Research article

Solvability and GUH-stability of a nonlinear CF-fractional coupled Laplacian equations

  • Received: 01 March 2023 Revised: 26 March 2023 Accepted: 27 March 2023 Published: 04 April 2023
  • MSC : 34A08, 34D20, 37C25

  • In this paper, we mainly take into account a nonlinear fractional coupled Laplacian equations with nonsingular exponential kernel. After discussing the Laplacian parameters in four cases, some new and easily verifiable sufficient criteria of solvability are obtained. We further prove that this system is generalized Ulam-Hyers (GUH) stable. Finally, an example is applied to explain the availability of our major results.

    Citation: Kaihong Zhao. Solvability and GUH-stability of a nonlinear CF-fractional coupled Laplacian equations[J]. AIMS Mathematics, 2023, 8(6): 13351-13367. doi: 10.3934/math.2023676

    Related Papers:

  • In this paper, we mainly take into account a nonlinear fractional coupled Laplacian equations with nonsingular exponential kernel. After discussing the Laplacian parameters in four cases, some new and easily verifiable sufficient criteria of solvability are obtained. We further prove that this system is generalized Ulam-Hyers (GUH) stable. Finally, an example is applied to explain the availability of our major results.



    加载中


    [1] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation Applications, 1 (2015), 73–85.
    [2] A. Atangana, D. Baleanu, Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer, J. Eng. Mech., 143 (2017), 5. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001091 doi: 10.1061/(ASCE)EM.1943-7889.0001091
    [3] M. Alquran, K. Al-Khaled, T. Sardar, J. Chattopadhyay, Revisited Fisher's equation in a new outlook: a fractional derivative approach, Physica A, 438 (2015), 81–93. https://doi.org/10.1016/j.physa.2015.06.036 doi: 10.1016/j.physa.2015.06.036
    [4] A. Atangana, B. S. T. Alkahtani, Analysis of the Keller-Segel model with a fractional derivative without singular kernel, Entropy, 17 (2015), 4439–4453. https://doi.org/10.3390/e17064439 doi: 10.3390/e17064439
    [5] A. Atangana, B. S. T. Alkahtani, Extension of the resistance, inductance, capacitance electrical circuit to fractional derivative without singular kernel, Adv. Mech. Eng., 7 (2015), 1–6. https://doi.org/10.1177/1687814015591937 doi: 10.1177/1687814015591937
    [6] S. Alizadeh, D. Baleanu, S. Rezapour, Analyzing transient response of the parallel RCL circuit by using the Caputo-Fabrizio fractional derivative, Adv. Differ. Equ., 2020 (2020), 55. https://doi.org/10.1186/s13662-020-2527-0 doi: 10.1186/s13662-020-2527-0
    [7] D. Baleanu, H. Mohammadi, S. Rezapour, Analysis of the model of HIV-1 infection of $CD4^+$ T-cell with a new approach of fractional derivative, Adv. Differ. Equ., 2020 (2020), 71. https://doi.org/10.1186/s13662-020-02544-w doi: 10.1186/s13662-020-02544-w
    [8] D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Soliton. Fract., 134 (2020), 109705. https://doi.org/10.1016/j.chaos.2020.109705 doi: 10.1016/j.chaos.2020.109705
    [9] M. Rahman, S. Ahmad, R. Matoog, N. A. Alshehri, T. Khan, Study on the mathematical modelling of COVID-19 with Caputo-Fabrizio operator, Chaos Soliton. Fract., 150 (2021), 111121. https://doi.org/10.1016/j.chaos.2021.111121 doi: 10.1016/j.chaos.2021.111121
    [10] T. Sitthiwirattham, M. Arfan, K. Shah, A. Zeb, S. Djilali, S. Chasreechai, Semi-analytical solutions for fuzzy Caputo-Fabrizio fractional-order two-dimensional heat equation, Fractal Fract., 5 (2021), 139. https://doi.org/10.3390/fractalfract5040139 doi: 10.3390/fractalfract5040139
    [11] Y. N. Anjam, R. Shafqat, I. E. Sarris, M. ur Rahman, S. Touseef, M. Arshad, A fractional order investigation of smoking model using Caputo-Fabrizio differential operator, Fractal Fract., 6 (2022), 623. https://doi.org/10.3390/fractalfract6110623 doi: 10.3390/fractalfract6110623
    [12] A. Iqbal, T. Akram, A numerical study of anomalous electro-diffusion cells in cable sense with a non-singular kernel, Demonstr. Math., 55 (2022), 574–586. https://doi.org/10.1515/dema-2022-0155 doi: 10.1515/dema-2022-0155
    [13] V. E. Tarasov, Caputo-Fabrizio operator in terms of integer derivatives: memory or distributed lag?, Comp. Appl. Math., 38 (2019), 113. https://doi.org/10.1007/s40314-019-0883-8 doi: 10.1007/s40314-019-0883-8
    [14] Y. H. Pan, Nonlinear analysis of a four-dimensional fractional hyper-chaotic system based on general Riemann-Liouville-Caputo fractal-fractional derivative, Nonlinear Dyn., 106 (2021), 3615–3636. https://doi.org/10.1007/s11071-021-06951-w doi: 10.1007/s11071-021-06951-w
    [15] T. W. Zhang, Y. K. Li, Exponential Euler scheme of multi-delay Caputo-Fabrizio fractional-order differential equations, Appl. Math. Lett., 124 (2021), 107709. https://doi.org/10.1016/j.aml.2021.107709 doi: 10.1016/j.aml.2021.107709
    [16] M. Tariq, O. Alsalami, A. Shaikh, K. Nonlaopon, S. K. Ntouyas, New fractional integral inequalities pertaining to Caputo-Fabrizio and generalized Riemann-Liouville fractional integral operators, Axioms, 11 (2022), 618. https://doi.org/10.3390/axioms11110618 doi: 10.3390/axioms11110618
    [17] S. Abbas, M. Benchohra, J. J. Nieto, Caputo-Fabrizio fractional differential equations with non instantaneous impulses, Rend. Circ. Mat. Palermo, II. Ser., 71 (2022), 131–144. https://doi.org/10.1007/s12215-020-00591-6 doi: 10.1007/s12215-020-00591-6
    [18] A. Alsaedi, M. Alghanmi, B. Ahmad, B. Alharbi, Uniqueness of solutions for a $\psi$-Hilfer fractional integral boundary value problem with the p-Laplacian operator, Demonstr. Math., 56 (2023), 20220195. https://doi.org/10.1515/dema-2022-0195 doi: 10.1515/dema-2022-0195
    [19] Y. Zhou, J. W. He, A Cauchy problem for fractional evolution equations with Hilfer's fractional derivative on semi-infinite interval, Fract. Calc. Appl. Anal., 25 (2022), 924–961. https://doi.org/10.1007/s13540-022-00057-9 doi: 10.1007/s13540-022-00057-9
    [20] J. W. He, Y. Zhou, Hölder regularity for non-autonomous fractional evolution equations, Fract. Calc. Appl. Anal., 25 (2022), 378–407. https://doi.org/10.1007/s13540-022-00019-1 doi: 10.1007/s13540-022-00019-1
    [21] S. Ulam, A collection of mathematical problems-interscience tracts in pure and applied mathmatics, New York: Interscience, 1906.
    [22] D. H. Hyers, On the stability of the linear functional equation, P. Natl. A. Sci., 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222
    [23] A. Zada, H. Waheed, J. Alzabut, X. M. Wang, Existence and stability of impulsive coupled system of fractional integrodifferential equations, Demonstr. Math., 52 (2019), 296–335. https://doi.org/10.1515/dema-2019-0035 doi: 10.1515/dema-2019-0035
    [24] X. Yu, Existence and $\beta$-Ulam-Hyers stability for a class of fractional differential equations with non-instantaneous impulses, Adv. Differ. Equ., 2015 (2015), 104. https://doi.org/10.1186/s13662-015-0415-9 doi: 10.1186/s13662-015-0415-9
    [25] X. Wang, D. F. Luo, Q. X. Zhu, Ulam-Hyers stability of Caputo type fuzzy fractional differential equations with time-delays, Chaos Soliton. Fract., 156 (2022), 111822. https://doi.org/10.1016/j.chaos.2022.111822 doi: 10.1016/j.chaos.2022.111822
    [26] D. F. Luo, T. Abdeljawad, Z. G. Luo, Ulam-Hyers stability results for a novel nonlinear nabla Caputo fractional variable-order difference system, Turk. J. Math., 45 (2021), 456–470. https://doi.org/10.3906/mat-2008-53 doi: 10.3906/mat-2008-53
    [27] X. Wang, D. Luo, Z. Luo, A Zada, Ulam-Hyers stability of Caputo-type fractional stochastic differential equations with time delays, Math. Probl. Eng., 2021 (2021), 5599206. https://doi.org/10.1155/2021/5599206 doi: 10.1155/2021/5599206
    [28] D. F. Luo, Z. G. Luo, H. J. Qiu, Existence and Hyers-Ulam stability of solutions for a mixed fractional-order nonlinear delay difference equation with parameters, Math. Probl. Eng., 2020 (2020), 9372406. https://doi.org/10.1155/2020/9372406 doi: 10.1155/2020/9372406
    [29] D. F. Luo, Z. G. Luo, Existence and Hyers-Ulam stability results for a class of fractional order delay differential equations with non-instantaneous impulses, Math. Slovaca, 70 (2020), 1231–1248. https://doi.org/10.1515/ms-2017-0427 doi: 10.1515/ms-2017-0427
    [30] D. F. Luo, K. Shah, Z. G. Luo, On the novel Ulam-Hyers stability for a class of nonlinear $\psi$-Hilfer fractional differential equation with time-varying delays, Mediterr. J. Math., 16 (2019), 112. https://doi.org/10.1007/s00009-019-1387-x doi: 10.1007/s00009-019-1387-x
    [31] K. H. Zhao, S. K. Deng, Existence and Ulam-Hyers stability of a kind of fractional-order multiple point BVP involving noninstantaneous impulses and abstract bounded operator, Adv. Differ. Equ., 2021 (2021), 44. https://doi.org/10.1186/s13662-020-03207-6 doi: 10.1186/s13662-020-03207-6
    [32] K. H. Zhao, S. Ma, Ulam-Hyers-Rassias stability for a class of nonlinear implicit Hadamard fractional integral boundary value problem with impulses, AIMS Math., 7 (2022), 3169–3185. https://doi.org/10.3934/math.2022175 doi: 10.3934/math.2022175
    [33] K. H. Zhao, Y. Ma, Study on the existence of solutions for a class of nonlinear neutral Hadamard-type fractional integro-differential equation with infinite delay, Fractal Fract., 5 (2021), 52. https://doi.org/10.3390/fractalfract5020052 doi: 10.3390/fractalfract5020052
    [34] K. H. Zhao, Stability of a nonlinear ML-nonsingular kernel fractional Langevin system with distributed lags and integral control, Axioms, 11 (2022), 350. https://doi.org/10.3390/axioms11070350 doi: 10.3390/axioms11070350
    [35] K. H. Zhao, Existence, stability and simulation of a class of nonlinear fractional Langevin equations involving nonsingular Mittag-Leffler kernel, Fractal Fract., 6 (2022), 469. https://doi.org/10.3390/fractalfract6090469 doi: 10.3390/fractalfract6090469
    [36] H. Huang, K. H. Zhao, X. D. Liu, On solvability of BVP for a coupled Hadamard fractional systems involving fractional derivative impulses, AIMS Math., 7 (2022), 19221–19236. https://doi.org/10.3934/math.20221055 doi: 10.3934/math.20221055
    [37] K. H. Zhao, Stability of a nonlinear Langevin system of ML-type fractional derivative affected by time-varying delays and differential feedback control, Fractal Fract., 6 (2022), 725. https://doi.org/10.3390/fractalfract6120725 doi: 10.3390/fractalfract6120725
    [38] K. H. Zhao, Stability of a nonlinear fractional Langevin system with nonsingular exponential kernel and delay control, Discrete Dyn. Nat. Soc., 2022 (2022), 9169185. https://doi.org/10.1155/2022/9169185 doi: 10.1155/2022/9169185
    [39] K. H. Zhao, Existence and UH-stability of integral boundary problem for a class of nonlinear higher-order Hadamard fractional Langevin equation via Mittag-Leffler functions, Filomat, 37 (2023), 1053–1063.
    [40] J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1 (2015), 87–92.
    [41] D. J. Guo, V. Lakshmikantham, Nonlinear problems in abstract cone, Orlando: Academic Press, 1988.
    [42] K. H. Zhao, Local exponential stability of four almost-periodic positive solutions for a classic Ayala-Gilpin competitive ecosystem provided with varying-lags and control terms, Int. J. Control, in press. https://doi.org/10.1080/00207179.2022.2078425
    [43] K. H. Zhao, Local exponential stability of several almost periodic positive solutions for a classical controlled GA-predation ecosystem possessed distributed delays, Appl. Math. Comput., 437 (2023), 127540. https://doi.org/10.1016/j.amc.2022.127540 doi: 10.1016/j.amc.2022.127540
    [44] K. H. Zhao, Existence and stability of a nonlinear distributed delayed periodic AG-ecosystem with competition on time scales, Axioms, 12 (2023), 315. https://doi.org/10.3390/axioms12030315 doi: 10.3390/axioms12030315
    [45] K. H. Zhao, Coincidence theory of a nonlinear periodic Sturm-Liouville system and its applications, Axioms, 11 (2022), 726. https://doi.org/10.3390/axioms11120726 doi: 10.3390/axioms11120726
    [46] K. H. Zhao, Global stability of a novel nonlinear diffusion online game addiction model with unsustainable control, AIMS Math., 7 (2022), 20752–20766. https://doi.org/10.3934/math.20221137 doi: 10.3934/math.20221137
    [47] K. H. Zhao, Probing the oscillatory behavior of internet game addiction via diffusion PDE model, Axioms, 11 (2022), 649. https://doi.org/10.3390/axioms11110649 doi: 10.3390/axioms11110649
    [48] K. H. Zhao, Attractor of a nonlinear hybrid reaction-diffusion model of neuroendocrine transdifferentiation of mankind prostate cancer cells with time-lags, AIMS Math., in press.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1121) PDF downloads(62) Cited by(19)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog