Research article Special Issues

A novel iterative approach for resolving generalized variational inequalities

  • Correction on: AIMS Mathematics 8: 23833–23834
  • Received: 09 January 2023 Revised: 08 February 2023 Accepted: 20 February 2023 Published: 06 March 2023
  • MSC : 26A33, 26A51, 26D10

  • For figuring out general variational inequalities, we propose a novel and innovative iterative method. First, we demonstrate that the fixed point formulation and general vaiational inequality are equivalent. The fixed point formulation is used to formulate the explicit and implicit schemes. The general variational inequalities are the basis for the new algorithms. The newly developed algorithm is demonstrated numerically. For figuring out general variational inequalities, these new methods are innovative. Additionally, the convergence analysis is provided under certain favorable conditions.

    Citation: Muhammad Bux, Saleem Ullah, Muhammad Bilal Khan, Najla Aloraini. A novel iterative approach for resolving generalized variational inequalities[J]. AIMS Mathematics, 2023, 8(5): 10788-10801. doi: 10.3934/math.2023547

    Related Papers:

  • For figuring out general variational inequalities, we propose a novel and innovative iterative method. First, we demonstrate that the fixed point formulation and general vaiational inequality are equivalent. The fixed point formulation is used to formulate the explicit and implicit schemes. The general variational inequalities are the basis for the new algorithms. The newly developed algorithm is demonstrated numerically. For figuring out general variational inequalities, these new methods are innovative. Additionally, the convergence analysis is provided under certain favorable conditions.



    加载中


    [1] A. Bnouhachem, K. I Noor, M. A Noor, On a unified implicit method for variational inequalities, J. Comput. Appl. Math., 249 (2013), 69–73. https://doi.org/10.1016/j.cam.2013.02.011 doi: 10.1016/j.cam.2013.02.011
    [2] H. Brezis, Operateurs maximaux monotone et semigroups de contraction dan les espaces de hilbert, Ameterdam: North-Holland, 1973.
    [3] A. Bnouhachem, M. A. Noor, A new iterative method for variational inequalities, Appl. Math. Comput., 182 (2006), 1673–1682. https://doi.org/10.1016/j.amc.2006.06.007 doi: 10.1016/j.amc.2006.06.007
    [4] A. Bnouhachem, M. A. Noor, Numerical method for general mixed quasi-variational inequalities, App. Math. Comput., 204 (2008), 27–36. https://doi.org/10.1016/j.amc.2008.05.134 doi: 10.1016/j.amc.2008.05.134
    [5] J. Y. Bello Cruz, A. N. Iusem, Full convergence of an approximate projection method for nonsmooth variational inequalities, Math. Comput. Simulat., 114 (2015), 2–13. https://doi.org/10.1016/j.matcom.2010.05.026 doi: 10.1016/j.matcom.2010.05.026
    [6] L. C. Ceng, L. J. Zhu, T. C. Yin, Modified subgradient extragradient algorithms for systems of generalized equilibria with constraints, AIMS Math., 8 (2023), 2961–2994. https://doi.org/10.3934/math.2023154 doi: 10.3934/math.2023154
    [7] L. C. Ceng, L. J. Zhu, T. C. Yin, On generalized extragradient implicit method for systems of variational inequalities with constraints of variational inclusion and fixed point problems, Open Math., 20 (2022), 1770–1784. https://doi.org/10.1515/math-2022-0536 doi: 10.1515/math-2022-0536
    [8] L. C. Ceng, E. Köbis, X. P. Zhao, On general implicit hybrid iteration method for triple hierarchical variational inequalities with hierarchical variational inequality constraints, Optimization, 69 (2020), 1961–1986. https://doi.org/10.1080/02331934.2019.1703978 doi: 10.1080/02331934.2019.1703978
    [9] L. C. Ceng, J. C. Yao, Y. Shehu, On Mann implicit composite subgradient extragradient methods for general systems of variational inequalities with hierarchical variational inequality constraints, J. Inequal. Appl., 2022 (2022), 78. https://doi.org/10.1186/s13660-022-02813-0 doi: 10.1186/s13660-022-02813-0
    [10] L. C. Ceng, A. Petruşel, X. Qin, J. C. Yao, Pseudomonotone variational inequalities and fixed points, Fixed Point Theory, 22 (2021), 543–558.
    [11] L. C. Ceng, A. Petruşel, X. Qin, J. C. Yao, Two inertial subgradient extragradient algorithms for variational inequalities with fixed-point constraints, Optimization, 70 (2021), 1337–1358. https://doi.org/10.1080/02331934.2020.1858832 doi: 10.1080/02331934.2020.1858832
    [12] L. C. Ceng, M. J. Shang, Hybrid inertial subgradient extragradient methods for variational inequalities and fixed point problems involving asymptotically nonexpansive mappings, Optimization, 70 (2021), 715–740. https://doi.org/10.1080/02331934.2019.1647203 doi: 10.1080/02331934.2019.1647203
    [13] L. C. Ceng, A. Petruşel, X. Qin, J. C. Yao, A modified inertial subgradient extragradient method for solving pseudomonotone variational inequalities and common fixed point problems, Fixed Point Theory, 21 (2020), 93–108.
    [14] S. Dafermos, Traffic equilibrium and variational inequalities, Transport. Sci., 14 (1980), 42–54. https://doi.org/10.1287/trsc.14.1.42 doi: 10.1287/trsc.14.1.42
    [15] R. Glowinski, J. L. Lions, R. Tremolieres, Numerical analysis of variational inequalities, Amsterdam: North Holland, 1981.
    [16] B. S. He, Z. H. Yang, X. M. Yuan, An approximate proximal-extragradient type method for monotone variational inequalities, J. Math. Anal. Appl., 300 (2004), 362–374. https://doi.org/10.1016/j.jmaa.2004.04.068 doi: 10.1016/j.jmaa.2004.04.068
    [17] L. He, Y. L. Cui, L. C Ceng, T. Y. Zhao, D. Q. Wang, H. Y. Hu, Strong convergence for monotone bilevel equilibria with constraints of variational inequalities and fixed points using subgradient extragradient implicit rule, J. Inequal. Appl., 2021 (2021), 146.
    [18] S. Jabeen, M. A. Noor, K. I. Noor, Inertial iterative methods for general quasi variational inequalities and dynamical systems, J. Math. Anal., 11 (2020), 14–29.
    [19] G. M. Korpelevich, The extragradiend method for finding saddle points and other problems, Ekonomika Mat. Metody, 12 (1976), 747–756.
    [20] D. Kindrlehrer, G. Stampacchia, An introduction to variational inequalities and their applications, Philadelphia: SIAM, 2000.
    [21] M. B. Khan, G. Santos-García, S. Treat, M. A. Noor, M. S. Soliman, Perturbed mixed variational-like inequalities and auxiliary principle pertaining to a fuzzy environment, Symmetry, 14 (2022), 2503. https://doi.org/10.3390/sym14122503 doi: 10.3390/sym14122503
    [22] M. B. Khan, G. Santos-García, M. A. Noor, M. S.Soliman, Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities, Chaos Solitons Fract., 164 (2022), 112692. https://doi.org/10.1016/j.chaos.2022.112692 doi: 10.1016/j.chaos.2022.112692
    [23] M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, Higher-order strongly preinvex fuzzy mappings and fuzzy mixed variational-like inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1856–1870. https://doi.org/10.2991/ijcis.d.210616.001 doi: 10.2991/ijcis.d.210616.001
    [24] J. Lions, G. Stampaachia, Variational inequalities, Comm. Pure Appl. Math., 20 (1967), 493–519. https://doi.org/10.1002/cpa.3160200302
    [25] M. A. Noor, Proximal method for mixed variational inequalities, J. Optim. Theory Appl., 115 (2002), 447–451. https://doi.org/10.1023/A:1020848524253 doi: 10.1023/A:1020848524253
    [26] M. A. Noor, Some developments in general variational inequalities, Appl. Math. Comput., 152 (2004), 199–277. https://doi.org/10.1016/S0096-3003(03)00558-7 doi: 10.1016/S0096-3003(03)00558-7
    [27] M. A. Noor, K.I. Noor, A. Bnouhachem, On a unified implicit method for variational inequalities, J. Comput. Appl. Math., 249 (2013), 69–73. https://doi.org/10.1016/j.cam.2013.02.011 doi: 10.1016/j.cam.2013.02.011
    [28] M. A. Noor, K.I. Noor, E. Al-Said, On new proximal point method for solving the variational inequalities, J. Appl. Math., 2012 (2012), 412413. https://doi.org/10.1155/2012/412413 doi: 10.1155/2012/412413
    [29] M. A. Noor, General variational inequalities, Appl. Math. Lett., 1 (1988), 119–122. https://doi.org/10.1016/0893-9659(88)90054-7 doi: 10.1016/0893-9659(88)90054-7
    [30] M.A. Noor, K.I. Noor, A. Bnouchachem, Some new iterative methods for solving variational inequalities, Canad. J. Appl. Math., 2 (2020), 1–17.
    [31] M. A. Noor, K. I. Noor, M. T. Rassias, New trends in general variational inequalities, Acta Appl. Math., 170 (2020), 981–1064. https://doi.org/10.1007/s10440-020-00366-2 doi: 10.1007/s10440-020-00366-2
    [32] M. A. Noor, K. I. Noor, M. T. Rassias,, General variational inequalities and optimization, Berlin: Springer, 2022.
    [33] M. J. Smith, The existence, uniqueness and stability of traffic equilibria, Trans. Res., 133 (1979), 295–304. https://doi.org/10.1016/0191-2615(79)90022-5 doi: 10.1016/0191-2615(79)90022-5
    [34] C. F. Shi, A self-adaptive method for solving a system of nonlinear variational inequalities, Math. Prob. Eng., 2007 (2007), 23795. https://doi.org/10.1155/2007/23795 doi: 10.1155/2007/23795
    [35] S. Treanţă, M. B. Khan, T. Saeed, On some variational inequalities involving second-order partial derivatives, Fractal Fract., 6 (2022), 236. https://doi.org/10.3390/fractalfract6050236 doi: 10.3390/fractalfract6050236
    [36] K. Tu, F. Q. Xia, A projection type algorithm for solving generalized mixed variational inequalities, Act. Math. Sci., 36 (2016), 1619–1630. https://doi.org/10.1016/S0252-9602(16)30094-7
    [37] D. Q. Wang, T. Y. Zhao, L. C. Ceng, J. Yin, L. He, Y. X. Fu, Strong convergence results for variational inclusions, systems of variational inequalities and fixed point problems using composite viscosity implicit methods, Optimization, 71 (2022), 4177–4212. https://doi.org/10.1080/02331934.2021.1939338 doi: 10.1080/02331934.2021.1939338
    [38] T. Y. Zhao, D. Q. Wang, L. C. Ceng, L. He, C. Y. Wang, H. L. Fan, Quasi-inertial Tseng's extragradient algorithms for pseudomonotone variational inequalities and fixed point problems of quasi-nonexpansive operators, Numer. Funct. Anal. Optim., 42 (2020), 69–90. https://doi.org/10.1080/01630563.2020.1867866 doi: 10.1080/01630563.2020.1867866
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1086) PDF downloads(76) Cited by(1)

Article outline

Figures and Tables

Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog