Research article Special Issues

An intuitionistic fuzzy entropy-based gained and lost dominance score decision-making method to select and assess sustainable supplier selection

  • Received: 08 December 2022 Revised: 21 February 2023 Accepted: 05 March 2023 Published: 21 March 2023
  • MSC : 90B50

  • Sustainable supplier selection (SSS) is recognized as a prime aim in supply chain because of its impression on profitability, adorability, and agility of the organization. This work introduces a multi-phase intuitionistic fuzzy preference-based model with which decision experts are authorized to choose the suitable supplier using the sustainability "triple bottom line (TBL)" attributes. To solve this issue, an intuitionistic fuzzy gained and lost dominance score (IF-GLDS) approach is proposed using the developed IF-entropy. To make better use of experts' knowledge and fully represent the uncertain information, the evaluations of SSS are characterized in the form of intuitionistic fuzzy set (IFS). To better distinguish fuzziness of IFSs, new entropy for assessing criteria weights is proposed with the help of an improved score function. By considering the developed entropy and improved score function, a weight-determining process for considered criterion is presented. A case study concerning the iron and steel industry in India for assessing and ranking the SSS is taken to demonstrate the practicability of the developed model. The efficacy of the developed model is certified with the comparison by diverse extant models.

    Citation: Ibrahim M. Hezam, Pratibha Rani, Arunodaya Raj Mishra, Ahmad Alshamrani. An intuitionistic fuzzy entropy-based gained and lost dominance score decision-making method to select and assess sustainable supplier selection[J]. AIMS Mathematics, 2023, 8(5): 12009-12039. doi: 10.3934/math.2023606

    Related Papers:

  • Sustainable supplier selection (SSS) is recognized as a prime aim in supply chain because of its impression on profitability, adorability, and agility of the organization. This work introduces a multi-phase intuitionistic fuzzy preference-based model with which decision experts are authorized to choose the suitable supplier using the sustainability "triple bottom line (TBL)" attributes. To solve this issue, an intuitionistic fuzzy gained and lost dominance score (IF-GLDS) approach is proposed using the developed IF-entropy. To make better use of experts' knowledge and fully represent the uncertain information, the evaluations of SSS are characterized in the form of intuitionistic fuzzy set (IFS). To better distinguish fuzziness of IFSs, new entropy for assessing criteria weights is proposed with the help of an improved score function. By considering the developed entropy and improved score function, a weight-determining process for considered criterion is presented. A case study concerning the iron and steel industry in India for assessing and ranking the SSS is taken to demonstrate the practicability of the developed model. The efficacy of the developed model is certified with the comparison by diverse extant models.



    加载中


    [1] A. Memari, A. Dargi, M. R. Akbari, J. R. Ahmad, A. R. Abdul Rahim, Sustainable supplier selection: A multi-criteria intuitionistic fuzzy TOPSIS method, J. Manuf. Syst., 50 (2019), 9–24. http://doi.org/10.1016/j.jmsy.2018.11.002 doi: 10.1016/j.jmsy.2018.11.002
    [2] S. Hendiani, M. Bagherpour, Development of sustainability index using Z-numbers: A new possibilistic hierarchical model in the context of Z-information, Environ. Dev. Sustain., 22 (2019), 6077–6109. http://doi.org/10.1007/s10668-019-00464-8 doi: 10.1007/s10668-019-00464-8
    [3] R. Alikhani, S. A. Torabi, N. Altay, Strategic supplier selection under sustainability and risk criteria, Int. J. Prod. Econ., 208 (2019), 69–82. http://doi.org/10.1016/j.ijpe.2018.11.018 doi: 10.1016/j.ijpe.2018.11.018
    [4] Z. Xu, J. D. Qin, J. Liu, L. Martínez, Sustainable supplier selection based on AHPSort Ⅱ in interval type-2 fuzzy environment, Inf. Sci., 483 (2019), 273–293. http://doi.org/10.1016/j.ins.2019.01.013 doi: 10.1016/j.ins.2019.01.013
    [5] A. Kumar, V. Jain, S. Kumar, A comprehensive environment friendly approach for supplier selection, Omega, 42 (2014), 109–123. http://doi.org/10.1016/j.omega.2013.04.003 doi: 10.1016/j.omega.2013.04.003
    [6] C. X. Yu, Y. F. Shao, K. Wang, L. P. Zhang, A group decision making sustainable supplier selection approach using extended TOPSIS under interval-valued Pythagorean fuzzy environment, Expert Syst. Appl., 121 (2019), 1–17. http://doi.org/10.1016/j.eswa.2018.12.010 doi: 10.1016/j.eswa.2018.12.010
    [7] X. G. Xu, H. Shi, L. J. Zhang, H. C. Liu, Green supplier evaluation and selection with an extended MABAC method under the heterogeneous information environment, Sustainability, 11 (2019), 6616. https://doi.org/10.3390/su11236616 doi: 10.3390/su11236616
    [8] J. Rezaei, Best-worst multi-criteria decision-making method, Omega, 53 (2015), 49–57. http://doi.org/10.1016/j.omega.2014.11.009 doi: 10.1016/j.omega.2014.11.009
    [9] M. Keshavarz-Ghorabaee, M. Amiri, E. K. Zavadskas, Z. Turskis, J. Antucheviciene, Determination of objective weights using a new method based on the removal effects of criteria (MEREC), Symmetry, 13 (2021), 525. https://doi.org/10.3390/sym13040525 doi: 10.3390/sym13040525
    [10] H. C. Liao, Z. S. Xu, E. Herrera-Viedma, F. Herrera, Hesitant fuzzy linguistic term set and its application in decision making: A state-of-the art survey, Int. J. Fuzzy Syst., 20 (2018), 2084–2110. https://doi.org/10.1007/s40815-017-0432-9 doi: 10.1007/s40815-017-0432-9
    [11] S. Opricovic, G. H. Tzeng, Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS, Eur. J. Oper. Res., 156 (2004), 445–455. https://doi.org/10.1016/S0377-2217(03)00020-1 doi: 10.1016/S0377-2217(03)00020-1
    [12] X. L. Wu, H. C. Liao, Z. S. Xu, A. Hafezalkotob, F. Herrera, Probabilistic linguistic MULTIMOORA: A multi-attributes decision making method based on the probabilistic linguistic expectation function and the improved Borda rule, IEEE Trans. Fuzzy Syst., 26 (2018), 3688–3702. http://doi.org/10.1109/TFUZZ.2018.2843330 doi: 10.1109/TFUZZ.2018.2843330
    [13] X. Wu, H. C. Liao, A consensus-based probabilistic linguistic gained and lost dominance score method, Eur. J. Oper. Res., 272 (2019), 1017–1027. https://doi.org/10.1016/j.ejor.2018.07.044 doi: 10.1016/j.ejor.2018.07.044
    [14] A. R. Mishra, Intuitionistic fuzzy information measures with application in rating of township development, Iran. J. Fuzzy Syst., 13 (2016), 49–70.
    [15] A. R. Mishra, P. Rani, D. Jain, Information measures based TOPSIS method for multicriteria decision making problem in intuitionistic fuzzy environment, Iran. J. Fuzzy Syst., 14 (2017), 41–63.
    [16] A. R. Mishra, P. Rani, Shapley divergence measures with VIKOR method for multi-attribute decision making problems, Neural Comput. Appl., 31 (2019), 1299–1316. https://doi.org/10.1007/s00521-017-3101-x doi: 10.1007/s00521-017-3101-x
    [17] M. Behzadian, R. B. Kazemzadeh, A. Albadvi, M. Aghdasi, PROMETHEE: A comprehensive literature review on methodologies and applications, Eur. J. Oper. Res., 200 (2010), 198–215. https://doi.org/10.1016/j.ejor.2009.01.021 doi: 10.1016/j.ejor.2009.01.021
    [18] Z. G. Fu, X. L. Wu, H. C. Liao, F. Herrera, Underground mining method selection with the hesitant fuzzy linguistic gained and lost dominance score method, IEEE Access, 6 (2018), 66442–66458.
    [19] H. Liao, J. Yu, X. Wu, A. Al-Barakati, A. Altalhi, F. Herrera, Life satisfaction evaluation in earthquake-hit area by the probabilistic linguistic GLDS method integrated with the logarithm-multiplicative analytic hierarchy process, Int. J. Disaster Risk Reduct., 38 (2019), 101190. https://doi.org/10.1016/j.ijdrr.2019.101190 doi: 10.1016/j.ijdrr.2019.101190
    [20] R. Fang, H. C. Liao, J. B. Yang, D. L. Xu, Generalised probabilistic linguistic evidential reasoning approach for multi-criteria decision-making under uncertainty, J. Oper. Res. Soc., 72 (2019), 130–144. https://doi.org/10.1080/01605682.2019.1654415 doi: 10.1080/01605682.2019.1654415
    [21] H. C. Liao, H. R. Zhang, C. Zhang, X. L. Wu, A. Mardani, A. Al-Barakati, A q-rung orthopair fuzzy GLDS method for investment evaluation of BE angel capital in China, Technol. Econ. Dev. Econ., 26 (2020), 103–134. https://doi.org/10.3846/tede.2020.11260 doi: 10.3846/tede.2020.11260
    [22] L. Liu, J. Wu, G. W. Wei, C. Wei, J. Wang, Y. Wei, Entropy-based GLDS method for social capital selection of a PPP project with q-rung orthopair fuzzy information, Entropy, 22 (2020), 4014. https://doi.org/10.3390/e22040414 doi: 10.3390/e22040414
    [23] Z. Q. Liao, H. C. Liao, A. Al-Barakati, A Choquet integral-based GLDS method for green supplier selection with hesitant fuzzy information, Proceedings of the Thirteenth International Conference on Management Science and Engineering Management, 2020,273–282.
    [24] Y. Ming, L. Luo, X. L. Wu, H. C. Liao, B. Lev, L. Jiang, Managing patient satisfaction in a blood-collection room by the probabilistic linguistic gained and lost dominance score method integrated with the best-worst method, Comput. Ind. Eng., 145 (2020), 106547. https://doi.org/10.1016/j.cie.2020.106547 doi: 10.1016/j.cie.2020.106547
    [25] X. D. Liang, X. L. Wu, H. C. Liao, A gained and lost dominance score Ⅱ method for modelling group uncertainty: Case study of site selection of electric vehicle charging stations, J. Clean. Prod., 262 (2020), 121239. https://doi.org/10.1016/j.jclepro.2020.121239 doi: 10.1016/j.jclepro.2020.121239
    [26] J. P. Fan, F. Yan, M. Q. Wu, GLDS method for multiple attribute group decision making under 2-tuple linguistic neutrosophic environment, J. Intell. Fuzzy Syst., 40 (2021), 11523–11538.
    [27] X. D. Wang, X. J. Gou, Z. S. Xu, A continuous interval-valued double hierarchy linguistic GLDS method and its application in performance evaluation of bus companies, Appl. Intell., 52 (2022), 4511–4526. https://doi.org/10.1007/s10489-021-02581-2 doi: 10.1007/s10489-021-02581-2
    [28] T. Zhai, D. Q. Wang, Q. Zhang, P. Saeidi, A. R. Mishra, Assessment of the agriculture supply chain risks for investments of agricultural small and medium-sized enterprises (SMEs) using the decision support model, Econ. Res.-Ekon. Istraz., In press. https://doi.org/10.1080/1331677X.2022.2126991.
    [29] A. R. Mishra, S. M. Chen, P. Rani, Multicriteria decision making based on novel score function of Fermatean fuzzy numbers, the CRITIC method, and the GLDS method, Inf. Sci., 623 (2023), 915–931.
    [30] M. Nilashi, P. F. Rupani, M. M. Rupani, H. Kamyab, W. Shao, H. Ahmadi, et al., Measuring sustainability through ecological sustainability and human sustainability: A machine learning approach, J. Clean. Prod., 240 (2019), 118162. http://doi.org/10.1016/j.jclepro.2019.118162 doi: 10.1016/j.jclepro.2019.118162
    [31] S. Asadi, S. O. Pourhashemi, M. Nilashi, R. Abdullah, S. Samad, E. Yadegaridehkordi, et al., Investigating influence of green innovation on sustainability performance: A case on Malaysian hotel industry, J. Clean. Prod., 258 (2020), 120860. http://doi.org/10.1016/j.jclepro.2020.120860 doi: 10.1016/j.jclepro.2020.120860
    [32] G. Noci, Designing "green" vendor rating systems for the assessment of a supplier's environmental performance, Eur. J. Purch. Supply Manag., 3 (1997), 103–114. http://doi.org/10.1016/S0969-7012(96)00021-4 doi: 10.1016/S0969-7012(96)00021-4
    [33] H. Mobli, N. Banaeian, B. Fahimnia, M. Omid, I. E. Nielsen, Green supplier selection using fuzzy group decision making methods: A case study from the agri-food industry, Comput. Oper. Res., 89 (2018), 337–347. http://doi.org/10.1016/j.cor.2016.02.015 doi: 10.1016/j.cor.2016.02.015
    [34] A. R. Mishra, P. Rani, K. R. Pardasani, A. Mardani, A novel hesitant fuzzy WASPAS method for assessment of green supplier problem based on exponential information measures, J. Clean. Prod., 238 (2019), 117901. https://doi.org/10.1016/j.jclepro.2019.117901 doi: 10.1016/j.jclepro.2019.117901
    [35] S. Hendiani, H. C. Liao, R. X. Ren, B. Lev, A likelihood-based multi-criteria sustainable supplier selection approach with complex preference information, Inf. Sci., 536 (2020), 135–155.
    [36] K. Zimmer, K. Fröhling, F. Schultmann, Sustainable supplier management-A review of models supporting sustainable supplier selection, monitoring and development, Int. J. Prod. Res., 54 (2016), 1412–1442. http://doi.org/10.1080/00207543.2015.1079340 doi: 10.1080/00207543.2015.1079340
    [37] P. Meksavang, H. Shi, S. M. Lin, H. C. Liu, An extended picture fuzzy VIKOR approach for sustainable supplier management and its application in the beef industry, Symmetry, 11 (2019), 468.
    [38] Z. M. Lu, X. K. Sun, Y. X. Wang, C. B. Xu, Green supplier selection in straw biomass industry based on cloud model and possibility degree, J. Clean. Prod., 209 (2019), 995–1005.
    [39] Ž. Stevic, D. Pamucar, A. Puška, P. Chatterjee, Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to Compromise solution (MARCOS), Comput. Ind. Eng., 140 (2020), 106231.
    [40] J. J. Peng, C. Tian, W. Y. Zhang, S. Zhang, J. Q. Wang, An integrated multi-criteria decision-making framework for sustainable supplier selection under picture fuzzy environment, Technol. Econ. Dev. Econ., 26 (2020), 573–598. https://doi.org/10.3846/tede.2020.12110 doi: 10.3846/tede.2020.12110
    [41] R. Kumari, A. R. Mishra, Multi-criteria COPRAS method based on parametric measures for intuitionistic fuzzy sets: Application of green supplier selection, Iran. J. Sci. Technol. Trans. Electr. Eng., 44 (2020), 1645–1662. https://doi.org/10.1007/s40998-020-00312-w doi: 10.1007/s40998-020-00312-w
    [42] P. Rani, A. R. Mishra, R. Krishankumar, A. Mardani, F. Cavallaro, K. S. Ravichandran, et al., Hesitant fuzzy SWARA-complex proportional assessment approach for sustainable supplier selection (HF-SWARA-COPRAS), Symmetry, 12 (2020), 1152. https://doi.org/10.3390/sym12071152 doi: 10.3390/sym12071152
    [43] A. R. Mishra, P. Rani, R. Krishankumar, E. K. Zavadskas, F. Cavallaro, K. S. Ravichandran, A hesitant fuzzy combined compromise solution framework-based on discrimination measure for ranking sustainable third-party reverse logistic providers, Sustainability, 13 (2021), 2064. https://doi.org/10.3390/su13042064 doi: 10.3390/su13042064
    [44] A. R. Mishra, P. Rani, Assessment of sustainable third party reverse logistic provider using the single-valued neutrosophic Combined Compromise Solution framework, Clean. Responsible Consumption, 2 (2021), 100011. https://doi.org/10.1016/j.clrc.2021.100011 doi: 10.1016/j.clrc.2021.100011
    [45] L. J. Chen, D. T. Duan, A. R. Mishra, M. Alrasheedi, Sustainable third-party reverse logistics provider selection to promote circular economy using new uncertain interval-valued intuitionistic fuzzy-projection model, J. Enterp. Inf. Manag., 35 (2022), 955–987. https://doi.org/10.1108/JEIM-02-2021-0066 doi: 10.1108/JEIM-02-2021-0066
    [46] M. Alrasheedi, A. Mardani, A. R. Mishra, P. Rani, N. Loganathan, An extended framework to evaluate sustainable suppliers in manufacturing companies using a new Pythagorean fuzzy entropy-SWARA-WASPAS decision-making approach, J. Enterp. Inf. Manag., 35 (2022), 333–357. https://doi.org/10.1108/JEIM-07-2020-0263 doi: 10.1108/JEIM-07-2020-0263
    [47] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353.
    [48] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [49] A. R. Mishra, G. Sisodia, K. R. Pardasani, K. Sharma, Multicriteria IT personnel selection on intuitionistic fuzzy information measures and ARAS methodology, Iran. J. Fuzzy Syst., 17 (2020), 55–68. https://doi.org/10.22111/ijfs.2020.5406 doi: 10.22111/ijfs.2020.5406
    [50] A. R. Mishra, D. Jain, D. S. Hooda, Exponential intuitionistic fuzzy information measure with assessment of service quality, Int. J. Fuzzy Syst., 19 (2017), 788–798.
    [51] L. A. Zadeh, Probability measures of fuzzy events, J. Math. Anal. Appl., 23 (1968), 421–427.
    [52] E. Szmidt, J. Kacprzyk, Entropy for intuitionistic fuzzy sets, Fuzzy Sets Syst., 118 (2001), 467–477.
    [53] H. Bustince, P. Burillo, Vague sets are intuitionistic fuzzy sets, Fuzzy Sets Syst., 79 (1996), 403–405.
    [54] M. D. Ansari, A. R. Mishra, F. T. Ansari, New divergence and entropy measures for intuitionistic fuzzy sets on edge detection, Int. J. Fuzzy Syst., 20 (2018), 474–487.
    [55] I. K. Vlachos, G. D. Sergiadis, Intuitionistic fuzzy information-applications to pattern recognition, Pattern Recognit. Lett., 28 (2007), 197–206.
    [56] W. L. Hung, M. S. Yang, Fuzzy entropy on intuitionistic fuzzy sets, Int. J. Intell. Syst., 21 (2006), 443–451.
    [57] C. P. Wei, Z. H. Gao, T. T. Guo, An intuitionistic fuzzy entropy measure based on the trigonometric function, Control Decis., 27 (2012), 571–574.
    [58] P. Rani, A. R. Mishra, Single-valued neutrosophic SWARA-VIKOR framework for performance assessment of eco-industrial thermal power plants, ICSES Trans. Neural Fuzzy Comput., 3 (2020), 335.
    [59] A. R. Mishra, A. Mardani, P. Rani, E. K. Zavadskas, A novel EDAS approach on intuitionistic fuzzy set for assessment of health-care waste disposal technology using new parametric divergence measures, J. Clean. Prod., 272 (2020), 122807. https://doi.org/10.1016/j.jclepro.2020.122807 doi: 10.1016/j.jclepro.2020.122807
    [60] A. R. Mishra, A. Mardani, P. Rani, H. Kamyab, M. Alrasheedi, A new intuitionistic fuzzy combinative distance-based assessment framework to assess low-carbon sustainable suppliers in the maritime sector, Energy, 237 (2021), 121500. https://doi.org/10.1016/j.energy.2021.121500 doi: 10.1016/j.energy.2021.121500
    [61] B. Yan, Y. Rong, L. Y. Yu, Y. T. Huang, A hybrid intuitionistic fuzzy group decision framework and its application in urban rail transit system selection, Mathematics, 10 (2022), 2133. https://doi.org/10.3390/math10122133 doi: 10.3390/math10122133
    [62] M. Rasoulzadeh, S. A. Edalatpanah, M. Fallah, S. E. Najafi, A multi-objective approach based on Markowitz and DEA cross-efficiency models for the intuitionistic fuzzy portfolio selection problem, Decis. Mak. Appl. Manag. Eng., 5 (2022), 241–259. https://doi.org/10.31181/dmame0324062022e doi: 10.31181/dmame0324062022e
    [63] J. M. Zhan, H. Masood Malik, M. Akram, Novel decision-making algorithms based on intuitionistic fuzzy rough environment, Int. J. Mach. Learn. Cybern., 10 (2019), 1459–1485.
    [64] M. Akram, G. Ali, J. C. R. Alcantud, New decision-making hybrid model: Intuitionistic fuzzy N-soft rough sets, Soft Comput., 23 (2019), 9853–9868
    [65] M. Akram, X. D. Peng, A. Sattar, A new decision-making model using complex intuitionistic fuzzy Hamacher aggregation operators, Soft Comput., 25 (2021), 7059–7086.
    [66] F. Feng, Y. J. Zheng, B. Z. Sun, M. Akram, Novel score functions of generalized orthopair fuzzy membership grades with application to multiple attribute decision making, Granul. Comput., 7 (2022), 95–111.
    [67] M. Akram, U. Ali, G. Santos-García, Z. Niaz, 2-tuple linguistic Fermatean fuzzy MAGDM based on the WASPAS method for selection of solid waste disposal location, Math. Biosci. Eng., 20 (2023), 3811–3837.
    [68] D. K. Tripathi, S. K. Nigam, A. R. Mishra, A. R. Shah, A novel intuitionistic fuzzy distance measure-SWARA-COPRAS method for multi-criteria food waste treatment technology selection, Oper. Res. Eng. Sci.: Theory Appl., In press.
    [69] I. M. Hezam, A. R. Mishra, P. Rani, F. Cavallaro, A. Saha, J. Ali, et al., A hybrid intuitionistic fuzzy-MEREC-RS-DNMA method for assessing the alternative fuel vehicles with sustainability perspectives, Sustainability, 14 (2022), 5463. https://doi.org/10.3390/su14095463 doi: 10.3390/su14095463
    [70] M. Rahimi, P. Kumar, B. Moomivand, G. Yari, An intuitionistic fuzzy entropy approach for supplier selection, Complex Intell. Syst., 7 (2021), 1869–1876.
    [71] D. K. Tripathi, S. K. Nigam, P. Rani, A. R. Shah, New intuitionistic fuzzy parametric divergence measures and score function-based CoCoSo method for decision-making problems, Decis. Mak.: Appl. Manag. Eng., In press. https://doi.org/10.31181/dmame0318102022t
    [72] Z. S. Xu, Intuitionistic fuzzy aggregation operators, IEEE Trans. Fuzzy Syst., 15 (2007), 1179–1187.
    [73] D. S. Hooda, A. R. Mishra, On trigonometric fuzzy information measures, ARPN J. Sci. Technol., 5 (2015), 145–152.
    [74] Q. S. Zhang, S. Y. Jiang, A note on information entropy measures for vague sets and its applications, Inf. Sci., 178 (2008), 4184–4191.
    [75] S. K. De, R. Biswas, A. R. Roy, Some operations on intuitionistic fuzzy sets, Fuzzy Sets Syst., 114 (2000), 477–484.
    [76] A. R. Mishra, P. Rani, F. Cavallaro, I. M. Hezam, J. Lakshmi, An integrated intuitionistic fuzzy closeness coefficient-based OCRA method for sustainable urban transportation options selection, Axioms, 12 (2023), 144. https://doi.org/10.3390/axioms12020144 doi: 10.3390/axioms12020144
    [77] S. Aouadni, A. Rebai, Z. Turskis, The meaningful mixed data TOPSIS (TOPSIS-MMD) method and its application in supplier selection, Stud. Inf. Control, 26 (2017), 353–363.
    [78] D. K. Sen, S. Datta, S. S. Mahapatra, Sustainable supplier selection in intuitionistic fuzzy environment: A decision-making perspective, Benchmarking: Int. J., 25 (2018), 545–574. https://doi.org/10.1108/bij-11-2016-0172 doi: 10.1108/bij-11-2016-0172
    [79] H. Gitinavard, M. A. Shirazi, An extended intuitionistic fuzzy modified group complex proportional assessment approach, J. Ind. Syst. Eng., 11 (2018), 229–246.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1483) PDF downloads(94) Cited by(11)

Article outline

Figures and Tables

Figures(3)  /  Tables(14)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog