{2}} \frac{z^{km+j}}{\Gamma_q(km+j+1)};$$
(2.5)

$$N_{k,j}(z;q) = \sum_{m=0}^{\infty} q^{\frac{(km+j)(km+j-1)}{2}} \frac{z^{km+j}}{\Gamma_q(km+j+1)}.$$
(2.6)

Observe that $M_{1,0}(z;q) = E_q(-z)$, $M_{2,0}(z;q) = \cos_q z$, and $M_{2,1}(z;q) = \sin_q z$. Also, it is easy to conclude that

$$D_{q^{-1}}^k N_{k,j}(z;q) = N_{k,j}(z;q).$$
(2.7)

Remark 2.1. The function $N_{k,j}(z;q)$ is a special case of the big q-Mittag-Leffler function which is introduced in [21], and defined by

$$E_{q;\alpha,\beta}(z;c) = \sum_{n=0}^{\infty} \frac{q^{(\alpha n+\beta-1)(\alpha n+\beta-2)/2}}{(-c;q)_{\alpha n+\beta-1}} \frac{z^{\alpha n+\beta-1} (c/z;q)_{\alpha n+\beta-1}}{(q;q)_{\alpha n+\beta-1}},$$

where $q, z, c, \alpha, \beta \in \mathbb{C}$; $\Re(\alpha) > 0$, $\Re(\beta) > 0$ and |q| < 1. More precisely,

$$N_{k,j}(z;q) = (1-q)E_{q;k,j+1}(\frac{z}{1-q};0)$$

Proposition 2.2. Let $k \in \mathbb{N}$, j = 0, 1, ..., k - 1, and $\omega = \exp(2\pi i/k)$. Then, the following results hold:

$$\omega^{-(j/2)} \sum_{m=0}^{k-1} \omega^{-mj} E_q(\omega^{m+1/2} z) = k M_{k,j}(z;q);$$
(2.8)

$$\omega^{j/2} M_{k,j}(z\omega^{-(1/2)};q) = N_{k,j}(z;q);$$
(2.9)

$$\sum_{m=0}^{k-1} \omega^{-mj} E_q(\omega^m z) = k N_{k,j}(z;q).$$
(2.10)

Proof. To prove Eq (2.8), we use (1.6) to obtain

$$\sum_{m=0}^{k-1} \omega^{-mj} E_q(\omega^{m+1/2} z) = \sum_{n=0}^{\infty} q^{\frac{n(n-1)}{2}} \frac{z^n \, \omega^{n/2}}{\Gamma_q(n+1)} \sum_{m=0}^{k-1} \omega^{m(n-j)}.$$
(2.11)

Since $\omega = \exp(2\pi i/k)$, then $\omega^k = 1$ and $1 + \omega + \omega^2 + \ldots + \omega^{k-1} = 0$. Therefore,

$$\sum_{n=0}^{k-1} \omega^{(i-j)n} = \begin{cases} k, & i = j \pmod{k}; \\ 0, & i \neq j \pmod{k}. \end{cases}$$
(2.12)

We obtain the required result by substituting from (2.12) into (2.11) and then multiplying (2.11) with $\omega^{-(j/2)}$.

Formula (2.9) follows immediately from definitions (2.5) and (2.6). Finally, we get (2.10) and complete the proof from the results (2.8) and (2.9). \Box

AIMS Mathematics

Now, we consider the following boundary value problems:

$$D_{q^{-1}}^{k}y(x) + \lambda^{k}y(x) = 0,$$

$$y(0) = D_{q^{-1}}y(0) = D_{q^{-1}}^{2}y(0) = \dots = D_{q^{-1}}^{k-2}y(0) = y(1) = 0,$$
(2.13)

and the adjoint problem:

$$(-1)^{k} q^{k} D_{q}^{k} z(x) + \lambda^{k} z(x) = 0,$$

$$z(1) = D_{q} z(1) = D_{q}^{2} z(1) = \dots = D_{q}^{k-2} z(1) = z(0) = 0.$$
(2.14)

Then, the real eigenvalues $(\lambda_m)_{m=1}^{\infty}$ are zeros of the *q*-circular function $M_{k,k-1}(x;q)$ (defined in Eq (2.5)). The eigenfunctions of Problem (2.13) are

$$\{M_{k,k-1}(\lambda_m x;q)\}_{m=1}^{\infty},$$

and the eigenfunctions of Problem (2.14) are $\{\widetilde{M}_{k,k-1}(x,\lambda_k;q)\}_{m=1}^{\infty}$, where in general

$$\widetilde{M}_{k,j}(x,\lambda;q) := \sum_{n=0}^{\infty} (-1)^n q^{\frac{(nk+j)(nk+j-1)}{2}} \frac{(-\lambda x)^{nk+j}(1/x;q)_{nk+j}}{\Gamma_q(nk+j+1)}.$$
(2.15)

Notice, Ismail in [10] defined a q-translation operator by

$$\varepsilon_q^y x^n = x^n (-y/x; q)_n,$$

and acts on polynomials as a linear operator. Therefore, one can verify that

$$M_{k,j}(x,\lambda;q) = \varepsilon_q^{-1} M_{k,j}(\lambda x;q).$$

We use $\widetilde{M}_{k,j}(x;q)$ to denote $\widetilde{M}_{k,j}(x,1;q)$. One can also verify that

$$D_{q^{-1}}^{r}M_{k,j}(x) = \begin{cases} M_{k,j-r}(x), & r \leq j, \\ -M_{k,j-r+k}(x), & j < r < k. \end{cases}$$

In the following, we construct the addition formula of the *q*-circular functions. For this, we define the function $K_{k,i}(x, \lambda, y; a) :=$

$$\sum_{m=0}^{\infty} (-1)^m \frac{\lambda^{km+j}}{\Gamma_q(km+j+1)} \sum_{r=0}^{km+j} {\binom{km+j}{r}}_q q^{\binom{r}{2}} x^r (-y)^{km+j-r} (1/y;q)_{km+j-r}.$$

One can verify that $K_{k,j}(x, \lambda, 1; q) = M_{k,j}(\lambda x), K_{k,j}(0, \lambda, y; q) = \widetilde{M}_{k,j}(y, \lambda; q)$. Moreover,

$$D_{q^{-1}}^{r}K_{k,j}(x,\lambda,y) = \begin{cases} K_{k,j-r}(x,\lambda,y), & 0 \le r \le j \le k-1; \\ -K_{k,k-r+j}(x,\lambda,y), & k > r > j. \end{cases}$$

Theorem 2.3. The following result hold for j = 0, 1, ..., k - 1.

$$K_{k,j}(x,\lambda,y;q) =$$

$$\sum_{l=0}^{j} \widetilde{M}_{k,j-l}(y,\lambda;q) M_{k,l}(\lambda x;q) - \sum_{l=j+1}^{k-1} \widetilde{M}_{k,k-j+l}(y,\lambda;q) M_{k,l}(\lambda x;q).$$

AIMS Mathematics

Proof. For fixed *y*, the functions $\{y_j = K_{k,j}(x, \lambda, y)\}_{j=0}^{k-1}$ form a fundamental set of solutions of the initial value problem

$$D_{q^{-1}}^k y_j(x) + \lambda^k y_j(x) = 0, \ D_{q^{-1}}^r y_j(0) = \delta_{j,r}, \ \{j, r\} \subset \{0, 1, \dots, k-1\}.$$

Therefore, there exist some constants c_n ($0 \le n \le k - 1$) such that

$$K_{k,j}(x,\lambda,y) = c_0 M_{k,0}(\lambda x;q) + c_1 M_{k,1}(\lambda x;q) + \ldots + c_{k-1} M_{k,k-1}(\lambda x;q).$$

Hence, for $r \in \{0, 1, ..., k - 1\}$

$$D_{q^{-1}}^{r}K_{k,j}(x,\lambda,y;q) =$$

$$c_{0}D_{q^{-1},x}^{r}M_{k,0}(\lambda x;q) + c_{1}D_{q^{-1},x}^{r}M_{k,1}(\lambda x;q) + \ldots + c_{k-1}D_{q^{-1},x}^{r}M_{k,k-1}(\lambda x;q)$$

$$= -\sum_{l=0}^{r-1}c_{l}M_{k,k-r+l}(\lambda x;q) + \sum_{l=r}^{k-1}c_{l}M_{k,l-r}(\lambda x;q).$$

If we set x = 0 on the previous identity, we get

$$c_r = D_{q^{-1}}^r K_{k,j}(x,\lambda,y;q)|_{x=0} = \begin{cases} -\widetilde{M}_{k,k-r+j}(y,\lambda;q), & k > r > j, \\ \widetilde{M}_{k,j-r}(y,\lambda;q), & 0 \le r \le j. \end{cases}$$

Theorem 2.4. The following biorthogonal property holds:

$$\int_0^1 M_{k,k-1}(x\lambda_m;q)\widetilde{M}_{k,k-1}(x,\lambda_j;q)\,d_qx = -\frac{M_{k,k-2}(\lambda_m)}{k}\delta_{j,m}$$

where $\delta_{j,m}$ is the Kronecker's delta, and $(\lambda_m)_{m=1}^{\infty}$ are the set of the real zeros of the function $M_{k,k-1}(x;q)$. *Proof.* We set $y(x) = M_{k,k-1}(\lambda x;q)$, $z(x) = \widetilde{M}_{k,k-1}(y,\lambda;q)$. Then, we have

$$(-1)^{k} q^{k} D_{q}^{k} z(x) = -\lambda^{k} z(x),$$

$$D_{q^{-1}}^{k} y(x) = -\lambda^{k} y(x).$$
(2.16)

Consequently,

•

$$\int_{0}^{1} \left[z(x) D_{q^{-1}}^{k} y(x) + (-1)^{k} q^{k} y(x) D_{q}^{k} z(x) \right] d_{q} x = -2\lambda^{k} \int_{0}^{1} y(x) z(x) d_{q} x.$$
(2.17)

Applying the q-integration by parts on Eq (2.17) j times, we obtain

$$\sum_{j=1}^{k-1} \int_0^1 \left[(-1)^j q^j D_q^j z(x) D_{q^{-1}}^{k-j} y(z) + (-1)^{k-j} q^k - j D_{q^{-1}}^j y(x) D_q^{k-j} z(x) \right] d_q x$$
$$= -2(k-1)\lambda^k \int_0^1 y(x) z(x) \, d_q x.$$

AIMS Mathematics

Volume 8, Issue 6, 13525-13542.

That is,

$$2\int_0^1\sum_{j=1}^{k-1}(-1)^j q^j D_q^j z(x) D_{q^{-1}}^{k-j} y(x) \, d_q x = -2(k-1)\lambda^k \int_0^1 y(x) z(x) \, d_q x.$$

But

$$\sum_{j=1}^{k-1} (-1)^j q^j D_q^j z(x) D_{q^{-1}}^{k-j} y(x) = \lambda^k \sum_{j=1}^{k-1} M_{k,k-1-j}(\lambda x;q) \widetilde{M}_{k,j-1}(y,\lambda;q)$$
$$= \sum_{j=0}^{k-2} M_{k,k-2-j}(\lambda x;q) \widetilde{M}_{k,j}(y,\lambda;q) = K_{k,k-2}(x,\lambda,x;q) + y(x)z(x).$$

Set $(x * y)^n := \sum_{k=0}^n {n \brack k}_q q^{\binom{k}{2}} x^k (-y)^{n-k} (1/y; q)_{n-k}$. Then

$$(x * x)^{n} = x^{n} \sum_{k=0}^{n} {n \brack k}_{q} q^{\binom{k}{2}} (-1)^{n-k} (1/x;q)_{n-k}$$

= $x^{n} q^{n(n-1)/2} \sum_{k=0}^{n} \frac{(q^{-n};q)_{k}}{(q;q)_{k}} (1/x;q)_{k} q^{k} = q^{n(n-1)/2}.$ (2.18)

Hence, $K_{k,k-2}(x, \lambda, x; q) = M_{k,k-2}(\lambda; q)$, and then we obtain

$$\int_{0}^{1} y(x)z(x) \, d_{q}x = \frac{M_{k,k-2}(\lambda;q)}{-k}.$$

3. *q*-type *k*-Lidstone expansion theorem

Recall that Ψ is a comparison function if $\Psi(t) = \sum_{n=0}^{\infty} \Psi_n t^n$ and $\Psi_n > 0$ $(n \in \mathbb{N}_0)$ such that (Ψ_{n+1}/Ψ_n) is a decreasing sequence that converges to zero (see [6]). We denote by \mathcal{R}_{Ψ} , the class of all entire functions *f* such that, for some numbers τ ,

$$|f(re^{i\theta})| \le M\Psi(\tau r),\tag{3.1}$$

as $r \to \infty$. The infimum of the numbers τ for which (3.1) holds is the Ψ -type of the function f. This type can be computed by applying Nachbin's theorem [18] which states that a function $f(z) = \sum_{n=0}^{\infty} f_n z^n$ is of Ψ -type τ if and only if

$$\tau = \limsup_{n \to \infty} \left| \frac{f_n}{\Psi_n} \right|^{\frac{1}{n}}.$$

We will use the following result from [6, Theorem 2.9].

Theorem 3.1. Let Ψ be a comparison function and f is a function in the class \mathcal{R}_{Ψ} . Suppose that

$$\psi(z) = \sum_{n=0}^{\infty} \psi_n z^n$$
 and $f(z) = \sum_{n=0}^{\infty} f_n z^n$.

AIMS Mathematics

If D(f) is a closed set consisting of the union of all singular points of F and all points exterior to the domain of F, then

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma} \Psi(zw) F(w) \, dw,$$

where Γ encloses D(f) and

$$F(w) = \sum_{n=0}^{\infty} \frac{f_n}{\Psi_n w^{n+1}}.$$

Ramis [20] defined an entire function *f* to have a *q*-exponential growth (q > 1) of order γ and a finite type if there exist positive numbers α and K > 0 such that

$$|f(z)| < K|z|^{\alpha} \exp\left(\frac{\gamma \ln^2 |z|}{2 \ln^2 q}\right).$$
(3.2)

Also, from [20, Lemma 2.2], if the series $f(z) := \sum_{n=0}^{\infty} a_n z^n$ satisfies (3.2), then

$$|a_n| \le Kq^{\frac{(n-\alpha)^2}{2\gamma}} \quad (n \in \mathbb{N}).$$
(3.3)

Proposition 3.2. Let μ_1 be the zero with the smallest positive absolute magnitude of $N_{k,k-1}(w;q)$, defined in (2.5), and let w be a complex number such that $|w| < |\mu_1|$. Assume that

$$E_q(wz) = \sum_{j=0}^{k-2} w^j \psi_j(z, w^k) + E_q(w) \varphi(z, w^k) \quad (k \ge 2),$$
(3.4)

where E_q is the q-exponential function defined in (1.6). Then, for $j \in \{0, 1, ..., k-2\}$:

$$w^{j}\psi_{j}(z,w^{k}) = N_{k,j}(wz;q) - N_{k,j}(w;q) \Big[\frac{N_{k,k-1}(wz;q)}{N_{k,k-1}(w;q)} \Big];$$

$$\varphi(z,w^{k}) = \frac{N_{k,k-1}(wz;q)}{N_{k,k-1}(w;q)},$$
(3.5)

where $N_{k,j}(z;q)$ are the functions defined in (2.6).

Proof. Replace w in Eq (3.4) by $\omega w, \omega^2 w, \dots, \omega^{k-1} w$, with $\omega^k = 1$ ($\omega \neq 1$), and note that the functions φ and ψ_i remain unchanged. Then, we obtain the following system of k equations:

$$E_{q}(\omega^{n}wz) = E_{q}(\omega^{n}w)\varphi(z,w^{k}) + \sum_{j=0}^{k-2} \omega^{nj}w^{j}\psi_{j}(z,w^{k}), \qquad (3.6)$$

where $n \in \{0, 1, ..., k - 1\}$. If we multiply Eq (3.6) by ω^{-nj} and then adding these equations for $n \in \{0, 1, ..., k - 1\}$, we obtain

$$\sum_{n=0}^{k-1} \omega^{-nj} E_q(\omega^n wz) = \sum_{n=0}^{k-1} \omega^{-nj} E_q(\omega^n w) \varphi(z, w^k) + \sum_{i=0}^{k-2} w^i \psi_i(z, w^k) \sum_{n=0}^{k-1} \omega^{(i-j)n}.$$

AIMS Mathematics

Therefore, from (2.10), we get

$$\sum_{n=0}^{k-1} \omega^{-nj} E_q(\omega^n wz) = k N_{k,j}(z;q) \varphi(z,w^k) + \sum_{i=0}^{k-2} w^i \psi_i(z,w^k) \sum_{n=0}^{k-1} \omega^{(i-j)n} \varphi(z,w^k) + \sum_{i=0}^{k-2} w^i \psi_i(z,w^k) \sum_{n=0}^{k-1} w^{(i-j)n} \varphi(z,w^k) + \sum_{i=0}^{k-2} w^i \psi_i(z,w^k) \sum_{n=0}^{k-2} w^i \psi_i(z,w^k) + \sum_{i=0}^{k-2} w^i \psi_i(z,w^k) \sum_{n=0}^{k-2} w^i \psi_i(z,w^k) + \sum_{i=0}^{k-2} w^i \psi_i(z,w^k) \sum_{n=0}^{k-2} w^i \psi_i(z,w^k) + \sum_{i=0}^{k-2} w^i \psi_i(z,w^k) + \sum_$$

Thus, the result follows at once from (2.12).

Obviously, $\varphi(z, w^k)$ and $w^j \psi_j(z, w^k)$ are analytic functions for $|w| < |\mu_1|$.

According to the above results, we can prove the following main theorem.

Theorem 3.3. Let μ_1 be the zero with the smallest positive absolute magnitude of $N_{k,k-1}(w;q)$, defined in (2.5). If f is an entire function of q^{-1} -exponential growth of order less than 1, or of order 1 and a finite type α such that

$$\alpha < \left(\frac{1}{2} - \frac{\log|\mu_1(1-q)|}{\log q}\right),\tag{3.7}$$

then, for all $z \in \mathbb{C}$, the following representation holds

$$f(z) = \sum_{n=0}^{\infty} \left[(D_{q^{-1}}^{kn} f)(1) A_{kn}(z) + \sum_{j=0}^{k-2} (D_{q^{-1}}^{kn+j} f)(0) B_{kn+j}(z) \right],$$
(3.8)

where $A_{kn}(z)$ and $B_{kn+j}(z)$ are the polynomials defined by the following generating functions:

$$\sum_{n=0}^{\infty} w^{kn} A_{kn}(z) = \frac{N_{k,k-1}(wz;q)}{N_{k,k-1}(w;q)} \equiv \varphi(z,w^k),$$

$$\sum_{n=0}^{\infty} w^{kn+j} B_{kn+j}(z) = N_{k,j}(wz;q) - N_{k,j}(w;q) \Big[\frac{N_{k,k-1}(wz;q)}{N_{k,k-1}(w;q)} \Big]$$

$$\equiv w^j \psi_j(z,w^k) \quad (k \ge 2, \ j = 0, 1, \dots, k-2),$$
(3.9)

and w is a complex number such that $|w| < |\mu_1|$. Furthermore, the series on right-hand side of (3.8) converges to f(z) uniformly on all compact subsets of the plane.

Proof. We apply Theorem 3.1. Set $\Psi(z) = E_q(z)$ and $f(z) := \sum_{n=0}^{\infty} a_n z^n$. Then

$$\Psi_n = \frac{q^{\frac{n(n-1)}{2}}}{\Gamma_q(n+1)}, \ \frac{\Psi_{n+1}}{\Psi_n} = \frac{q^n(1-q)}{1-q^{n+1}} = \frac{q^n}{[n+1]_q}$$

is decreasing and vanishes at ∞ . Since $\Psi(z)$ has a q^{-1} -exponential growth of order 1, then Eq (3.1) holds if f is a function of q^{-1} -exponential growth $\gamma, \gamma \leq 1$. Then from (3.3), the type τ of the function f, $\tau \geq 0$ of the function f has the upper bound

$$\tau := \limsup_{n \to \infty} \left| \frac{a_n}{\Psi_n} \right|^{\frac{1}{n}}$$

$$\leq \frac{q^{\frac{1}{2} - \alpha}}{(1 - q)} \limsup_{n \to \infty} \left(K(q; q)_n q^{\alpha^2/2} \right)^{\frac{1}{n}} q^{\frac{n}{2}(\frac{1}{\gamma} - 1)}.$$

AIMS Mathematics

Consequently, if $\gamma < 1$, then $\tau = 0$, if $\gamma = 1$, then $\tau \le \frac{q^{\frac{1}{2}-\alpha}}{1-q}$. So, D(f) lies in the closed disk $|w| \le \tau \le \frac{q^{\frac{1}{2}-\alpha}}{1-q} < \mu_1$ and we choose Γ to be the circle $|w| = \tau + \epsilon < \mu_1$, $\epsilon > 0$ which encloses D(f). Note that the inequality $\frac{q^{\frac{1}{2}-\alpha}}{1-q} < |\mu_1|$ satisfies the condition (3.7) on the type of f(z). Then, we obtain

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma} E_q(zw) F(w) \, dw.$$

Therefore,

$$D_{q^{-1}}^{kn} f(1) = \frac{1}{2\pi i} \int_{\Gamma} w^{kn} E_q(w) F(w) \, dw,$$

$$D_{q^{-1}}^{kn+j} f(0) = \frac{1}{2\pi i} \int_{\Gamma} w^{kn+j} F(w) \, dw \quad j = 0, 1, \dots, k-2.$$

By setting

$$\sum_{n=0}^{\infty} w^{kn} A_{kn}(z) \equiv \varphi(z, w^k), \qquad \sum_{n=0}^{\infty} w^{kn+j} B_{kn+j}(z) \equiv w^j \psi_j(z, w^k),$$

and using Proposition 3.2, we have

$$\begin{split} &\sum_{n=0}^{\infty} \left[(D_{q^{-1}}^{kn} f)(1) A_{kn}(z) + \sum_{j=0}^{k-2} (D_{q^{-1}}^{kn+j} f)(0) B_{kn+j}(z) \right] \\ &= \frac{1}{2\pi i} \int_{\Gamma} \left\{ E_q(w) \sum_{n=0}^{\infty} w^{kn} A_{kn}(z) + \sum_{n=0}^{\infty} \sum_{j=0}^{k-2} w^{kn+j} B_{kn+j}(z) \right\} F(w) dw \\ &= \frac{1}{2\pi i} \int_{\Gamma} \left\{ E_q(w) \varphi(z, w^k) + \sum_{j=0}^{k-2} w^j \psi_j(z, w^k) \right\} F(w) dw \\ &= \frac{1}{2\pi i} \int_{\Gamma} E_q(wz) F(w) dw = f(z). \end{split}$$

Finally, from the definitions of ϕ and ψ_j , we have that the right-hand side of (3.4) is analytic in the disk $|w| < |\mu_1|$. Therefore, the series defined by ϕ and ψ_j converges uniformly in every compact subset of the disk $|w| < |\mu_1|$.

We will say that the formula (3.8) is *q*-type of *k*-Lidstone series of the function *f*, and the functions $A_{kn}(z)$ and $B_{kn+j}(z)$ (j = 0, 1, ..., k - 2) are the fundamental polynomials of this series.

Remark 3.4. If we set k = 2 in Eq (3.8), we have the *q*-Lidstone series expansion (1.3).

The following result gives some properties of the fundamental polynomials of the q-type k-Lidstone series.

Proposition 3.5. For $n \in \mathbb{N}$, $k \ge 2$, and $j \in \{0, 1, 2, ..., k-2\}$, the fundamental polynomials of the *q*-type of *k*-Lidstone series, $A_{kn}(x)$ and $B_{kn+j}(x)$, satisfy the following properties:

(i)
$$A_0(x) = x^{k-1}$$
 and $B_0(x) = 1 - x^{k-1}$;
(ii) $D_{q^{-1}}^k A_{kn}(x) = A_{k(n-1)}(x)$ and $D_{q^{-1}}^k B_{kn+j}(x) = B_{k(n-1)+j}(x)$;
(iii) $A_{kn}(1) = 0$ and $B_{kn+j}(1) = 0$;
(iv) $D_{q^{-1}}^r A_{kn}(0) = 0$ and $D_{q^{-1}}^r B_{kn+j}(0) = 0$ for $r \in \{0, 1, ..., k-2\}$.

Proof. The proof of (i) follows from the substitution with w = 0 in the generating functions in (3.9). To prove (ii), we act on the two sides of (3.9) by the operator $D_{q^{-1},x}^k$ and use (2.7). To prove the first identity in (iii), we substitute with z = 1 in the first equation in (3.9) and using that $A_0(1) = 1$, consequently, $\sum_{n=1}^{\infty} w^{kn} A_{kn}(1) = 0$, This yields $A_{kn}(1) = 0$. The substitution with z = 1 in the second identity in (3.9) yields $\sum_{n=0}^{\infty} w^{kn+j} B_{kn+j}(1) = 0$. Hence, $B_{kn+j}(1) = 0$ for all $n \in \mathbb{N}_0$. Finally, the proof of (iv) follows at once from (ii) and (iii).

4. Special case: A q-type 3-Lidstone series

In this section, we give several problems that illustrate the q-type of 3-Lidstone series. One of them can be derived immediately from Theorem 3.3 (see Table 1).

In the following, we discuss another problem of expanding an entire function in a *q*-type 3-Lidstone series.

Theorem 4.1. Let $\mu_{1,3}$ be the zero with the smallest positive absolute magnitude of $M_{3,0}(z;q)$ which defined in (2.5). Then, for every entire function f(z) of q^{-1} -exponential growth of order less than 1, or of order 1 and a finite type α such that $\alpha < \left(\frac{1}{2} - \frac{\log|\mu_{1,3}(1-q)|}{\log q}\right)$ the following representation holds:

$$f(z) = \sum_{n=0}^{\infty} \left[D_{q^{-1}}^{3n} f(1) \tilde{A}_{3n}(z) + D_{q^{-1}}^{3n+1} f(0) \tilde{B}_{3n+1}(z) + D_{q^{-1}}^{3n+2} f(0) \tilde{B}_{3n+2}(z) \right],$$
(4.1)

where $\tilde{A}_{3n}(z)$, $\tilde{B}_{3n+1}(z)$ and $\tilde{B}_{3n+2}(z)$ are polynomials defined by the following generating functions:

$$\sum_{n=0}^{\infty} w^{3n} \tilde{A}_{3n}(z) = \frac{N_{3,0}(wz;q)}{N_{3,0}(w;q)},$$

$$\sum_{n=0}^{\infty} w^{3n+1} \tilde{B}_{3n+1}(z) = N_{3,1}(wz;q) - N_{3,1}(w;q) \Big[\frac{N_{3,0}(wz;q)}{N_{3,0}(w;q)} \Big],$$

$$\sum_{n=0}^{\infty} w^{3n+2} \tilde{B}_{3n+2}(z) = N_{3,2}(wz;q) - N_{3,2}(w;q) \Big[\frac{N_{3,0}(wz;q)}{N_{3,0}(w;q)} \Big].$$
(4.2)

The series on (4.1) converges to f(z) for all z and the convergence is uniform on all compact subsets of the plane.

AIMS Mathematics

Proof. First, we consider the functions $\sum_{n=0}^{\infty} w^{3n} \tilde{A}_{3n}(z) = \tilde{\varphi}(z, w^3) \equiv \tilde{\varphi}$,

$$\sum_{n=0}^{\infty} w^{3n+1} \tilde{B}_{3n+1}(z) = w \tilde{\psi}_1(z, w^3) \equiv w \tilde{\psi}_1,$$
$$\sum_{n=0}^{\infty} w^{3n+2} \tilde{B}_{3n+2}(z) = w^2 \tilde{\psi}_2(z, w^3) \equiv w^2 \tilde{\psi}_2,$$

and assume that the function $E_q(wz)$ has the following representation:

$$E_{q}(wz) = E_{q}(w)\varphi + w\psi_{1} + w^{2}\psi_{2}.$$
(4.3)

Let $\omega^3 = 1$ with $\omega \neq 1$ and replacing w by ωw and $\omega^2 w$ in Eq (4.3), we obtain

$$E_q(w\omega z) = E_q(w\omega)\tilde{\varphi} + w\omega\tilde{\psi}_1 + w^2\omega^2\tilde{\psi}_2, \qquad (4.4)$$

$$E_q(w\omega^2 z) = E_q(w\omega^2)\tilde{\varphi} + w\omega^2\tilde{\psi}_1 + w^2\omega\tilde{\psi}_2.$$
(4.5)

If we add the Eqs (4.3)–(4.5), we obtain $\tilde{\varphi}$. In order to get the function $w\tilde{\psi}_1$, we multiply the Eqs (4.3)–(4.5) by $1, \omega^{-1}$ and ω^{-2} , respectively and add. $w^2\tilde{\psi}_2$ obtained by multiplying the same equations by $1, \omega^{-2}$ and ω^{-1} , respectively. The proof is then completed similar to the proof of Theorem 3.3.

Corollary 4.2. For $n \in \mathbb{N}$, the polynomials \tilde{A}_{3n} and \tilde{B}_{3n+j} (j = 1, 2) satisfy the q-difference equations

$$D_{q^{-1}}^{3}\tilde{A}_{3n}(z) = \tilde{A}_{3(n-1)}(z), \quad D_{q^{-1}}^{3}\tilde{B}_{3n+j}(z) = \tilde{B}_{3(n-1)+j}(z),$$

with the boundary conditions

$$\tilde{A}_{3n}(1) = 0 = \tilde{B}_{3n+j}(1), \quad D_{q^{-1}}\tilde{A}_{3n}(0) = 0 = D_{q^{-1}}\tilde{B}_{3n+j}(0),$$
$$D_{q^{-1}}^{2}\tilde{A}_{3n}(0) = 0 = D_{q^{-1}}^{2}\tilde{B}_{3n+j}(0).$$

Proof. The proof follows by using the generating functions in (4.2).

Remark 4.3. According to formula (4.1), if *P* any polynomial of degree less than or equals to 6, then we have

$$P(z) = P(1)\tilde{A}_{0}(z) + D_{q^{-1}}^{3}P(1)\tilde{A}_{3}(z) + D_{q^{-1}}^{6}P(1)\tilde{A}_{6}(z) + D_{q^{-1}}P(0)\tilde{B}_{1}(z) + D_{q^{-1}}^{2}P(0)\tilde{B}_{2}(z) + D_{q^{-1}}^{4}P(0)\tilde{B}_{4}(z) + D_{q^{-1}}^{5}P(0)\tilde{B}_{5}(z).$$

$$(4.6)$$

So, by setting $P(z) = 1, z, ..., z^6$, successively, in (4.6) we get

$$\begin{split} \tilde{A}_0(z) &= 1, \ \tilde{B}_1(z) = z - 1, \ \tilde{B}_2(z) = \frac{q}{[2]_q!}(z^2 - 1), \ \tilde{A}_3(z) = \frac{q^3}{[3]_q!}(z^3 - 1), \\ \tilde{B}_4(z) &= \frac{q^6}{[4]_q!}(z^4 - 1) - \frac{q^3}{[3]_q!}(z^3 - 1), \ \tilde{B}_5(z) = \frac{q^{10}}{[5]_q!}(z^5 - 1) - \frac{q^4}{[3]_q!}(z^3 - 1), \\ \tilde{A}_6(z) &= \frac{q^{15}}{[6]_q!}(z^6 - 1) - \frac{q^6}{[3]_q!}(z^2 - 1). \end{split}$$

AIMS Mathematics

Volume 8, Issue 6, 13525-13542.

Example 4.4. We apply Theorem 4.1 on the function $f(z) = (z; q)_{3n}$ $(n \in \mathbb{N})$ and using that for any $m \in \mathbb{N}_0$,

$$D_{q^{-1}}^{k}(z;q)_{m} = \begin{cases} (-1)^{k} \frac{[m]_{q}!}{[m-k]_{q}!}(z;q)_{m-k}, & k \le m, \\ 0, & k > m. \end{cases}$$

This gives

$$\frac{(z;q)_{3n}}{[3n]_q!} = (-1)^n A_{3n}(z;q) + \sum_{k=0}^{n-1} (-1)^{k+1} \frac{\widetilde{B}_{3k+1}(z)}{[3n-3k-1]_q!} + \sum_{k=0}^{n-1} (-1)^k \frac{\widetilde{B}_{3k+2}(z)}{[3n-3k-2]_q!}.$$

Example 4.5. Consider the Al-Salam-Carlitz II polynomials (see [12]) defined by

$$V_n^{(a)}(x;q) = (-a)^n q^{\binom{-n}{2}} \sum_{k=0}^n \frac{(q^{-n},x;q)_k}{(q;q)_k} \left(\frac{q^n}{a}\right)^k.$$

Since, $D_{q^{-1}}^k V_m^{(a)}(x;q) = q^{-\binom{m}{2} + \binom{m-k}{2}} \frac{[m]_q!}{[m-k]_q!} V_{m-k}^{(a)}(x;q)$ if $0 \le k \le m$, we obtain

$$D_{q^{-1}}^{k}V_{m}^{(a)}(1;q) = q^{-\binom{m}{2}}\frac{[m]_{q}!}{[m-k]_{q}!}(-a)^{m-k},$$

$$D_{q^{-1}}^{k}V_{m}^{(a)}(0;q) = q^{-\binom{m}{2}}\frac{[m]_{q}!}{[m-k]_{q}!}(-a)^{m-k}(1/a;q)_{m-k},$$

for $k \le m$. Consequently, applying Theorem 4.1 yields

$$(-a)^{-3n}q^{\binom{3n}{2}}\frac{V_{3n}^{(a)}(x;q)}{[3n]_q!} = \sum_{k=0}^n \frac{(-a)^{-3k}}{[3n-3k]_q!}\widetilde{A}_{3k}(x) + \sum_{k=0}^{n-1} \frac{(-a)^{-3k-1}}{[3n-3k-1]_q!}\widetilde{B}_{3k+1}(x) + \sum_{k=0}^{n-1} \frac{(-a)^{-3k-2}}{[3n-3k-2]_q!}\widetilde{B}_{3k+2}(x).$$

Remark 4.6. For the *q*-type of 3-Lidstone series, we can consider six problems:

$$\begin{split} &\sum_{n=0}^{\infty} \Big[D_{q^{-1}}^{3n} f(1) A_{3n}^{(1)}(z) + D_{q^{-1}}^{3n} f(0) B_{3n}^{(1)}(z) + D_{q^{-1}}^{3n+1} f(0) B_{3n+1}^{(1)}(z) \Big], \\ &\sum_{n=0}^{\infty} \Big[D_{q^{-1}}^{3n} f(1) A_{3n}^{(2)}(z) + D_{q^{-1}}^{3n+1} f(0) B_{3n+1}^{(2)}(z) + D_{q^{-1}}^{3n+2} f(0) B_{3n+2}^{(2)}(z) \Big], \\ &\sum_{n=0}^{\infty} \Big[D_{q^{-1}}^{3n+1} f(1) A_{3n+1}^{(3)}(z) + D_{q^{-1}}^{3n} f(0) B_{3n}^{(3)}(z) + D_{q^{-1}}^{3n+2} f(0) B_{3n+2}^{(3)}(z) \Big], \\ &\sum_{n=0}^{\infty} \Big[D_{q^{-1}}^{3n+2} f(1) A_{3n+2}^{(4)}(z) + D_{q^{-1}}^{3n} f(0) B_{3n}^{(4)}(z) + D_{q^{-1}}^{3n+1} f(0) B_{3n+1}^{(4)}(z) \Big], \\ &\sum_{n=0}^{\infty} \Big[D_{q^{-1}}^{3n} f(1) A_{3n}^{(5)}(z) + D_{q^{-1}}^{3n} f(0) B_{3n}^{(5)}(z) + D_{q^{-1}}^{3n+2} f(0) B_{3n+2}^{(5)}(z) \Big], \\ &\sum_{n=0}^{\infty} \Big[D_{q^{-1}}^{3n+1} f(1) A_{3n}^{(6)}(z) + D_{q^{-1}}^{3n} f(0) B_{3n}^{(6)}(z) + D_{q^{-1}}^{3n+1} f(0) B_{3n+2}^{(5)}(z) \Big], \end{split}$$

AIMS Mathematics

where f is assumed to be entire function and satisfies the conditions on Theorem 4.1.

The tables below give the generating functions of the *q*-type fundamental polynomials and the values at n = 0 in these problems, respectively.

	1 11	
The functions		he results
Generating	<i>n</i> =0	$\frac{1}{N_{3,2}(wz;q)} = \frac{N_{3,2}(wz;q)}{N_{3,2}(w;q)}$ wz;q) - N_{3,0}(w;q) $\frac{N_{3,2}(wz;q)}{N_{3,2}(w;q)}$
	$\sum_{n=0} w^{3n+1} B_{3n+1}^{(1)}(z) = N_{3,1}$	$(wz;q) - N_{3,1}(w;q) \frac{N_{3,2}(wz;q)}{N_{3,2}(w;q)}$
q-Polynomials	$A_0^{(1)}(z) = z^2, B_0^{(1)}(z) =$	$= 1 - z^2$ and $B_1^{(1)}(z) = z(1 - z)$

Table 1. q-type 3-Lidstone series (1).

Table 2. q-type 3-Lidstone series (2).

The functions	The results	
Generating	$\sum_{n=0}^{\infty} w^{3n} A_{3n}^{(2)}(z) = \frac{N_{3,0}(wz;q)}{N_{3,0}(w;q)}$ $\sum_{n=0}^{\infty} w^{3n+1} B_{3n+1}^{(2)}(z) = N_{3,1}(wz;q) - N_{3,1}(w;q) \frac{N_{3,0}(wz;q)}{N_{3,0}(w;q)}$	
	$\sum_{n=0}^{\infty} w^{3n+2} B_{3n+2}^{(2)}(z) = N_{3,2}(wz;q) - N_{3,2}(w;q) \frac{N_{3,0}(wz;q)}{N_{3,0}(w;q)}$	
q-Polynomials	$A_0^{(2)}(z) = 1$, $B_1^{(2)}(z) = z - 1$ and $B_2^{(2)}(z) = \frac{q}{[2]_q!}(z^2 - 1)$	

Table 3. q-type 3-Lidstone series (3).

The functions	The results	
Generating	$\sum_{n=0}^{\infty} w^{3n+1} A_{3n+1}^{(3)}(z) = \frac{N_{3,1}(wz;q)}{N_{3,0}(w;q)}$ $\sum_{n=0}^{\infty} w^{3n} B_{3n}^{(3)}(z) = N_{3,0}(wz;q) - N_{3,2}(w;q) \frac{N_{3,1}(wz;q)}{N_{3,0}(w;q)}$	
	$\sum_{n=0}^{\infty} w^{3n+2} B_{3n+2}^{(3)}(z) = N_{3,2}(wz;q) - N_{3,1}(w;q) \frac{N_{3,1}(wz;q)}{N_{3,0}(w;q)}$	
q-Polynomials	$A_1^{(3)}(z) = z$, $B_0^{(3)}(z) = 1$ and $B_2^{(3)}(z) = \frac{q}{[2]_q}z^2 - z$	

Table 4. q-type 3-Lidstone series (4).		
The functions	The results	
Generating	$\sum_{n=0}^{\infty} w^{3n+2} A_{3n+2}^{(4)}(z) = \frac{N_{3,2}(wz;q)}{N_{3,0}(w;q)}$ $\sum_{n=0}^{\infty} w^{3n} B_{3n}^{(4)}(z) = N_{3,0}(wz;q) - N_{3,1}(w;q) \frac{N_{3,2}(wz;q)}{N_{3,0}(w;q)}$ $\sum_{n=0}^{\infty} w^{3n+1} B_{3n+1}^{(4)}(z) = N_{3,1}(wz;q) - N_{3,2}(w;q) \frac{N_{3,2}(wz;q)}{N_{3,0}(w;q)}$	
q-Polynomials	$A_2^{(4)}(z) = \frac{qz^2}{[2]_q}, B_0^{(4)}(z) = 1 \text{ and } B_1^{(4)}(z) = z$	

Table 5. q-type 3-Lidstone series (5).	
---	--

The functions	The results	
Generating	$\sum_{n=0}^{\infty} w^{3n} A_{3n}^{(5)}(z) = \frac{N_{3,1}(wz;q)}{N_{3,1}(w;q)}$ $\sum_{n=0}^{\infty} w^{3n} B_{3n}^{(5)}(z) = N_{3,0}(wz;q) - N_{3,0}(w;q) \frac{N_{3,1}(wz;q)}{N_{3,1}(w;q)}$	
	$\sum_{n=0}^{\infty} w^{3n+2} B_{3n+2}^{(5)}(z) = N_{3,2}(wz;q) - N_{3,2}(w;q) \frac{N_{3,1}(wz;q)}{N_{3,1}(w;q)}$	
q-Polynomials	$A_0^{(5)}(z) = z$, $B_0^{(5)}(z) = 1 - z$ and $B_2^{(5)}(z) = \frac{q z(z-1)}{[2]_q}$	

Table 6. q-type 3-Lidstone series (6).

The functions	The results	
Generating	$\sum_{n=0}^{\infty} w^{3n+1} A_{3n+1}^{(6)}(z) = \frac{N_{3,2}(wz;q)}{N_{3,1}(w;q)}$ $\sum_{n=0}^{\infty} w^{3n} B_{3n}^{(6)}(z) = N_{3,0}(wz;q) - N_{3,2}(w;q) \frac{N_{3,2}(wz;q)}{N_{3,1}(w;q)}$	
	$\sum_{n=0}^{\infty} w^{3n+1} B_{3n+1}^{(6)}(z) = N_{3,1}(wz;q) - N_{3,0}(w;q) \frac{N_{3,2}(wz;q)}{N_{3,1}(w;q)}$	
q-Polynomials	$A_1^{(6)}(z) = \frac{q z^2}{[2]_q}$ $B_0^{(6)}(z) = 1$ and $B_1^{(6)}(z) = \frac{z([2]_q - qz)}{[2]_q}$	

AIMS Mathematics

5. Conclusions

In this paper, we introduced an extension of *q*-Lidstone series which was called a *q*-type *k*-Lidstone series:

$$f(z) = \sum_{n=0}^{\infty} \left[D_{q^{-1}}^{kn} f(1) A_{kn}(z) + \sum_{j=0}^{k-2} D_{q^{-1}}^{kn+j} f(0) B_{kn+j}(z) \right],$$
(5.1)

where $(A_{kn}(z))_n$ and $(B_{kn+j}(z))_n$ are polynomials defined by the following generating functions:

$$\sum_{n=0}^{\infty} w^{kn} A_{kn}(z) = \frac{N_{k,k-1}(wz;q)}{N_{k,k-1}(w;q)} \quad (k \ge 2),$$
$$\sum_{n=0}^{\infty} w^{kn+j} B_{kn+j}(z) = N_{k,j}(wz;q) - N_{k,j}(w;q) \Big[\frac{N_{k,k-1}(wz;q)}{N_{k,k-1}(w;q)} \Big],$$

and determined the class of functions for which (5.1) is valid.

Notice, by following the same manner as a proof of (5.1), we can conclude that the function f can be given also by the convergent another q-type k-Lidstone series expansion with different q-polynomials. More precisely, we can obtain the following result.

Theorem 5.1. Let μ_1 be the zero with the smallest positive absolute magnitude of $N_{k,0}(w;q)$ which defined in (2.5). If the function f(z) is an entire function of q^{-1} -exponential growth of order less than 1, or of order 1 and a finite type α such that

$$\alpha < \Big(\frac{1}{2} - \frac{\log|\mu_1(1-q)|}{\log q}\Big),$$

then, for all $z \in \mathbb{C}$ the following representation holds

$$f(z) = \sum_{n=0}^{\infty} \left[D_{q^{-1}}^{kn} f(0) C_{kn}(z) + \sum_{j=1}^{k-1} D_{q^{-1}}^{kn+j} f(1) P_{kn+j}(z) \right],$$

where $(C_{kn}(z))_n$ and $(P_{kn+j}(z))_n$ are polynomials defined by the following generating functions:

$$\sum_{n=0}^{\infty} w^{kn} C_{kn}(z) = \frac{1}{k} N_{k,0}(wz;q),$$
$$\sum_{n=0}^{\infty} w^{kn+j} P_{kn+j}(z) = \left[\frac{N_{k,j}(wz;q)}{N_{k,0}(w;q)} \right] \quad (k \ge 1, \ j = 1, 2, \dots, k-1)$$

As a special case, we considered six problems of expanding an entire function in the *q*-type 3-Lidstone series. The Lidstone polynomials are used in many interpolation and boundary value problems. See for example, [1, 7]. We studied boundary value problems includes the 2 type *q*-Lidstone polynomials in [15], and we aim to study boundary value problems associated with the *k* type *q*-Lidstone polynomials, k > 2.

Acknowledgments

The authors would like to express appreciation to the editor and the referees for their helpful comments and suggestions that improved this article.

Conflict of interest

The authors declare no conflicts of interest.

References

- 1. R. Agarwal, P. Wong, Lidstone polynomials and boundary value problems, *Comput. Math. Appl.*, 17 (1989), 1397–1421.
- 2. M. Al-Towailb, A q-difference equation and Fourier series expansions of q-Lidstone polynomials, Symmetry, 14 (2022), 782. https://doi.org/10.3390/sym14040782
- 3. M. AL-Towailb, A generalization of the q-Lidstone series, AIMS Mathematics, 7 (2022), 9339-9352. https://doi.org/10.3934/math.2022518
- 4. M. AL-Towailb, Z. S. I. Mansour, The q-Lidstone series involving q-Bernoulli and q-Euler polynomials generated by the third Jackson q-Bessel function, Kim, 2022, In press.
- 5. R. P. Boas, Representation of functions by Lidstone series, *Duke Math. J.*, **10** (1943), 239–245.
- 6. R. P. Boas, R. C. Buck, Polynomial expansions of analytic functions, 2 Eds., Berlin: Springer-Verlag, 1964.
- 7. F. A. Costabile, M. I. Gualtieri, A. Napoli, Lidstone-Euler second-type boundary value Theoretical and computational tools, Mediterr. J. Math., 18 (2021), 180. problems: https://doi.org/10.1007/s00009-021-01822-5
- 8. A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, New York: McGraw-Hill, 1955.
- 9. G. Gasper, M. Rahman, Basic hypergeometric series, 2Eds., Cambridge: Cambridge University Press, 2004.
- 10. M. E. Ismail, Classical and quantum orthogonal polynomials in one variable, Cambridge: Cambridge University Press, 2009.
- 11. M. Ismail, Z. S. I. Mansour, q-analogs of Lidstone expansion theorem, two point Taylor expansion theorem, and Bernoulli polynomials, Anal. Appl., 17 (2019), 853-895. https://doi.org/10.1142/S0219530518500264
- 12. R. Koekoek, R. F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its *q*-analogue, 1998. Available from: https://arxiv.org/pdf/math/9602214.
- 13. D. Leeming, A. Sharma, A generalization of the class of completely convex functions, Symp. Inequalities, 3 (1972), 177–199.
- 14. G. Lidstone, Notes on the extension of Aitken's theorem (for polynomial interpolation) to the Everett types, Proc. Edinburgh Math. Soc., 2 (1929), 16–19.

- 16. Z. S. I. Mansour, M. AL-Towailb, The complementary *q*-Lidstone interpolating polynomials and applications, *Math. Comput. Appl.*, **25** (2020), 34. https://doi.org/10.3390/mca25020034
- 17. J. G. Mikusinski, Sur les fonctions $k_n(x) = \sum_{\nu=0}^{\infty} (-l)^{\nu} x^{n+k\nu} / (n+k\nu)!, (k = 1, 2, ...; n = 0, 1, ..., k-1),$ Ann. Soc. Pol. Math., **21** (1948), 46–51.
- 18. L. Nachbin, An extension of the notion of integral functions of finite exponential type, *Anais Acad. Brasil. Ciencias*, **16** (1944), 143–147.
- 19. H. Portisky, On certain polynomial and other approximations to analytic functions, *PNAS*, **16** (1930), 83–85. https://doi.org/10.1073/pnas.16.1.83
- 20. J. P. Ramis, About the growth of entire functions solutions of linear algebraic q-difference equations, Ann. Fac. Sci. Toulouse: Math., 1 (1992), 53–94. https://doi.org/10.5802/afst.739
- 21. P. M. Rajković, S. D. Marinković, M. S. Stanković, On *q*-analogues of Caputo derivative and Mittag-Leffler function, *Fract. Calc. Appl. Anal.* **10** (2007), 359–374.
- 22. I. Schoenberg, On certain two-point expansions of integral functions of exponential type, *Bull. Amer. Math. Soc.*, **42** (1936), 284–288. https://doi.org/10.1090/S0002-9904-1936-06293-2
- 23. J.M. Whittaker, On Lidstone' series and two-point expansions of analytic functions, *Proc. London Math. Soc.*, **2** (1934), 451–469.
- 24. D. Widder, Completely convex functions and Lidstone series, *Trans. Am. Math. Soc.*, **51** (1942), 387–398.

 \bigcirc 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)