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Abstract: Sustainable supplier selection (SSS) is recognized as a prime aim in supply chain because 

of its impression on profitability, adorability, and agility of the organization. This work introduces a 

multi-phase intuitionistic fuzzy preference-based model with which decision experts are authorized 

to choose the suitable supplier using the sustainability “triple bottom line (TBL)” attributes. To solve 

this issue, an intuitionistic fuzzy gained and lost dominance score (IF-GLDS) approach is proposed 

using the developed IF-entropy. To make better use of experts’ knowledge and fully represent the 

uncertain information, the evaluations of SSS are characterized in the form of intuitionistic fuzzy set 

(IFS). To better distinguish fuzziness of IFSs, new entropy for assessing criteria weights is proposed 

with the help of an improved score function. By considering the developed entropy and improved 

score function, a weight-determining process for considered criterion is presented. A case study 

concerning the iron and steel industry in India for assessing and ranking the SSS is taken to 

demonstrate the practicability of the developed model. The efficacy of the developed model is 

certified with the comparison by diverse extant models. 
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1. Introduction  

Owing to the direct impacts on profitability, flexibility and affordability, a “sustainable supplier 

selection (SSS)” is distinguished as a vital concerns that enterprises unquestionably encounter. The 

inflexible government guidelines concerning “sustainable development (SD)” force the enterprises to 

bearing their business with the sustainability perspective taking three facets/pillars, comprising the 

“environmental, economic and social (EES)” [1,2]. In spite of the desire for executing the SDs, the 

aims of enterprise and legislation may struggle in handling the SSS problem. Henceforth, various 

studies have focused on the procedure for selecting supplier to propose unified models with both 

“multi-criteria decision-making (MCDM)” and soft computing approaches. Meanwhile, the 

assessment of suitable weight values for sustainability “triple bottom line (TBL)” attributes still 

challenges scholars whereas there are abundant procedures explained to obtain preferences [1,3,4].  

The procedure of supplier selection is finding, assessing, and accordingly selecting the 

appropriate suppliers [5] to show the most perilous character in the region of the “supply chain (SC)” 

under the enterprise schemes. In the meantime, the SSS states to choosing the appropriate supplier 

over the sustainability TBL standards to observe supplier’s social, economic, and environmental 

performance [6]. In recent years, growing awareness of sustainability has encouraged both experts 

and scholars to tackle a SSS problem within the soft computing discipline [1,7]. In order to the need 

in different enterprises, numerous MCDM tools were proposed to support the decision experts (DEs) 

and scholars in taking the appropriate choice by finding weights. As a notion, the “best-worst method 

(BWM)”, given by Rezaei [8], and the “method using the removal effects of criteria (MEREC)”, 

discussed by Keshavarz-Ghorabaee et al. [9], have been presented as a reliable tools by which DEs 

can employ less input information associating to further models.  

Eliciting all the details aforesaid and the wide-ranging literature (discussed in Section 2), 

several challenging issues can be recognized; (1) Though there are stunning works on SSS, most of 

them utilize the fuzzy decision-making models that comprise complex computations procedure in 

practice. These intricacies decline the need of SC executives to implement those models in realistic 

problems. (2) Diverse extant models are exposed in circumstances where there is a requirement to 

add/eliminate various supplier options. (3) Most extant models expected that the criteria weights are 

given randomly, which create the MCDM procedure poor convincing. Based on these issues, there is 

still scope for a more precise and flexible model that is accomplished of treating an SSS problem 

with an MCDM procedure. This paper aims to achieve the following outcomes: 

A new intuitionistic fuzzy gained and lost dominance score (IF-GLDS) framework is presented, 

which is more reasonable and in line with realistic results. 

To compute the significance degree of criteria, new procedure is developed based on new 

inverse trigonometric entropy and generalized improved score function for IFSs to choose the best 

supplier with more precisely.  

A basic model is applied for summarizing the sustainability TBL attributes from the prolonged 
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literature of SSS which primarily focuses on the environmental and social pillars. 

The developed framework is implemented to solve the SSS of iron and steel industries in India. 

Also, a comparison is made of proposed framework with IF-TOPSIS and IF-COPRAS methods to 

validate the results. 

2. Literature review  

Here, we review the literature on SSS approaches, IFSs and GLDS method to find the extant 

gaps and elucidate the need of utilizing the developed model. It is worth mentioning that we attempt 

to review the recent studies of multi-attribute SSSs as there are various studies about the SSS, IFSs 

and MCDM. 

2.1. The GLDS approach 

The ranking models are very crucial in handling the MCDM problems. Mainly, these models 

fall into following groups: utility degree-based models, reference point-based models and outranking 

models [10]. In utility degree-based models, diverse “aggregation operators (AOs)” are utilized 

to obtain the criterion ratings with associated criteria weights to find the final degrees of 

options [11–13]. The reference point-based models are broadly used to treat the MCDM issues 

under IFSs, namely the IF-TOPSIS [14,15] and IF-VIKOR [16]. The key notion of these models is to 

obtain a compromise degree which is closest to the ideal solution. The other kind of MCDM models 

are outranking models which consider the pairwise comparisons of options over different 

criteria [13,17]. To evade these limitations, Wu and Liao [13] presented the “gained and lost 

dominance score (GLDS)” model and to find the “comprehensive score (CS)” of each alternative. 

Moreover, the GLDS model cannot be utilized to treat the MCDM problems with uncertain settings 

characterized by IFSs. Hence, motivated by the conventional GLDS model, we develop a new 

prioritization model under the IFSs. Some recent descriptions related to the GLDS method are 

presented in Table 1. 

2.2. Sustainable supplier selection  

The conception of sustainability has been raised because of increased adversarial impacts on 

social and environmental conditions [30,31]. The prime cause for these adverse impacts is emerging 

economic regions without observing other regions of the nation. Henceforth, to use sustainability in 

the nation, the administration should do balancing with the “economic, environmental, and social 

(EES)” pillars. The meanings of these pillars have been elucidated as follows. Economic: A 

sustainable financial structure must tackle the production and supply of materials during the given 

time. Environmental: A sustainable structure should endeavor to preserve prime assets. Alternatively, 

it should not inhibit with the steady process of the environment by over mining renewable and non-

renewable resources. Social: A sustainable structure should highlight the unbiased sharing of social 

rights, comprising health, education, and political solidity. Speciously, in the relationship with 

researches in a SSS setting, Noci [32] firstly discussed a supplier preference structure based on 

environmental perspective. Afterward, this notion was called as “green supplier selection (GSS)”, 

which has been discussed by several researchers [33–35]. For the government interest and 
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competitive issues, the GSS was shifted by SSS to contain social and economic performances as 

well [36]. 

Table 1. Extant studied on GLDS model. 

Author(s) Year Objective  Fuzzy environments Benchmark GDM 

Wu and Liao 

[13] 

2019 Optimal green enterprise 

selection 

Probabilistic linguistic 

term sets (PLTSs) 

Consensus-based GLDS 

method 

Yes 

Fu et al. [18] 2018 Underground mining procedure 

assessment problem 

Hesitant fuzzy linguistic 

term sets (HFLTSs) 

Score function-based 

GLDS method 

Yes 

Liao et al. [19]  2019 Life satisfaction assessment of 

earthquake-hit victims in 

Wenchuan, China 

PLTSs Logarithm-

multiplicative AHP-

based GLDS method 

No 

Fang et al. [20] 2019 Screening the high-risk 

population of lung cancer 

Generalized probabilistic 

linguistic term sets (G-

PLTSs) 

Evidential reasoning-

based GLDS method 

No 

Liao et al. [21] 2020 Investment assessment of BE 

angle capital China 

q-rung orthopair fuzzy 

sets (q-ROFSs) 

Distance measure-based 

GLDS method 

Yes 

Liu et al. [22] 2020 Social capital assessment of a 

public–private-partnership 

(PPP) project 

q-ROFSs Hamacher aggregation 

operator-based GLDS 

method 

Yes 

Liao et al. [23] 2020 Green supplier selection 

problem 

Hesitant fuzzy sets 

(HFSs) 

Choquet integral-based 

GLDS method 

Yes 

Ming et al. [24] 2020 Manage the patient satisfaction 

in the blood collection room 

PLTSs BWM-GLDS method Yes 

Liang et al. [25] 2020 Electric vehicle charging 

stations site assessment  

Continuous interval-

valued linguistic term 

sets (CIVLTSs) 

Normal distribution-

based GLDS method 

Yes 

Fan et al. [26] 2021 Selection of the best low-carbon 

logistics park site 

2-tuple linguistic 

neutrosophic numbers 

(2TLNNs) 

score function and 

distance measure-based 

GLDS 

Yes 

Wang et al. [27] 2022 Performance evaluation of 

Chengdu public transport group 

in Sichuan province 

Continuous interval-

valued double hierarchy 

linguistic term set 

(CIVDHL) 

CIVDHL-GLDS model  Yes 

Zhai et al. [28] 2022 Evaluation of the agriculture 

supply chain risks for 

investments of agricultural 

small and medium-sized 

enterprises (SMEs) 

Pythagorean fuzzy sets 

(PFSs) 

PF-MEREC-rank sum 

(RS)-GLDS 

Approach 

Yes 

Mishra et al. 

[29] 

2023 To evade the shortcomings of 

the existing MCDM methods in 

the FFNs 

Fermatean fuzzy 

numbers (FFNs) 

FF-CRITIC-GLDS 

model 

No 
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Additional, Xu et al. [7] assessed the GSS problem with the hybrid MCDM. Meksavang et 

al. [37] discussed the improved VIKOR tool to deal with the SSS problem on “picture fuzzy sets 

(PiFSs)”. Lu et al. [38] gave an integrated tool to select the suitable supplier in straw biomass power 

plant. Memari et al. [1] discussed TOPSIS model for evaluating the SSS on IFSs. Mishra et al. [34] 

initiated the “weighted aggregates sum product assessment (WASPAS)” tool on HFSs to assess the 

GSS problem. Stevic et al. [39] gave the MARCOS model to choose the suitable supplier in the 

healthcare enterprise. Peng et al. [40] discussed a model with the VIKOR tool on PiFSs to treat the 

SSS problem. Kumari and Mishra [41] proposed the COPRAS model with IF-parametric information 

measures to treat GSS problem. Rani et al. [42] proposed an integrated procedure with COPRAS 

approaches to choose the SSS on HFSs. Mishra et al. [43] discussed a model with the “combined 

compromise solution (CoCoSo)” on HFSs to find the suitable “sustainable third party reverses 

logistic provider (S3PRLP)”. Mishra and Rani [44] presented the CoCoSo and the “criteria 

importance through intercriteria correlation (CRITIC)” tools on “single-valued neutrosophic sets 

(SVNSs)” to find the best S3PRLP. Chen et al. [45] proposed a model with the projection model on 

interval-valued IFSs to evaluate S3PRLPs. Alrasheedi et al. [46] introduced a framework with the 

“stepwise weight assessment ratio analysis (SWARA)” and the WASPAS tools on PFSs to evaluate 

SSS over diverse sustainable criteria in the manufacturing enterprises.  

2.3. Intuitionistic fuzzy sets 

The concept of “fuzzy sets (FSs)”, established by Zadeh [47], has broadly acknowledged from 

“decision experts (DEs)” in MCDM process. For FSs, the “membership degree (MD)” of an object is 

described as the interval [0, 1] and the “non-membership degree (ND)” is solely its complement. But, 

realistically, this assumption does not meet with human perception. To avoid the limitations of FSs, 

Atanassov [48] prolonged the idea of FSs to IFSs by ranging the value into three functions: the MD, 

ND and the “hesitancy degree (HD)” in which the sum of the MD and ND is ≤  1 [49,50]. Hence, the 

IFSs have more prospective than FSs to treat the uncertain issues, so that, various scholars have 

concentrated on IFSs and their implementations.  

Motivated by the idea of information doctrine, the entropy enumerates the amount of 

uncertainty on FSs [51]. Afterwards, an axiomatic definition of entropy on IFSs was discussed by 

Szmidt and Kacprzyk [52]. Accordingly, diverse entropies on IFSs have been developed in [53–57] 

and utilized in various disciplines. Mishra and Rani [16] presented weighted divergence measure-

based VIKOR tool on IFSs to choose a “cloud service provider (CSP)”. Rani and Mishra [58] 

proposed integrated SWARA-VIKOR method for assessing decision-making problem under SVNSs. 

Mishra et al. [49] presented the “additive ratio assessment (ARAS)” tool to choose the best IT 

personnel. Mishra et al. [59] presented the parametric divergence measure-based EDAS tool to 

evaluate the “health-care waste disposal (HCWD)” procedure on IFSs. Mishra et al. [60] discussed 

“combinative distance-based assessment (CODAS)” tool on IFSs to evaluate “low-carbon 

sustainable suppliers (LCSS)”. Recently, Yan et al. [61] put forward a hybridized MCDM framework 

for urban rail transit system selection under intuitionistic fuzzy environment. A multi-objective tool 

with the Markowitz and DEA cross-efficiency approached has been developed to evaluate the 

portfolios on IFSs [62]. Zhan et al. [63] presented intuitionistic fuzzy rough graphs, and described 

some kinds of intuitionistic fuzzy rough graphs with applications in decision-making problems. 

Akram et al. [64] gave the intuitionistic fuzzy N-soft sets (IFNSSs) and intuitionistic fuzzy N-soft 
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rough sets (IFNSRSs)-based approaches to solve the realistic decision-making problems. Akram et 

al. [65] discussed the complex intuitionistic fuzzy Hamacher aggregation operator to treat the 

MCDM tool to find the best source for generation of electricity with the aid of the proposed 

operators. Feng et al. [66] proposed the regular Minkowski distance of q-rung orthopair membership 

grades which strengthens or extends some useful distance measures in the literature and developed a 

flexible model to support multiple attribute decision making with generalized orthopair fuzzy soft 

information. Akram et al. [67] introduced a WASPAS tool with a 2-tuple linguistic Fermatean fuzzy 

(2TLFF) set for the solid waste disposal location selection (SWDLS) problem by using the 

Hamacher aggregation operators. Tripathi et al. [68] proposed a distance measure for IFSs to 

introduce a modified intuitionistic fuzzy complex proportional assessment method. In the past few 

years, many theories and applications related to IFSs have been presented [69–71]. In this study, 

we present entropy using the inverse trigonometric function for the first time under IFSs. Further, the 

developed entropy and new score function are applied to find the criteria weight of SSS problem. 

3. New entropy for IFS 

This section discusses the notion of the MCDM procedure implemented in the paper. 

Particularly, we concentrate on the demonstration of the decision data by the IFSs. Then, we turn to 

develop new entropy for IFS.  

3.1. Preliminaries 

Initially, we show the concepts related to the IFSs. 

Definition 3.1 [48]. An IFS 𝑆 on a fixed set 𝑍 = {𝑧1, 𝑧2, . . . , 𝑧𝑛} is given by  

𝑆 = {⟨𝑧𝑖 , 𝜇𝑆(𝑧𝑖), 𝜈𝑆(𝑧𝑖)⟩: 𝑧𝑖 ∈ 𝑍}, (1) 

where 𝜇𝑆: 𝑍 → [0,1] and 𝜈𝑆: 𝑍 → [0,1]
 
show the MD and ND of 𝑧𝑖 to 𝑆 in 𝑍, with the condition 

0 ≤ 𝜇𝑆(𝑧𝑖) ≤ 1,0 ≤ 𝜈𝑆(𝑧𝑖) ≤ 1 and    0 ≤ 𝜇𝑆(𝑧𝑖) + 𝜈𝑆(𝑧𝑖) ≤ 1, ∀𝑧𝑖 ∈ 𝑍. (2) 

The intuitionistic index of 𝑧𝑖 ∈ 𝑍 to 𝑆 is defined by   

𝜋𝑆(𝑧𝑖) = 1 − 𝜇𝑆(𝑧𝑖) − 𝜈𝑆(𝑧𝑖) and 0 ≤ 𝜋𝑆(𝑧𝑖) ≤ 1. 

For simplicity, Xu [72] described the “intuitionistic fuzzy number (IFN)” 𝜁 = (𝜇𝜁 , 𝜈𝜁) which 

holds 𝜇𝜁 , 𝜈𝜁 ∈ [0,1] and 0 ≤ 𝜇𝜁 + 𝜈𝜁 ≤ 1. 

Definition 3.2 [72]: For a IFN𝜁 = (𝜇𝜁 , 𝜈𝜁).
 
Then 

𝕊(𝜁) = (𝜇𝜁 − 𝜈𝜁), ℎ(𝜁) = (𝜇𝜁 + 𝜈𝜁), (3) 

are called score and accuracy values, respectively. Here, 𝕊(𝜁) ∈ [−1,1] and ℎ(𝜁) ∈ [0,1]. 

Definition 3.3 [72]: Let 𝜁𝑗 = (𝜇𝜁𝑗
, 𝜈𝜁𝑗

) , 𝑗 = 1(1)𝑛 be IFNs. Then the weighted averaging and 

geometric operators on IFNs are given by  
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𝐼𝐹𝑊𝐴𝑤(𝜁1, 𝜁2, . . . , 𝜁𝑛) = ⊕

𝑗=1
𝑛

𝑤𝑗𝜁𝑗 = [1 − ∏ (1 − 𝜇𝜁𝑗
)

𝑤𝑗

𝑛

𝑗=1

, ∏ 𝜈𝜁𝑗

𝑤𝑗

𝑛

𝑗=1

], (4) 

𝐼𝐹𝑊𝐺𝑤(𝜁1, 𝜁2, . . . , 𝜁𝑛) = ⊗

𝑗=1
𝑛

𝑤𝑗𝜁𝑗 = [∏ 𝜇𝜁𝑗

𝑤𝑗

𝑛

𝑗=1

, 1 − ∏ (1 − 𝜈𝜁𝑗
)

𝑤𝑗

𝑛

𝑗=1

], 
(5) 

where 𝑤𝑗 = (𝑤1, 𝑤2, . . . , 𝑤𝑛)𝑇 is a weight value of 𝜁𝑗 , 𝑗 = 1,2, . . . , 𝑛, with 
1

1,
n

jj
w

=
= 𝑤𝑗 ∈ [0,1]. 

Definition 3.4 [71]: Let 𝜁 = (𝜇𝜁 , 𝜈𝜁) be IFNs. A generalized score value of an IFN is given by 

𝕊∗(𝜁) = 𝜇𝜁[1 + (𝛾1 + 𝛾2)(1 − 𝜇𝜁 − 𝜈𝜁)], (6) 

where 𝛾1 + 𝛾2 = 1, 𝛾1, 𝛾2 > 0
 
signifies the attitudinal performances of 𝕊∗(𝜁),  as it shows the 

weighted average of HD between the MD and ND. 

Definition 3.5 [52]: A mapping 𝑒: 𝐼𝐹𝑆(𝑍) → [0,1] is called IF-entropy, if it fulfills the postulates as 

(P1). 𝑒(𝑆) = 0, iff 𝑆 is a crisp set; 

(P2). 𝑒(𝑆) = 1, iff 𝜇𝑆(𝑧𝑖) = 𝜈𝑆(𝑧𝑖) for all 𝑧𝑖 ∈ 𝑍; 

(P3). 𝑒(𝑆) ≤ 𝑒(𝑇) if 𝑆 is less fuzzier than 𝑇, 𝑖. 𝑒. 

𝜇𝑆(𝑧𝑖) ≤ 𝜇𝑇(𝑧𝑖)
 
and 𝜈𝑆(𝑧𝑖) ≥ 𝜈𝑇(𝑧𝑖) for 𝜇𝑇(𝑧𝑖) ≤ 𝜈𝑇(𝑧𝑖) or 

𝜇𝑆(𝑧𝑖) ≥ 𝜇𝑇(𝑧𝑖) and 𝜈𝑆(𝑧𝑖) ≤ 𝜈𝑇(𝑧𝑖)
 
for 𝜇𝑇(𝑧𝑖) ≥ 𝜈𝑇(𝑧𝑖) for any 𝑧𝑖 ∈ 𝑍; 

(P4). 𝑒(𝑆) = 𝑒(𝑆𝑐). 

3.2. Proposed inverse tangent entropy for IFS 

Corresponding to Hooda and Mishra [73], the entropy for determining the fuzziness degree of 

an object on IFS called ‘IF-entropy’ is defined by 

Definition 3.6: Consider that 𝑆 ∈ 𝐼𝐹𝑆(𝑍), then the IF-entropy is given by 

𝑒(𝑆) =
2

𝑛(1 − 𝛼) 𝑙𝑛 2
∑ (𝑡𝑎𝑛−1 {(𝜇𝑆

𝛼(𝑧𝑖) + 𝜈𝑆
𝛼(𝑧𝑖))(𝜇𝑆(𝑧𝑖) + 𝜈𝑆(𝑧𝑖))

1−𝛼
+ 21−𝛼𝜋𝑆(𝑧𝑖)} −

𝜋

4
)

𝑛

𝑖=1

, (7) 

where 𝛼 > 0 and 𝛼 ≠ 1. 

Theorem 3.1: The mapping 𝒆(𝑺), given by Eq (7), is valid IF-entropy. 

Proof. The proof is same as the Theorem 4 in Ansari et al [54]. 

Particular and Limiting Cases 

• When 𝛼 → 1, then Eq (7) reduces to measures in Vlachos and Sergiadis [55] entropy. 

• It may be noticed that if an IFS is an ordinary FS, that is, for all𝑧𝑖 ∈ 𝑍, 𝜇𝑆(𝑧𝑖) = 1 − 𝜈𝑆(𝑧𝑖), 

then the IF-entropy of order-𝛼 changes to fuzzy entropy of order-𝛼 [73]. 

Next, we take some extant entropies as Bustince and Burillo [53] entropy 𝑒𝑏𝑏(𝑆), Szmidt and 

Kacprzyk [52] entropy 𝑒𝑠𝑘(𝑆),  Hung and Yang [56] entropies 𝑒ℎ𝑦
2 (𝑆)  and 𝑒𝑠(𝑆),  Vlachos and 
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Sergiadis [55] entropy 𝑒𝑣𝑠(𝑆), Zhang and Jiang [74] entropy 𝑒𝑧𝑗(𝑆), Wei et al. [57] entropy 𝑒𝑤(𝑆), 

Mishra et al [50] entropy 𝑒𝑚(𝑆)
 
and Ansari et al. [54] entropy𝑒𝑎(𝑆), which can be listed as  

𝑒𝑏𝑏(𝑆) =
1

𝑛
∑(1 − 𝜇𝑆(𝑧𝑖) − 𝜈𝑆(𝑧𝑖))

𝑛

𝑖=1

 

𝑒𝑠𝑘(𝑆) =
1

𝑛
∑ (

(1 − 𝜈𝑆(𝑧𝑖)) ∧ (1 − 𝜇𝑆(𝑧𝑖))

(1 − 𝜈𝑆(𝑧𝑖)) ∨ (1 − 𝜇𝑆(𝑧𝑖))
)

𝑛

𝑖=1

 

𝑒𝑧𝑗(𝑆) =
1

𝑛
∑ (

𝜇𝑆(𝑧𝑖) ∧ 𝜈𝑆(𝑧𝑖)

𝜇𝑆(𝑧𝑖) ∨ 𝜈𝑆(𝑧𝑖)
)

𝑛

𝑖=1

 

𝑒ℎ𝑐
2 (𝑆) =

1

𝑛
∑(1 − 𝜇𝑆

2(𝑧𝑖) − 𝜈𝑆
2(𝑧𝑖) − 𝜋𝑆

2(𝑧𝑖))

𝑛

𝑖=1

 

𝑒𝑠(𝑆) = −
1

𝑛
∑(𝜇𝑆(𝑧𝑖) 𝑙𝑛 𝜇𝑆 (𝑧𝑖) + 𝜈𝑆(𝑧𝑖) 𝑙𝑛 𝜈𝑆 (𝑧𝑖) + 𝜋𝑆(𝑧𝑖) 𝑙𝑛 𝜋𝑆 (𝑧𝑖))

𝑛

𝑖=1

 

𝑒𝑣𝑠(𝑆) = −
1

𝑛 𝑙𝑛 2
∑(𝜇𝑆(𝑧𝑖) 𝑙𝑛 𝜇𝑆 (𝑧𝑖) + 𝜈𝑆(𝑧𝑖) 𝑙𝑛 𝜈𝑆 (𝑧𝑖)

𝑛

𝑖=1

 

+(𝜇𝑆(𝑧𝑖) + 𝜈𝑆(𝑧𝑖)) 𝑙𝑛(𝜇𝑆(𝑧𝑖) + 𝜈𝑆(𝑧𝑖)) − 𝜋𝑆(𝑧𝑖) 𝑙𝑛 2) 

𝑒𝑤(𝑆) =
1

𝑛
∑ [{√2 𝑐𝑜𝑠 (

𝜇𝑆(𝑧𝑖) − 𝜈𝑆(𝑧𝑖)

4
) 𝜋 − 1} ×

1

√2 − 1
]

𝑛

𝑖=1

 

𝑒𝑚(𝑆)

=
1

𝑛√𝑒(√𝑒 − 1)
∑ [𝑒

𝑛

𝑖=1

− (
𝜇𝑆(𝑧𝑖) + 1 − 𝜈𝑆(𝑧𝑖)

2
) 𝑒

(
𝜇𝑆(𝑧𝑖)+1−𝜈𝑆(𝑧𝑖)

2 )
− (

𝜈𝑆(𝑧𝑖) + 1 − 𝜇𝑆(𝑧𝑖)

2
) 𝑒

(
𝜈𝑆(𝑧𝑖)+1−𝜇𝑆(𝑧𝑖)

2 )
] 

𝑒𝑎(𝑆) =
1

21−𝛼 − 1
[𝑒𝑥𝑝 {(𝛼 − 1) ∑(𝜇𝑆(𝑧𝑖)

𝑛

𝑖=1

𝑙𝑛 (
𝜇𝑆(𝑧𝑖)

𝜇𝑆(𝑧𝑖) + 𝜈𝑆(𝑧𝑖)
) 

+𝜈𝑆(𝑧𝑖) 𝑙𝑛 (
𝜈𝑆(𝑧𝑖)

𝜇𝑆(𝑧𝑖)+𝜈𝑆(𝑧𝑖)
) − 𝜋𝑆(𝑧𝑖) 𝑙𝑛 2)} − 1]. 

Example 3.1 [54,74]: Let 𝑆 ∈ 𝐼𝐹𝑆(𝑍).  For any positive real value 𝑛,  De et al. [75] introduced 

𝐼𝐹𝑆(𝑍)𝑆𝑛 as follow: 

𝑆𝑛 = {⟨𝑧𝑖 , [𝜇𝑆(𝑧𝑖)]𝑛, 1 − [1 − 𝜈𝑆(𝑧𝑖)]𝑛⟩: 𝑧𝑖 ∈ 𝑍}. 

We assume 𝑆 ∈ 𝐼𝐹𝑆(𝑍)
 given by 

𝑆 = {(6,0.1,0.8), (7,0.3,0.5), (8,0.5,0.4), (9,0.9,0), (10,1.0,0)}. 

By defining the classification of “linguistic terms (LTs)”, De et al. [75] obtained 𝑆 as “LARGE” 

on 𝑍. Therefore, using the 𝐼𝐹𝑆(𝑍)𝑆𝑛as  
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𝑆
1

2 defined as “More or less LARGE”, 

𝑆2 defined as “Very LARGE”, 

𝑆3 defined as “Quite very LARGE”, 

𝑆4 defined as “Very very LARGE”. 

Now, we use the abovementioned IFSs to compute the IF-entropies and outcomes are illustrated 

in Table 2. From mathematical logical pattern, it is significant that the IF-entropies of 

abovementioned IFSs have the following pattern:   

𝑒 (𝑆
1
2) ≥ 𝑒(𝑆) ≥ 𝑒(𝑆2) ≥ 𝑒(𝑆3) ≥ 𝑒(𝑆4). (8) 

Table 2. Results of developed IF-entropy with diverse extant entropies. 

Entropies 𝑆
1
2 𝑆 𝑆2 𝑆3 𝑆4 

𝑒𝑏𝑏(𝑆) 0.4090 0.5000 0.4900 0.4670 0.4670 

𝑒𝑠𝑘(𝑆) 0.3450 0.3740 0.1970 0.1310 0.1090 

𝑒ℎ𝑦
2 (𝑆) 0.3420 0.3440 0.2610 0.1990 0.1610 

𝑒𝑠(𝑆) 0.4330 0.4310 0.3270 0.2530 0.2080 

𝑒𝑣𝑠(𝑆) 0.5518 0.5217 03491 0.2354 0.1417 

𝑒𝑧𝑗(𝑆) 0.2851 0.3050 0.1042 0.0383 0.0161 

𝑒𝑤(𝑆) 0.4545 0.4377 0.3029 0.2159 0.1709 

𝑒𝑚(𝑆) 0.5522 0.5333 0.3758 0.2719 0.2149 

𝑒𝑎(𝑆) 0.4659 0.4356 0.2737 0.1775 0.1032 

𝑒(𝑆) 0.5732    0.5634     0.4587     0.3648     0.2970 

According to Table 2, the performances of 𝑒𝑠(𝑆), 𝑒𝑣𝑠(𝑆), 𝑒𝑤(𝑆), 𝑒𝑚(𝑆), 𝑒𝑎(𝑆) and 𝑒(𝑆) are 

good, but the performance of IF-entropies 𝑒𝑏𝑏(𝑆), 𝑒𝑠𝑘(𝑆), 𝑒ℎ𝑦
2 (𝑆) and 𝑒𝑧𝑗(𝑆) are poor, these entropies 

do not fulfill the necessary pattern in Eq (8). From Example 3.1, we can observe that the 

performance of 𝑒(𝑆), is better than diverse extant entropies.   

4. Proposed IF-GLDS method 

In the section, we present the IF-GLDS model to the IFSs environment, which has many 

remarkable merits to find the ranking of options.  

The fundamental idea of the GLDS model is to consider pairwise comparisons of options, so as 

to establish the dominance flows among options. Then, the “gained dominance score (GDS)” and 

“lost dominance score (LDS)” values are computed by the summation operator and the maximum 

operator, respectively. Furthermore, the “overall gained dominance score (OGDS)” and “overall lost 

dominance score (OLDS)” values of options are obtained with associated criteria weights. The final 

preference of options is derived by an aggregation operator, which considers both the subordinate 

ranks and the OGDS and OLDS simultaneously. This outranking method was based on the 

assumption that the optimal options should have the largest gained dominance flow and the smallest 

lost dominance flow. Under the intuitionistic fuzzy context, we need to define the dominance flow of 

alternatives, which signifies that an option is higher rank to the other one under a given criterion. 
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Figure 1. The flowchart of the IF-GLDS method for MCDM problems. 

Table 3. Performance rating of DEs, criteria and SSS [76]. 

LVs IFNs 

Extremely good (EG) (0.95,0.05) 

Very very good (VVG) (0.85,0.10) 

Very good (VG) (0.80,0.15) 

Good (G) (0.70,0.20) 

moderate good (MG) (0.60,0.30) 

Average (A) (0.50,0.40) 

Moderate bad (MB) (0.40,0.50) 

Bad (B) (0.30,0.60) 

Very bad (VB) (0.20,0.70) 

Very very bad (VVB) (0.10,0.80) 

Extremely bad (EB) (0.05,0.95) 

Step 1. Create the “linguistic decision matrix (LDM)” about a group of DEs 

Construct the LDM
 
for each DE over considered the criterion set then we convert the LDM into 

intuitionistic fuzzy decision matrix (IF-DM) 𝑌𝑘 = (𝑦𝑖𝑗
(𝑘)

)
𝑚×𝑛

 for each DE using Table 3 as follows:  

𝐶1 ⋯ 𝐶𝑛 

𝑌𝑘 = (𝑦𝑖𝑗
(𝑘)

)
𝑚×𝑛

=
𝐺1

⋮
𝐺𝑚

[
(𝜇11𝑘 , 𝜈11𝑘) ⋯ (𝜇1𝑛𝑘 , 𝜈1𝑛𝑘)

⋮ ⋱ ⋮
(𝜇𝑚1𝑘 , 𝜈𝑚1𝑘) ⋯ (𝜇𝑚𝑛𝑘 , 𝜈𝑚𝑛𝑘)

]

𝑚×𝑛

, 𝑘 = 1,2, . . . , ℓ, (9) 
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wherein 𝑦𝑖𝑗
(𝑘)

 
describes the IFN corresponding to the “linguistic value (LV)” given in Table 3 of an 

option 𝐺𝑖 
over criterion 𝑝𝑗 for 𝑘𝑡ℎexpert. 

Step 2. Calculate the weight of DEs 

To find the weight of DEs, let 𝜉 = (𝜇𝑘, 𝜈𝑘), 𝑘 = 1,2, . . . , ℓ be significance rating by DE based on 

their knowledge then numeric DE’s weight is obtained as  

𝜛𝑘 =
𝜇𝑘(2 − 𝜇𝑘 − 𝜈𝑘)

∑ [𝜇𝑘(2 − 𝜇𝑘 − 𝜈𝑘)]ℓ
𝑘=1

, 𝑘 = 1,2, . . . , ℓ. (10) 

Here, 𝜛𝑘 ≥ 0 and ∑ 𝜛𝑘 = 1ℓ
𝑘=1 . The number ℓ denotes the number of DEs, 𝑘 = 1,2, . . . , ℓ. 

Step 3. Make the “aggregated intuitionistic fuzzy decision-matrix (A-IF-DM) 

Let 𝑌𝑘 = (𝑦𝑖𝑗
𝑘 ) be the LDM of 𝑘𝑡ℎ DE into the “linguistic variables (LVs)” and then change to 

the IFN as 𝑦𝑖𝑗
𝑘 = (𝜇𝑖𝑗𝑘, 𝜈𝑖𝑗𝑘), 𝑘 = 1,2, . . . , ℓ . Then the A-IF-DM ℝ = (𝑦𝑖𝑗)

𝑚×𝑛
,  where 𝑦𝑖𝑗 =

(𝜇𝑖𝑗 , 𝜈𝑖𝑗), 𝑖 = 1,2, . . . , 𝑚, 𝑗 = 1,2, . . . , 𝑛, is computed as ℝ = ⊕

𝑘=1
ℓ

𝜛𝑘𝑦𝑖𝑗
𝑘  such that  

𝑦𝑖𝑗 = (𝜇𝑖𝑗 , 𝜈𝑖𝑗) = (1 − ∏(1 − 𝜇𝑖𝑗𝑘)
𝜛𝑘

, ∏(𝜈𝑖𝑗𝑘)
𝜛𝑘

ℓ

𝑘=1

ℓ

𝑘=1

). (11) 

Step 4. Evaluate the criteria weights 

Let 𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑛)𝑇  be a weight value of criterion with ∑ 𝑤𝑗 = 1𝑛
𝑗=1  and 𝑤𝑗 ∈ [0,1] . 

Now, we apply the IF-entropy and generalized score value-base model to find the criteria weight as 

𝑤𝑗 =
∑ (𝑒(𝑦𝑖𝑗) + 𝕊∗(𝑦𝑖𝑗))𝑚

𝑖=1

∑ (∑ (𝑒(𝑦𝑖𝑗) + 𝕊∗(𝑦𝑖𝑗))𝑚
𝑖=1 )𝑛

𝑗=1

, 𝑗 = 1,2, . . . . , 𝑛. (12) 

Step 5. Generate the normalized A-IF-DM 

To normalize the A-IF-DM ℝ = (𝑦𝑖𝑗)
𝑚×𝑛

, we consider the different types of criteria and obtain 

the normalized A-IF-DM ℝ̄ = (𝑦̄𝑖𝑗)
𝑚×𝑛 

as follows: 

𝑦̄𝑖𝑗 = {
𝑦𝑖𝑗 = (𝜇𝑖𝑗 , 𝜈𝑖𝑗),forbenefitcriterion

(𝑦𝑖𝑗)
𝑐

= (𝜈𝑖𝑗 , 𝜇𝑖𝑗),forcostcriterion
, (13) 

where (𝑦𝑖𝑗)
𝑐
 is the complementation of 𝑦𝑖𝑗 . 

Step 6: Construct the “dominance flows (DFs)” 

Let 𝑦𝑖𝑗 = (𝜇𝑖𝑗 , 𝜈𝑖𝑗)
 
and 𝑦𝑣𝑗 = (𝜇𝑣𝑗 , 𝜈𝑣𝑗) be two IFNs for two alternatives 𝐺𝑖  and 𝐺𝑣  under the 
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criterion 𝑝𝑗, respectively.  

The dominance flow of the alternative 𝐺𝑖 over 𝐺𝑣 with respect to the criterion 𝑝𝑗 is defined as 

𝐷𝐹𝑗(𝐺𝑖 , 𝐺𝑣) = {
𝕊∗(𝑦𝑖𝑗) − 𝕊∗(𝑦𝑣𝑗),if𝕊∗(𝑦𝑖𝑗) ≥ 𝕊∗(𝑦𝑣𝑗)

0,if𝕊∗(𝑦𝑖𝑗) < 𝕊∗(𝑦𝑣𝑗)
, (14) 

where 𝕊∗(𝑦𝑖𝑗) is the generalized score value for IFNs. 

We find the DF using the vector normalization as follows: 

𝐷𝐹𝑗
𝑁(𝐺𝑖 , 𝐺𝑣) =

𝐷𝐹𝑗(𝐺𝑖,𝐺𝑣)

√∑ ∑ [𝐷𝐹𝑗(𝐺𝑖,𝐺𝑣)]
2𝑚

𝑖=1
𝑚
𝑣=1

. 
(15) 

Step 7. Calculate the GDS of each option 

The “unicriterion GDS (UGDS)” of option 𝐺𝑖  outranking the other options 𝐺𝑣  (𝑣 =

1,2, . . . , 𝑚and𝑣 ≠ 𝑖) over criterion 𝑝𝑗 is estimated as  

𝑈𝐺𝐷𝑆𝑗(𝐺𝑖) = ∑ 𝐷𝐹𝑗
𝑁(𝐺𝑖 , 𝐺𝑣)𝑚

𝑣=1 . 
(16) 

The “overall gained dominance score (OGDS)” of option 𝐺𝑖 is determined by  

𝑂𝐺𝐷𝑆(𝐺𝑖) = ∑ 𝑤𝑗 ⋅ 𝑈𝐺𝐷𝑆𝑗(𝐺𝑖)𝑚
𝑣=1 . 

(17) 

Then, a subordinate preference set (SPS) 𝜌1 = {𝑟1(𝐺1), 𝑟1(𝐺2), . . . , 𝑟1(𝐺𝑚)}  is found in 

decreasing values of ( )iOGDS G (𝑖 = 1,2, . . . , 𝑚). 

Step 8. Calculate the LDS of each option 

To illustrate the amount that option 𝐺𝑖  does not always dominate 𝐺𝑣, the “unicriterion LDS 

(ULDS)” of option 𝐺𝑖 is calculated using the maximizing operator as 

𝑈𝐿𝐷𝑆𝑗(𝐺𝑖) = 𝑚𝑎𝑥
𝑣

(𝐷𝐹𝑗
𝑁(𝐺𝑣 , 𝐺𝑖)). (18) 

The “overall lost dominance score (OLDS)” of option 𝐺𝑖 is computed as  

𝑂𝐿𝐷𝑆(𝐺𝑖) = 𝑚𝑎𝑥
𝑗

(𝑤𝑗 ⋅ 𝐷𝐹𝑗
𝑁(𝐺𝑣, 𝐺𝑖)). (19) 

Then, a “subordinate preference rank set (SPS)” 𝜌2 = {𝑟2(𝐺1), 𝑟2(𝐺2), . . . , 𝑟2(𝐺𝑚)} is obtained 

in increasing values of 𝑂𝐿𝐷𝑆(𝐺𝑖) (𝑖 = 1,2, . . . , 𝑚). 

Step 9. Compute the “collective score (CS)” of each option 

First, Normalizing the OGDS and OLDS of each option using Eq (15) and obtain the 

𝑂𝐺𝐷𝑆𝑁(𝐺𝑖)  and𝑂𝐿𝐷𝑆𝑁(𝐺𝑖).  The final preference set 𝜌 = {𝑟(𝐺1), 𝑟(𝐺2), . . . , 𝑟(𝐺𝑚)}  is derived in 

decreasing values of 𝐶𝑆𝑖 , where 𝐶𝑆𝑖 indicates the collective score of alternative 𝐺𝑖 as 

𝐶𝑆𝑖 = 𝑂𝐺𝐷𝑆𝑁(𝐺𝑖) ⋅
𝑚 − 𝑟1(𝐺𝑖) + 1

(𝑚(𝑚 + 1)/2)
− 𝑂𝐿𝐷𝑆𝑁(𝐺𝑖) ⋅

𝑟2(𝐺𝑖)

(𝑚(𝑚 + 1)/2)
, 𝑖 = 1,2, . . . , 𝑚. (20) 

Step 10. End. 
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5. Implementation of case study 

In the section, we implement a realistic case study to reveal the confirmation and application of 

the developed IF-GLDS model. 

 

Figure 2. A systematic model of the proposed framework. 

India is a developing nation with an emerging economy in which the “iron and steel (I-S)” 

industry contributes considerably. Indian I-S industry has been key producers of rails, plates, wires, 

rods, wheel, and catering to essential for global consumers. Being a large scale enterprise convoluted 

in steel production, the enterprise conveys out several actions such as excavation of minerals from 

mines, GHG emission, and wastes disposal in water and land which influences all pillars of 

sustainability. Thus, to have proficient and useful SSC in the industry, sustainable suppliers need to 

be assessed and designated. Hence, there is a requirement for recognizing and cataloguing of the 

sustainability attributes for SSS for I-S industry in India. To achieve this objective and choose the 

suitable supplier, eight suppliers chosen and are being considered according to the performance of 

sustainable TBL criteria. Figure 2 shows the descriptions of criteria which are taken for obtaining 

weights based on the entropy and generalized score value-method. To recognize the key criteria to 
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assess the SSS, in this paper, a survey with the DE’s interview and literature review has been made. 

In first phase, we recognize 25 criteria to evaluate and select the best sustainable suppliers from the 

previous literature [1,7,37–46,77,78] and presented in Table 4. In second phase, the considered 

criteria are categorized into three key pillars of sustainability, comprising social, economic and 

environmental and depicted in Figure 2. In the following phase of the developed model, a team of 

DEs from these companies are made to conduct the whole process. 

Table 4. Assessment of TBL criteria for SSS. 

Goal Criteria  Sub-criteria Cost/benefit 

S
el

ec
t 

th
e 

o
p

ti
m

a
l 

su
st

a
in

a
b

le
 s

u
p

p
li

er
 s

el
ec

ti
o

n
 

Environmental  Environment-related certificates (p1) Cost  

Internal control process (p2) Cost 

Environmental protection plans (p3) Cost 

Environmental protection policies (p4) Cost 

Staff environmental training (p5) Cost 

Air emissions (p6) Cost 

Wastewater (p7) Cost 

Use of harmful and environmental-friendly materials (p8) Cost  

Green packaging (p9) Benefit 

Recycling capability (p10) Benefit 

Social  Occupational health and safety management (p11) Benefit 

Standardized health and safety conditions (p12) Benefit 

Health and safety incidents (p13) Cost  

Health and safety practices (p14) Benefit 

Job stability (p15) Benefit 

Job opportunities (p16) Benefit 

Child labor (p17) Cost  

Flexible working arrangements (p18) Benefit 

Employee welfare (p19) Benefit 

The interests and rights of employee (p20) Benefit 

Economic  Product price (p21) Cost  

Fright cost (p22) Cost 

Technical capability (p23) Benefit 

Reputation (p24) Benefit 

Delivery schedule (p25) Cost 

Next, Table 3 reveals the LVs and corresponding IFNs for the DEs, criteria weights and the SSS 

option. Table 5 evaluates the weight of DE using Eq (10) and Table 3. Table 6 shows the LDM for 

DE's ratings as (e1, e2, e3) in form of LVs. 

Table 5. DEs’ weights for SSS. 

DEs e1 e2 e3 

LVs Very good (0.80, 0.15) Good (0.70, 0.20) Average (0.50, 0.40) 

Weight 0.4000 0.3500 0.2500 



12023 

AIMS Mathematics Volume 8, Issue 5, 12009–12039. 

Table 6. The LDM for SSS. 

 G1 G2 G3 G4 G5 G6 G7 G8 

p1
 

(B, VB,VB) (B,MB,VB) (G, MG,A) (MG,MG,A) (A,A,MB) (VG,G,MG) (MG,A,MG) (B,B,B) 

p2
 

(MB,B,A) (VB,VB,VB

) 

(MG,A,MG) (VG,MG,VG

) 

(VG,G,G) (A,MB,MG) (A,A,A) (VB,B,MB) 

p3
 

(G,VG,G) (VG,VG,VG

) 

(A,MG,A) (MG,G,A) (A,A,MG) (B,MB,MB) (VB,B,A) (G,G,MG) 

p4
 

(A,MG,MG

) 

(G,G,G) (MG,MG,A) (B,MB,VB) (MB,A,MB) (MG,G,MG) (VG,G,MG) (VG,VG,G) 

p5
 

(MG,G,A) (VG,G,VG) (MB,MB,A) (VB,MB,B) (MG,MG,G) (VG,G,VG) (G,MG,MG) (G,G,MB) 

p6
 

(B, B,VB) (B,VB,VB) (G, VG,A) (B,MG,A) (MG,A,MB) (VG,B,A) (B,A,MG) (A,B,VB) 

p7
 

(MG,B,A) (VB,B,VB) (MG,A,VG) (VVG,G,A) (VVG,A,G) (A,MB,G) (A,VB,B) (VB,B,A) 

p8
 

(VG,VG,M

G) 

(G,VG,VG) (A,MG,VB) (MG,B,A) (A,MB,MG) (B,A,VVB) (VB,MB,A) (G,B,MB) 

p9
 

(A,G,MG) (VVG,G,G) (MG,G,A) (VB,MB,VB

) 

(MB,B,MB) (MB,G,A) (VB,G,A) (VG,G,B) 

p10
 

(VVG,G,A) (MG,G,VG) (MB,MB,A) (VVB,MB,B

) 

(MG,G,VG) (G,A,VVG) (G,MB,A) (G,VG,A) 

p11
 

(B, B,VB) (B,B,VB) (G, A,B) (MB,B,A) (A,B,MB) (B,G,MB) (G,A,MB) (B,VB,A) 

p12
 

(B,B,A) (VB,MB,VB

) 

(VG,A,MB) (MB,MG,V

G) 

(VG,VG,G) (A,MB,G) (A,A,VVB) (A,B,MG) 

p13
 

(VG,G,VG) (G,VG,VG) (MG,MB,A) (MG,VG,B) (A,MB,MG) (B,MG,B) (B,VVB,A) (VB,A,MG) 

p14
 

(A,G,MG) (G,G,VVG) (VG,MG,A) (VVB,VB,B

) 

(MB,A,MG) (A,MB,MG) (G,VG,VVG

) 

(VG,G,G) 

p15
 

(G,MG,A) (VG,G,MG) (MB,G,A) (VB,VVB,B

) 

(MG,VB,G) (A,G,MG) (A,MG,VG) (G,VG,B) 

p16
 

(B, VB,B) (B,VB,VB) (G, VG,A) (MB,MG,A) (G.A,MB) (A,G,VG) (A,A,MB) (B,A,B) 

p17
 

(MB,A,A) (MB,MB,V

B) 

(MB,A,MG) (VG,MG,VB

) 

(G,G,MG) (A,B,VG) (A,MB,MB) (MB,B,VB) 

p18
 

(VG,G,VV

G) 

(VG,G,VG) (A,B,A) (VG,B,A) (A,B,MG) (VG,B,MB) (B,MB,A) (G,B,MB) 

p19
 

(A,G,MG) (G,VVG,G) (MB,G,A) (B,MB,MB) (VB,A,MB) (G,A,MB) (G,G,MB) (VB,G,B) 

p20
 

(A,G,A) (VG,A,VG) (MB,VVB,A

) 

(MB,VB,B) (VG,A,B) (B,G,MG) (G,VB,G) (G,B,MB) 

p21
 

(B, A,VB) (B,MB,MB) (G, G,B) (MB,MG,B) (VB,G,MB) (G,VVG,A) (VB,A,G) (B,A,MB) 

p22
 

(B,VB,A) (VB,VB,A) (MG,VB,G) (VB,MB,VG

) 

(B,VB,G) (B,MG,G) (VB,A,A) (VB,A,B) 

p23
 

(VG,A,G) (VG,MG,G) (A,MB,B) (MB,VVG,A

) 

(VG,VB,MG

) 

(A,MG,MB) (VB,MB,A) (B,A,MG) 

p24
 

(A,G,MG) (G,A,G) (MG,MB,B) (VVB,MB,B

) 

(VB,A,VB) (A,MG,G) (B,VB,MG) (G,MG,B) 

p25
 

(VVG,G,A) (MG,G,VG) (MG,B,A) (VB,B,VVB

) 

(A,VVG,G) (B,A,A) (G,MB,VG) (G,VVG,B) 
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Further, using Eq (11) and Table 6, we have created the A-IF-DM in Table 7. From Table 7 and 

Eq (12), we find the criteria weight using the developed inverse tangent parametric entropy and 

generalized score value as follow: 

𝑤𝑗= (0.0389, 0.0386, 0.0406, 0.0411, 0.0410, 0.0387, 0.0391, 0.0403, 0.0384, 0.0408, 0.0382, 

0.0399, 0.0403, 0.0399, 0.0407, 0.0389, 0.0403, 0.0411, 0.0409, 0.0402, 0.0401, 0.0405, 0.0412, 

0.0396, 0.0408). 

Since all the criteria are not same types (as categorizes cost-type and benefit-type), therefore, 

normalized A-IF-DM is given in Table 8 using Eq (13). 

Using Eq (6), the normalized A-IF-DM ℝ̄ = (𝑦̄𝑖𝑗)
𝑚×𝑛

, is changed into the generalized score-

matrix 𝕊∗(𝑦𝑖𝑗) as displayed in Table 9. Using the score-matrix, the 𝑂𝐺𝐷𝑆(𝐺𝑖) is estimated by 

Eqs (15)–(17), while the 𝑂𝐿𝐷𝑆(𝐺𝑖) is obtained by Eqs (15), (18), and (19), which are displayed in 

Tables 10–12. Also, we can get two SPSs 𝜌1 and 𝜌2. From Eq (20), the collective scores 𝐶𝑆𝑖 of each 

option is derived as CS1 = -0.0206, CS2 = -0.0189, CS3 = 0.0074, CS4 = -0.0162, CS5 = 0.0014, 

CS6 = 0.0065, CS7 = 0.0091 and CS8 = 0.0280 and mentioned in Table 12. Therefore, 𝐺8 ≻ 𝐺7 ≻

𝐺3 ≻ 𝐺6 ≻ 𝐺5 ≻ 𝐺4 ≻ 𝐺2 ≻ 𝐺1. That is to say, the best sustainable supplier alternative is G8.  

Table 7. The A-IF-DM for SSS. 

 G1 G2 G3 G4 G5 G6 G7 G8 

p1
 

(0.242, 

0.658)  

(0.314, 

0.585)  

(0.623, 

0.274)  

(0.577, 

0.322)  

(0.477, 

0.423)  

(0.726, 

0.197)  

(0.568, 

0.332)  

(0.300, 

0.600) 

p2
 

(0.395, 

0.504)  

(0.200, 

0.700)  

(0.568, 

0.332)  

(0.745, 

0.191)  

(0.745, 

0.178)  

(0.496, 

0.402)  

(0.500, 

0.400)  

(0.290, 

0.610) 

p3
 

(0.740, 

0.181)  

(0.800, 

0.150)  

(0.538, 

0.362) 

(0.618, 

0.280)  

(0.527, 

0.372)  

(0.362, 

0.538)  

(0.321, 

0.577) 

(0.678, 

0.221) 

p4
 

(0.563, 

0.337)  

(0.700, 

0.200)  

(0.577, 

0.322)  

(0.314, 

0.585)  

(0.437, 

0.462)  

(0.638, 

0.260)  

(0.726, 

0.197)  

(0.779, 

0.161) 

p5
 

(0.618, 

0.280)  

(0.770, 

0.166)  

(0.427, 

0.473)  

(0.300, 

0.599)  

(0.628, 

0.271)  

(0.770, 

0.166)  

(0.643, 

0.255)  

(0.643, 

0.251)   

p6
 

(0.276, 

0.624)  

(0.242, 

0.658)  

(0.704, 

0.215)  

(0.471, 

0.425)  

(0.521, 

0.377)  

(0.610, 

0.311)  

(0.459, 

0.438)  

(0.367, 

0.530) 

p7
 

(0.486, 

0.411)  

(0.237, 

0.663)  

(0.636, 

0.279)  

(0.742, 

0.180) 

(0.728, 

0.193)  

(0.531, 

0.364)  

(0.359, 

0.538)  

(0.321, 

0.577) 

p8
 

(0.762, 

0.178)  

(0.765, 

0.168)  

(0.480, 

0.416)  

(0.486, 

0.411)  

(0.496, 

0.402)  

(0.337, 

0.559)  

(0.357, 

0.541)  

(0.520, 

0.369) 

p9
 

(0.326, 

0.572)  

(0.289, 

0.609)  

(0.526, 

0.365)  

(0.434, 

0.455)  

(0.407, 

0.481)  

(0.534, 

0.358)  

(0.397, 

0.500)  

(0.344, 

0.554) 

p10
 

(0.742, 

0.180)  

(0.696, 

0.219)  

(0.427, 

0.473)  

(0.267, 

0.632)  

(0.696, 

0.219)  

(0.698, 

0.214)  

(0.566, 

0.328)  

(0.704, 

0.215) 

p11
 

(0.276, 

0.624)  

(0.276, 

0.624)  

(0.557, 

0.335)  

(0.395, 

0.504)  

(0.411, 

0.487)  

(0.499, 

0.390)  

(0.573, 

0.321)  

(0.326, 

0.572) 

       Continued on next page 
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 G1 G2 G3 G4 G5 G6 G7 G8 

p12
 

(0.356, 

0.542)  

(0.277, 

0.622)  

(0.637, 

0.286)  

(0.604, 

0.309)  

(0.779, 

0.161)  

(0.531, 

0.364)  

(0.421, 

0.476)  

(0.468, 

0.429) 

p13
 

(0.770, 

0.166)  

(0.765, 

0.168)  

(0.513, 

0.385)  

(0.639, 

0.280)  

(0.496, 

0.402)  

(0.425, 

0.471)  

(0.297, 

0.600)  

(0.429, 

0.466) 

p14
 

(0.605, 

0.292)  

(0.748, 

0.168)  

(0.679, 

0.244)  

(0.189, 

0.710)  

(0.491, 

0.407)  

(0.496, 

0.402)  

(0.781, 

0.152)  

(0.745, 

0.178)   

p15
 

(0.623, 

0.274)  

(0.726, 

0.197)  

(0.550, 

0.343)  

(0.194, 

0.706)  

(0.526, 

0.365)  

(0.605, 

0.292)  

(0.632, 

0.283)  

(0.678, 

0.238) 

p16
 

(0.267, 

0.633)  

(0.242, 

0.658)  

(0.704, 

0.215)  

(0.503, 

0.395)  

(0.573, 

0.321)  

(0.667, 

0.246)  

(0.477, 

0.423)  

(0.378, 

0.521)   

p17
 

(0.462, 

0.437)  

(0.355, 

0.544)  

(0.491, 

0.407)  

(0.639, 

0.281)  

(0.678, 

0.221)  

(0.553, 

0.361)  

(0.442, 

0.457)  

(0.320, 

0.580) 

p18
 

(0.786, 

0.150)  

(0.770, 

0.166)  

(0.438, 

0.461)  

(0.610, 

0.311)  

(0.468, 

0.429)  

(0.592, 

0.329)  

(0.390, 

0.509)  

(0.520, 

0.369) 

p19
 

(0.605, 

0.292)  

(0.765, 

0.157)  

(0.550, 

0.343)  

(0.362, 

0.538)  

(0.368, 

0.529)  

(0.573, 

0.321)  

(0.643, 

0.251)  

(0.451, 

0.434) 

p20
 

(0.742, 

0.180)  

(0.696, 

0.219)  

(0.486, 

0.411)  

(0.214, 

0.686)  

(0.711, 

0.207)  

(0.428, 

0.470)  

(0.654, 

0.256)  

(0.709, 

0.207) 

p21
 

(0.357, 

0.541)  

(0.362, 

0.538)  

(0.629, 

0.263)  

(0.459, 

0.438)  

(0.472, 

0.415)  

(0.733, 

0.187)  

(0.469, 

0.421)  

(0.401, 

0.497) 

p22
 

(0.605, 

0.292)  

(0.773, 

0.152)  

(0.618, 

0.280)  

(0.277, 

0.622)  

(0.367, 

0.533)  

(0.550, 

0.343)  

(0.495, 

0.393)  

(0.685, 

0.235) 

p23
 

(0.695, 

0.227)  

(0.718, 

0.205)  

(0.420, 

0.479)  

(0.647, 

0.269)  

(0.614, 

0.306)  

(0.516, 

0.382)  

(0.357, 

0.541)  

(0.459, 

0.438) 

p24
 

(0.605, 

0.292)  

(0.641, 

0.255)  

(0.470, 

0.427)  

(0.267, 

0.632)  

(0.321, 

0.575)  

(0.593, 

0.304)  

(0.362, 

0.533)  

(0.576, 

0.315) 

p25
 

(0.582, 

0.314)  

(0.724, 

0.211) 

(0.339, 

0.557)  

(0.310, 

0.589)  

(0.623, 

0.299)  

(0.548, 

0.343)  

(0.577, 

0.310)  

(0.520, 

0.369)   

Table 8. The normalized A-IF-DM for SSS. 

 G1 G2 G3 G4 G5 G6 G7 G8 

p1
 

(0.658, 

0.242)  

(0.585, 

0.314)  

(0.274, 

0.623)  

(0.322, 

0.577)  

(0.423, 

0.477)  

(0.197, 

0.726)  

(0.332, 

0.568)  

(0.600, 

0.300) 

p2
 

(0.504, 

0.395)  

(0.700, 

0.200)  

(0.332, 

0.568)  

(0.191, 

0.745)  

(0.178, 

0.745)  

(0.402, 

0.496)  

(0.400, 

0.500)  

(0.610, 

0.290) 

p3
 

(0.181, 

0.740)  

(0.150, 

0.800)  

(0.362, 

0.538) 

(0.280, 

0.618)  

(0.372, 

0.527)  

(0.538, 

0.362)  

(0.577, 

0.321) 

(0.221, 

0.678) 

p4
 

(0.337, 

0.563)  

(0.200, 

0.700)  

(0.322, 

0.577)  

(0.585, 

0.314)  

(0.462, 

0.437)  

(0.260, 

0.638)  

(0.197, 

0.726)  

(0.161, 

0.779) 

p5
 

(0.280, 

0.618)  

(0.166, 

0.770)  

(0.473, 

0.427)  

(0.599, 

0.300)  

(0.271, 

0.628)  

(0.166, 

0.770)  

(0.255, 

0.643)  

(0.251, 

0.643)   

p6
 

(0.624, 

0.276)  

(0.658, 

0.242)  

(0.215, 

0.704)  

(0.425, 

0.471)  

(0.377, 

0.521)  

(0.311, 

0.610)  

(0.438, 

0.459)  

(0.530, 

0.367) 

       Continued on next page 
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 G1 G2 G3 G4 G5 G6 G7 G8 

p7
 

(0.411, 

0.486)  

(0.663, 

0.237)  

(0.279, 

0.636)  

(0.180, 

0.742) 

(0.193, 

0.728)  

(0.364, 

0.531)  

(0.538, 

0.359)  

(0.577, 

0.321) 

p8
 

(0.178, 

0.762)  

(0.168, 

0.765)  

(0.416, 

0.480)  

(0.411, 

0.486)  

(0.402, 

0.496)  

(0.559, 

0.337)  

(0.541, 

0.357)  

(0.369, 

0.520) 

p9
 

(0.326, 

0.572)  

(0.289, 

0.609)  

(0.526, 

0.365)  

(0.434, 

0.455)  

(0.407, 

0.481)  

(0.534, 

0.358)  

(0.397, 

0.500)  

(0.344, 

0.554) 

p10
 

(0.742, 

0.180)  

(0.696, 

0.219)  

(0.427, 

0.473)  

(0.267, 

0.632)  

(0.696, 

0.219)  

(0.698, 

0.214)  

(0.566, 

0.328)  

(0.704, 

0.215) 

p11
 

(0.276, 

0.624)  

(0.276, 

0.624)  

(0.557, 

0.335)  

(0.395, 

0.504)  

(0.411, 

0.487)  

(0.499, 

0.390)  

(0.573, 

0.321)  

(0.326, 

0.572) 

p12
 

(0.356, 

0.542)  

(0.277, 

0.622)  

(0.637, 

0.286)  

(0.604, 

0.309)  

(0.779, 

0.161)  

(0.531, 

0.364)  

(0.421, 

0.476)  

(0.468, 

0.429) 

p13
 

(0.166, 

0.770)  

(0.168, 

0.765)  

(0.385, 

0.513)  

(0.280, 

0.639)  

(0.402, 

0.496)  

(0.471, 

0.425)  

(0.600, 

0.297)  

(0.466, 

0.429) 

p14
 

(0.605, 

0.292)  

(0.748, 

0.168)  

(0.679, 

0.244)  

(0.189, 

0.710)  

(0.491, 

0.407)  

(0.496, 

0.402)  

(0.781, 

0.152)  

(0.745, 

0.178)   

p15
 

(0.623, 

0.274)  

(0.726, 

0.197)  

(0.550, 

0.343)  

(0.194, 

0.706)  

(0.526, 

0.365)  

(0.605, 

0.292)  

(0.632, 

0.283)  

(0.678, 

0.238) 

p16
 

(0.267, 

0.633)  

(0.242, 

0.658)  

(0.704, 

0.215)  

(0.503, 

0.395)  

(0.573, 

0.321)  

(0.667, 

0.246)  

(0.477, 

0.423)  

(0.378, 

0.521)   

p17
 

(0.437, 

0.462)  

(0.544, 

0.355)  

(0.407, 

0.491)  

(0.281, 

0.639)  

(0.221, 

0.678)  

(0.361, 

0.553)  

(0.457, 

0.442)  

(0.580, 

0.320) 

p18
 

(0.786, 

0.150)  

(0.770, 

0.166)  

(0.438, 

0.461)  

(0.610, 

0.311)  

(0.468, 

0.429)  

(0.592, 

0.329)  

(0.390, 

0.509)  

(0.520, 

0.369) 

p19
 

(0.605, 

0.292)  

(0.765, 

0.157)  

(0.550, 

0.343)  

(0.362, 

0.538)  

(0.368, 

0.529)  

(0.573, 

0.321)  

(0.643, 

0.251)  

(0.451, 

0.434) 

p20
 

(0.742, 

0.180)  

(0.696, 

0.219)  

(0.486, 

0.411)  

(0.214, 

0.686)  

(0.711, 

0.207)  

(0.428, 

0.470)  

(0.654, 

0.256)  

(0.709, 

0.207) 

p21
 

(0.541, 

0.357)  

(0.538, 

0.362)  

(0.263, 

0.629)  

(0.438, 

0.459)  

(0.415, 

0.472)  

(0.187, 

0.733)  

(0.421, 

0.469)  

(0.497, 

0.401) 

p22
 

(0.292, 

0.605)  

(0.152, 

0.773)  

(0.280, 

0.618)  

(0.622, 

0.277)  

(0.533, 

0.367)  

(0.343, 

0.550)  

(0.393, 

0.495)  

(0.235, 

0.685) 

p23
 

(0.695, 

0.227)  

(0.718, 

0.205)  

(0.420, 

0.479)  

(0.647, 

0.269)  

(0.614, 

0.306)  

(0.516, 

0.382)  

(0.357, 

0.541)  

(0.459, 

0.438) 

p24
 

(0.605, 

0.292)  

(0.641, 

0.255)  

(0.470, 

0.427)  

(0.267, 

0.632)  

(0.321, 

0.575)  

(0.593, 

0.304)  

(0.362, 

0.533)  

(0.576, 

0.315) 

p25
 

(0.314, 

0.582)  

(0.211, 

0.724) 

(0.557, 

0.339)  

(0.589, 

0.310)  

(0.299, 

0.623)  

(0.343, 

0.548)  

(0.310, 

0.577)  

(0.369, 

0.520)   
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Table 9. Score values of normalized A-IF-DM for SSS. 

 G1 G2 G3 G4 G5 G6 G7 G8 

p1
 

0.724   0.644   0.302   0.355   0.465   0.212   0.365   0.660 

p2
 

0.555   0.770   0.365   0.203   0.192   0.443   0.440   0.671 

p3
 

0.195   0.157   0.398   0.309   0.410   0.592   0.636   0.243 

p4
 

0.371   0.220   0.355   0.644   0.509   0.287   0.212   0.171 

p5
 

0.309   0.177   0.520   0.659   0.298   0.177   0.281   0.278 

p6
 

0.686   0.724   0.232   0.469   0.415   0.336   0.483   0.585   

p7
 

0.453   0.729   0.303   0.194   0.208   0.402   0.593   0.636 

p8
 

0.189   0.179   0.459   0.453   0.443   0.617   0.596   0.410 

p9
 

0.359   0.318   0.583   0.482   0.452   0.592   0.437   0.379 

p10
 

0.800   0.755   0.470   0.294   0.755   0.759   0.626   0.761 

p11
 

0.304   0.304   0.617   0.435   0.453   0.554   0.634   0.359 

p12
 

0.393   0.305   0.686   0.656   0.826   0.587   0.464   0.516 

p13
 

0.177   0.179  0.424   0.303   0.443   0.520   0.662   0.515 

p14
 

0.667   0.811   0.731   0.208   0.541   0.546   0.833   0.802 

p15
 

0.687   0.782   0.609   0.213   0.583   0.667   0.686   0.735 

p16
 

0.293   0.266   0.761   0.554   0.634   0.725   0.525   0.416 

p17
 

0.481   0.599   0.449   0.303   0.243   0.392   0.503   0.638 

p18
 

0.836   0.819   0.482   0.658   0.516   0.639   0.430   0.578 

p19
 

0.667   0.825   0.609   0.398   0.406   0.634   0.711   0.503 

p20
 

0.800   0.755   0.536   0.235   0.769   0.471   0.713   0.769 

p21
 

0.596   0.592   0.291   0.483   0.462   0.202   0.467   0.548    

p22
 

0.322   0.163   0.309   0.685   0.586   0.380   0.437   0.254 

p23
 

0.749   0.773   0.463   0.701   0.663   0.568   0.393   0.506 

p24
 

0.667   0.708   0.518   0.294   0.354   0.654   0.400   0.639 

p25
 

0.347   0.225   0.615   0.648   0.322   0.380   0.345   0.410 

Table 10. The GDSs of each option for SSS. 

 G1 G2 G3 G4 G5 G6 G7 G8 

p1
 

1.6217 1.0759 0.0637 0.1387 0.4428 0.0000 0.1599 1.1437 

p2
 

0.8509 1.6354 0.2173 0.0071 0.0000 0.3710 0.3633 1.1859 

p3
 

0.0288 0.0000 0.5207 0.2513 0.5661 1.3925 1.6271 0.1014 

p4
 

0.5033 0.0470 0.4249 1.9665 1.1867 0.2129 0.0338 0.0000 

p5
 

0.2660 0.0000 1.2735 2.0482 0.2261 0.0000 0.1680 0.1608 

p6
 

1.2663 1.4773 0.0000 0.3363 0.2079 0.0825 0.3808 0.7855 

p7
 

0.4601 1.5103 0.1331 0.0000 0.0091 0.3270 0.9171 1.1951 

p8
 

0.0082 0.0000 0.5112 0.4865 0.4536 1.3090 1.1880 0.3721 

p9
 

0.0549 0.0000 1.4334 0.6222 0.4216 1.5176 0.3413 0.1084 

p10
 

0.8729 0.6472 0.1302 0.0000 0.6472 0.6622 0.3610 0.6710 

p11
 

0.0000 0.0000 1.3020 0.3403 0.4128 0.9213 1.4219 0.1108 

p12
 

0.0695 0.0000 0.9438 0.8016 1.7179 0.5291 0.1817 0.3048 

p13
 

0.0000 0.0016 0.4768 0.1945 0.5360 0.8393 1.6124 0.7600 

p14
 

0.4505 0.8748 0.6138 0.0000 0.2125 0.2189 0.9730 0.8403 

       Continued on next page 
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 G1 G2 G3 G4 G5 G6 G7 G8 

p15
 

0.5130 0.9805 0.3198 0.0000 0.2804 0.4517 0.5093 0.7313 

p16
 

0.0194 0.0000 1.3780 0.5156 0.8036 1.1967 0.4321 0.1966 

p17
 

0.5284 1.2034 0.4024 0.0590 0.0000 0.2342 0.6365 1.4719 

p18
 

1.5496 1.4430 0.0466 0.5777 0.1075 0.4926 0.0000 0.2741 

p19
 

0.7022 1.6520 0.4651 0.0000 0.0072 0.5546 0.9383 0.1807 

p20
 

0.9030 0.7114 0.2444 0.0000 0.7581 0.1576 0.5991 0.7581 

p21
 

1.0719 1.0452 0.0846 0.4851 0.4099 0.0000 0.4242 0.7941 

p22
 

0.1857 0.0000 0.1554 1.8131 1.2771 0.3652 0.5856 0.0704 

p23
 

1.1431 1.3033 0.0667 0.8688 0.6878 0.3258 0.0000 0.1486 

p24
 

0.9487 1.1870 0.4199 0.0000 0.0498 0.8840 0.1262 0.8218 

p25
 

0.1361 0.0000 1.5177 1.7289 0.0886 0.2248 0.1306 0.3938 

Table 11. The LDSs of each option for SSS. 

 G1 G2 G3 G4 G5 G6 G7 G8 

p1
 

0.3622 0.3056 0.0637 0.1012 0.1790 0.0000 0.1082 0.3169 

p2
 

0.2283 0.3750 0.1122 0.0071 0.0000 0.1628 0.1609 0.3107 

p3
 

0.0288 0.0000 0.1824 0.1150 0.1915 0.3292 0.3625 0.0651 

p4
 

0.1650 0.0404 0.1518 0.3903 0.2789 0.0957 0.0338 0.0000 

p5
 

0.1051 0.0000 0.2730 0.3837 0.0963 0.0000 0.0828 0.0804 

p6
 

0.3602 0.3904 0.0000 0.1880 0.1452 0.0825 0.1991 0.2801 

p7
 

0.1690 0.3492 0.0711 0.0000 0.0091 0.1358 0.2604 0.2885 

p8
 

0.0082 0.0000 0.2305 0.2256 0.2173 0.3606 0.3433 0.1902 

p9
 

0.0549 0.0000 0.3547 0.2195 0.1793 0.3667 0.1593 0.0816 

p10
 

0.3743 0.3410 0.1302 0.0000 0.3410 0.3440 0.2456 0.3455 

p11
 

0.0000 0.0000 0.3152 0.1319 0.1500 0.2517 0.3323 0.0554 

p12
 

0.0695 0.0000 0.3009 0.2772 0.4115 0.2227 0.1256 0.1666 

p13
 

0.0000 0.0016 0.1921 0.0980 0.2069 0.2668 0.3773 0.2629 

p14
 

0.2929 0.3848 0.3337 0.0000 0.2125 0.2157 0.3988 0.3790 

p15
 

0.3592 0.4312 0.3001 0.0000 0.2804 0.3440 0.3584 0.3956 

p16
 

0.0194 0.0000 0.3564 0.2074 0.2650 0.3305 0.1865 0.1080 

p17
 

0.2342 0.3503 0.2027 0.0590 0.0000 0.1466 0.2558 0.3886 

p18
 

0.3637 0.3484 0.0466 0.2042 0.0770 0.1872 0.0000 0.1326 

p19
 

0.2406 0.3819 0.1887 0.0000 0.0072 0.2111 0.2800 0.0939 

p20
 

0.3774 0.3473 0.2010 0.0000 0.3567 0.1576 0.3193 0.3567 

p21
 

0.3747 0.3709 0.0846 0.2673 0.2473 0.0000 0.2520 0.3291 

p22
 

0.1230 0.0000 0.1129 0.4038 0.3272 0.1679 0.2119 0.0704 

p23
 

0.3391 0.3620 0.0667 0.2934 0.2572 0.1667 0.0000 0.1076 

p24
 

0.3096 0.3437 0.1859 0.0000 0.0498 0.2988 0.0880 0.2864 

p25
 

0.1115 0.0000 0.3564 0.3865 0.0886 0.1416 0.1096 0.1690 

 

  



12029 

AIMS Mathematics Volume 8, Issue 5, 12009–12039. 

Table 12. The collective scores of each option for SSS. 

 OGDS 𝜌1 OGDSN OLDS 𝜌2 OLDSN 𝐶𝑆𝑖 Final Ranking 

G1 0.5668 7 0.3633 0.2034 4 0.3669 -0.0206 8 

G2 0.6710 8 0.4301 0.2051 3 0.3700 -0.0189 7 

G3 0.5235 2 0.3356 0.1923 6 0.3469 0.0074 3 

G4 0.5354 4 0.3432 0.1593 8 0.2874 -0.0162 6 

G5 0.4619 1 0.2961 0.1835 7 0.3310 0.0014 5 

G6 0.5285 3 0.3388 0.1993 5 0.3596 0.0065 4 

G7 0.5630 6 0.3609 0.2097 2 0.3783 0.0091 2 

G8 0.5405 5 0.3465 0.2101 1 0.3790 0.0280 1 

6. Comparison and Discussion 

To elucidate the efficacy and irreplaceable merits of the IF-GLDS model, the IF-TOPSIS [14] 

and IF-COPRAS [79] tools are utilized to treat the abovementioned MCDM problem.  

6.1. IF-TOPSIS model  

Steps 1–4. Similar to aforesaid model  

Step 5. Determine the “ideal solution (IS)” and “anti-ideal solution (A-IS)” 

Let 𝜙+ and 𝜙− symbolize the IF-IS and IF-A-IS and are estimated as  

𝜙+ = {
𝑚𝑎𝑥

𝑖
𝜇𝑖𝑗 , 𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 − type𝑝𝑗

𝑚𝑖𝑛
𝑖

𝜈𝑖𝑗 , 𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 − type𝑝𝑗
𝑓𝑜𝑟 𝑗 = 1,2, . . . , 𝑛, (21) 

𝜙− = {
𝑚𝑖𝑛

𝑖
𝜇𝑖𝑗 , 𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 − type𝑝𝑗

𝑚𝑎𝑥
𝑖

𝜈𝑖𝑗 , 𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 − type𝑝𝑗
𝑓𝑜𝑟 𝑗 = 1,2, . . . , 𝑛. (22) 

Step 6. Compute the degree of similarities from IF-IS and IFA-IS 

Here, we find weighted similarity𝑆(𝐺𝑖 , 𝜙+) among the options 𝐺𝑖 and the IF-IS 𝜙+. 

𝑆(𝐺𝑖 , 𝜙+) = 1 − ∑ 𝑤𝑗 𝑠𝑖𝑛 [{
|𝜇𝜍𝑖𝑗

− 𝜇𝜙+| + |𝜈𝜍𝑖𝑗
− 𝜈𝜙+|

4 (1 + |𝜋𝜍𝑖𝑗
− 𝜋𝜙+|)

} 𝜋]

𝑛

𝑖=1

, (23) 

and the weighted similarity 𝑆(𝐺𝑖 , 𝜙−) among the options 𝐺𝑖 and the IFA-IS 𝜙− is given as follows: 

𝑆(𝐺𝑖 , 𝜙−) = 1 − ∑ 𝑤𝑗 𝑠𝑖𝑛 [{
|𝜇𝑦𝑖𝑗

− 𝜇𝜙−| + |𝜈𝑦𝑖𝑗
− 𝜈𝜙−|

4 (1 + |𝜋𝑦𝑖𝑗
− 𝜋𝜙−|)

} 𝜋]

𝑛

𝑖=1

. (24) 

Step 7. Obtain the “relative closeness coefficient (RCC)” 

The expression for computing of RCC of each option with the IF-IS is given by   

ℂ(𝐺𝑖) =
𝑆(𝐺𝑖 , 𝜙+)

𝑆(𝐺𝑖 , 𝜙+) + 𝑆(𝐺𝑖 , 𝜙−)
, 𝑖 = 1,2, . . . , 𝑚. (25) 
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Step 8. Select the maximum degree, ℂ(𝐺𝑘), among the ℂ(𝐺𝑖), 𝑖 = 1,2, . . . , 𝑚.
 
Hence, 𝐺𝑘  is the best 

option. 

From Table 7, Eqs (21) and (22), IF-IS and IFA-IS are obtained. Now, the computational results 

are depicted in Table 13. 

𝜙+ ={(0.242, 0.658), (0.200, 0.700), (0.321, 0.577), (0.314, 0.585), (0.300, 0.599), (0.242, 0.658), 

(0.237, 0.663), (0.337, 0.559), (0.534, 0.358), (0.742, 0.180), (0.573, 0.321), (0.779, 0.161), (0.297, 

0.600), (0.781, 0.152), (0.726, 0.197), (0.704, 0.215), (0.320, 0.580), (0.786, 0.150) , (0.765, 0.157) , 

(0.742, 0.180), (0.357, 0.541), (0.277, 0.622), (0.718, 0.205), (0.641, 0.255), (0.310, 0.589) } 

𝜙− ={(0.726, 0.197), (0.745, 0.178), (0.740, 0.181), (0.779, 0.161), (0.770, 0.166), (0.704, 0.215), 

(0.742, 0.180), (0.765, 0.168), (0.289, 0.609), (0.267, 0.632), (0.276, 0.624), (0.277, 0.622), (0.770, 

0.166), (0.189, 0.710), (0.194, 0.706), (0.242, 0.658), (0.678, 0.221), (0.390, 0.509), (0.362, 0.538), 

(0.214, 0.686), (0.733, 0.187), (0.773, 0.152), (0.357, 0.541), (0.267, 0.632), (0.724, 0.211)}. 

Table 13. Ranking orders of IF- TOPSIS method for SSS. 

SS Options 𝑆(𝐺𝑖 , 𝜙+) 𝑆(𝐺𝑖 , 𝜙−) ℂ(𝐺𝑖) Ranking 

G1 0.714  0.654  0.522 4 

G2 0.728  0.652  0.528 3 

G3 0.681  0.677  0.502 6 

G4 0.627  0.747  0.456 8 

G5 0.677  0.686  0.497 7 

G6 0.696  0.664  0.512 5 

G7 0.724  0.640  0.531 2 

G8 0.729  0.637  0.534 1 

From Table 13, G8 is the best SSS alternative and prioritization of SSS option is obtained as 

𝐺8 ≻ 𝐺7 ≻ 𝐺2 ≻ 𝐺1 ≻ 𝐺3 ≻ 𝐺6 ≻ 𝐺5 ≻ 𝐺4.  

6.2. IF-COPRAS model  

Steps 1–4. Similar to aforesaid model  

Step 5. Sum of ratings of criteria for benefit and cost-type 

At this point, each option is expressed with the sum of maximizing attribute, 𝛼𝑖
(1)

,
 
for benefit-

type, and minimizing attribute, 𝛼𝑖
(2)

,
 
for cost-type. To obtain the degree of 𝛼𝑖

(1)

 
and 𝛼𝑖

(2)
, we used the 

following AOs as  

𝛼𝑖
(1)

= ⊕

𝑗=1
𝑙

𝑤𝑗𝑦𝑖𝑗 , 𝑖 = 1,2, . . . , 𝑚, (26) 

𝛼𝑖
(2)

= ⊕

𝑗=𝑙+1
𝑛

𝑤𝑗𝑦𝑖𝑗 , 𝑖 = 1,2, . . . , 𝑚. (27) 

Step 6. Calculate the “relative weight (RW)” of each option 
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The expression for computing the RW (𝛾𝑖) of each option using  

𝛾𝑖 = 𝕊∗(𝛼𝑖
(1)

) +
𝑚𝑖𝑛

𝑖
𝕊∗(𝛼𝑖

(2)
) ∑ 𝕊∗(𝛼𝑖

(2)
)𝑚

𝑖=1

𝕊∗(𝛼𝑖
(2)

) ∑
𝑚𝑖𝑛

𝑖
𝕊∗(𝛼𝑖

(2)
)

𝕊∗(𝛼𝑖
(2)

)

𝑚
𝑖=1

, 𝑖 = 1,2, . . . , 𝑚. 
(28) 

Here, 𝕊∗(𝛼𝑖
(1)

) and 𝕊∗(𝛼𝑖
(2)

) symbolize the generalized scores of 𝛼𝑖
(1)

 and 𝛼𝑖
(2)

, respectively. 

Formula (28) can also be prearranged as 

𝛾𝑖 = 𝕊∗(𝛼𝑖
(1)

) +
∑ 𝕊∗(𝛼𝑖

(2)
)𝑚

𝑖=1

𝕊∗(𝛼𝑖
(2)

) ∑
1

𝕊∗(𝛼𝑖
(2)

)

𝑚
𝑖=1

, 𝑖 = 1,2, . . . , 𝑚. 
(29) 

Step 7. Prioritize the options 

Corresponding to the RWs of each option, the preference of alternatives is obtained. The highest 

RW of option has been considered as superior one, and hence, it is the best choice. 

𝐺∗ = 𝑚𝑎𝑥
𝑖

𝛾𝑖 , 𝑖 = 1,2, . . . , 𝑚. 
(30) 

Step 8. Compute the “utility degree (UD)” of each option 

By assessing the examined options with the best choice, the UD of each option is calculated. 

The expression for the computing the UD 𝛿𝑖 of each option as 

𝛿𝑖 =
𝛾𝑖

𝛾𝑚𝑎𝑥
 (31) 

Here, 𝛾𝑖 and 𝛾𝑚𝑎𝑥 are the RWs estimated from Eq (28). 

Now, the results of IF-COPRAS are mentioned in Table 14. From Table 7 and Eqs (26)–(31), 

the degrees of 𝛼𝑖
(1)

and 𝛼𝑖
(2)

,  𝛾𝑖 , preferences of options and 𝛿𝑖 , 𝑖 = 1,2, . . . , 𝑚  of each option are 

obtained. Based on the UD, 𝐺7  is the best SSS option because it has the maximum RW degree 

(0.756) of SSS alternative. 

Table 14. The outcomes of IF-COPRAS model for SSS. 

SS Options 𝛼𝑖
(1)

 𝕊∗(𝛼𝑖
(1)

) 𝛼𝑖
(2)

 𝕊∗(𝛼𝑖
(2)

) 𝛾𝑖 𝛿𝑖 Ranking 

G1 (0.350, 0.571)   0.378   (0.349, 0.572)  0.377                                  0.737   97.48%  3 

G2 (0.372, 0.548)  0.402  (0.384, 0.540) 0.413 0.730   96.51%  4 

G3 (0.315, 0.609)  0.339  (0.346, 0.571) 0.375 0.700   92.58%   6 

G4 (0.227, 0.707) 0.242  (0.326, 0.597)  0.351 0.628   83.02%   8 

G5 (0.322, 0.603)  0.346  (0.354, 0.564)  0.383 0.700   92.50%  7 

G6 (0.331, 0.589)  0.358  (0.364, 0.556)  0.393 0.703   92.90% 5 

G7 (0.313, 0.610)  0.337 (0.299, 0.621)  0.323 0.756   100.00%   1 

G8 (0.322, 0.600) 0.347  (0.313, 0.608) 0.338 0.748 98.86% 2 
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Figure 3. Preference order comparison of proposed and existing methods. 

The preference order of SSS alternative obtained by developed framework show a great 

conformity with IF-TOPSIS [14] approach. As compared with the IF-TOPSIS approach, we obtain 

same optimal sustainable supplier alternative SSS-8 (G8), whereas by comparing with the IF-

COPRAS [79] approach, the optimal sustainable supplier alternative SSS-7 (G7). The preference 

orders of proposed method, IF-TOPSIS and IF-COPRAS method are slightly totally different. The 

comparison results proposed and existing models are presented in Figure 3. From Figure 3, we 

observe that the prioritizations of options are different from the ordering of the developed IF-GLDS 

model. While the best SSS alternative is G8 from the IF-GLDS and IF-TOPSIS models and IF-

COPRAS model provides the best option is G7. Subsequently, relating the computation processes of 

some extant models for the same case study, we can find some outcomes as follows: 

• Based on to the computation processes of these models, we find that the GDS and LDS 

estimated by the IF-GLDS can not only certify that the designated option executes remarkably in 

whole, but also evade the bad performance over each criterion. Thus, the developed IF-GLDS 

can offer managers with an effective reference as compared with the IF-TOPSIS [14]. While, the 

IF-VIKOR model assumes both “group utility” and “individual regret” of options, the outcomes 

occurred by it may be unreliable concerning the diverse weights [12]. 

• We can use the GDS and LDS and corresponding subordinate preferences obtained by the 

developed IF-GLDS to find collective score each option over diverse criteria. Whereas, the IF-

TOPSIS and IF-COPRAS can only deliver the only final preference of options. The IF-GLDS 

diminishes the workload of researchers and supports them catch issues to improve. In this 

viewpoint, the computation outcomes of the developed IF-GLDS model are more practical. 

• In the developed IF-GLDS model, we find the weights of DEs and criteria, respectively. It 

would exclude the impact of subjective issues as much as possible. 

• Both the DFs and SPSs of options are measured in the developed model. In this way, the result 

determined by the IF-GLDS model is not only the nearest one to the IF-IS but also dominates 

other solutions. 

Also, the benefits of proposed IF-GLDS model over the Sen et al. [78] approach are given by  

• The IF-GLDS tool uses the vector and linear normalization process, and entropy-score function-

based model, whereas IF-COPRAS tool applied only vector normalization process. IF-TOPSIS 
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and IF-GRA utilize linear normalization process. Hence, the developed tool evades the 

information loss and offers more precise decision outcomes utilizing diverse attributes. 

• The IF-GLDS tool computes the criteria weight using the proposed entropy and score function 

based model. A new weighting formula by combining the score function and entropy to derive 

the weights of criteria is reasonable, smoothness, has lesser number of computational steps and 

confirms the effectiveness and usefulness of the developed method. Whereas in Sen et al. [78], 

weight of attribute is obtained randomly.  

• For the IF-TOPSIS [14] model, it is compulsory to estimate the similarity between each option 

and that of the IF-IS, which is a complicated procedure and decreases the accurateness of the 

outcomes, whilst IF-GRA [78] can be derived from the correlation of complicated relationships 

between components of an IF-DM using IF-distances. The IF-TOPSIS, IF-GRA and IF-

COPRAS approaches have two significant limitations [77]: (a) the prioritizations of options may 

vary under possible transformations of the initial criteria values, in the measurement-theoretic 

sense of the term; and (b) the prioritization ordering of options may change if a new candidate 

added to the considered set of options or a preceding one is deleted from it or swapped it. Here, 

we introduce an integrated IF-GLDS approach to consider pairwise comparisons of options, so 

as to establish the DFs among alternatives. Then, the gained and lost dominance scores are 

computed by the summation operator and the maximum operator, respectively. Furthermore, the 

OGDS and OLDS of options are obtained with associated weights of criteria. The final priority 

of options is derived by an aggregation function, which considers both the subordinate orders 

and the OGDS and OLDS simultaneously. 

7. Conclusions  

In this paper, the IFNs are used to represent uncertainty and fuzzy arguments in assessing 

sustainable supplier. The evaluation criteria are established, which comprise many qualitative and 

quantitative inducing factors from technology to society. To make a scientific decision, the IF-GLDS 

method is proposed based on the proposed IF-entropy. In the context of IFSs setting, how to compute 

the criteria and DEs’ weights is a critical topic, which is the basis of ranking the options in MCDM 

process and has attracted the interest of many scholars in the domain. For this reason, we conducted a 

survey on the ranking models for IFNs in the existing literature. It is proven that the exiting methods 

work well in comparing IFNs, but in some particular cases they have some limitations. Thus, the 

inverse tangent entropy measure is proposed and a weighting procedure with IF-score function is 

presented to find the criteria weights. Finally, we have developed the IF-GLDS model to prioritize 

sustainable supplier selection of iron and steel enterprise. The efficacy and practicality of the 

developed model is justified with the comparative discussions. The main benefit of the developed 

model is the assessment attention of the DFs and the SS criteria weights, which shows that the 

developed model is valid for handling realistic decision-making problem.  

In future works, we aim to extend the model under different disciplines such as the PFSs, 

SVNSs, “complex fuzzy sets (CFSs)” and others for group decision making to eradicate the 

limitations. Moreover, we can increase the number of sustainability pillars and attributes considered 

in this study in the light of experience so then the researches can assess the suppliers more 

proficiently. 
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