In this work, we study the existence of one-sign solutions without signum condition for the following problem:
$ \begin{eqnarray} \left\{ \begin{array}{ll} -\Delta u = \lambda a(x)f(u), \, \, x\in\mathbb{R}^{N}, & {\rm{}}\ u(x)\rightarrow0, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, {\mathrm{as}}\, \, |x|\rightarrow +\infty, & {\rm{}} \end{array} \right. \end{eqnarray} $
where $ N\geq3 $, $ \lambda $ is a real parameter and $ a\in C^{\alpha}_{loc}(\mathbb{R}^{N}, \mathbb{R}) $ for some $ \alpha\in(0, 1) $ is a weighted function, $ f\in C^{\alpha}(\mathbb{R}, \mathbb{R}) $, and there exist two constants $ s_{2} < 0 < s_{1}, $ such that $ f(s_{1}) = f(s_{2}) = f(0) = 0 $ and $ sf(s) > 0 $ for $ s\in\mathbb{R}\backslash\{s_{1}, 0, s_{2}\}. $ Furthermore, we consider the exact multiplicity of one-sign solutions for above problem under more strict hypotheses. We use bifurcation techniques and the approximation of connected components to prove our main results.
Citation: Wenguo Shen. Bifurcation and one-sign solutions for semilinear elliptic problems in $ \mathbb{R}^{N} $[J]. AIMS Mathematics, 2023, 8(5): 10453-10467. doi: 10.3934/math.2023530
In this work, we study the existence of one-sign solutions without signum condition for the following problem:
$ \begin{eqnarray} \left\{ \begin{array}{ll} -\Delta u = \lambda a(x)f(u), \, \, x\in\mathbb{R}^{N}, & {\rm{}}\ u(x)\rightarrow0, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, {\mathrm{as}}\, \, |x|\rightarrow +\infty, & {\rm{}} \end{array} \right. \end{eqnarray} $
where $ N\geq3 $, $ \lambda $ is a real parameter and $ a\in C^{\alpha}_{loc}(\mathbb{R}^{N}, \mathbb{R}) $ for some $ \alpha\in(0, 1) $ is a weighted function, $ f\in C^{\alpha}(\mathbb{R}, \mathbb{R}) $, and there exist two constants $ s_{2} < 0 < s_{1}, $ such that $ f(s_{1}) = f(s_{2}) = f(0) = 0 $ and $ sf(s) > 0 $ for $ s\in\mathbb{R}\backslash\{s_{1}, 0, s_{2}\}. $ Furthermore, we consider the exact multiplicity of one-sign solutions for above problem under more strict hypotheses. We use bifurcation techniques and the approximation of connected components to prove our main results.
[1] | A. L. Edelson, A. J. Rumbos, Linear and semilinear eigenvalue problems in $\mathbb{R}^{n}$, Comm. Part. Diff. Eq., 18 (1993), 215–240. https://doi.org/10.1080/03605309308820928 doi: 10.1080/03605309308820928 |
[2] | A. J. Rumbos, A. L. Edelson, Bifurcation properties of semilinear elliptic equations in $\mathbb{R}^{n}$, Differ. Integral Equ., 7 (1994), 399–410. https://projecteuclid.org/7.2/1369330436 |
[3] | E. N. Dancer, Global solution branches for positive mappings, Arch. Ration. Mech. An., 52 (1973), 181–192. https://doi.org/10.1007/BF00282326 doi: 10.1007/BF00282326 |
[4] | A. L. Edelson, M. Furi, Global solution branches for semilinear equations in $R^{n}$, Nonlinear Anal., 28 (1997), 1521–1532. https://doi.org/10.1016/S0362-546X(96)00018-1 doi: 10.1016/S0362-546X(96)00018-1 |
[5] | P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487–513. https://doi.org/10.1016/0022-1236(71)90030-9 doi: 10.1016/0022-1236(71)90030-9 |
[6] | G. Dai, J. Yao, F. Li, Spectrum and bifurcation for semilinear elliptic problems in $\mathbb{R}^{N}$, J. Differ. Equations, 263 (2017), 5939–5967. http://dx.doi.org/10.1016/j.jde.2017.07.004 doi: 10.1016/j.jde.2017.07.004 |
[7] | E. N. Dancer, On the structure of solutions of non-linear eigenvalue problems, Indiana Univ. Math. J., 23 (1974), 1069–1076. https://doi.org/10.1512/iumj.1974.23.23087 doi: 10.1512/iumj.1974.23.23087 |
[8] | G. Dai, Bifurcation and standing wave solutions for a quasilinear Schr$\ddot{o}$dinger equation, P. Roy. Soc. Edinb., 149 (2019), 939–968. https://doi.org/10.1017/prm.2018.59 doi: 10.1017/prm.2018.59 |
[9] | G. Dai, Bifurcation and one-sign solutions of the p-Laplacian involving a nonlinearity with zeros, Discrete Cont. Dyn. Syst., 36 (2016), 5323–5345. https://doi.org/10.48550/arXiv.1511.06756 doi: 10.48550/arXiv.1511.06756 |
[10] | P. H. Rabinowitz, On bifurcation from infinity, J. Funct. Anal., 14 (1973), 462–475. https://doi.org/10.1016/0022-0396(73)90061-2 doi: 10.1016/0022-0396(73)90061-2 |
[11] | J. L$\acute{o}$pez-G$\acute{o}$mez, Spectral theory and nonlinear functional analysis, Chapman and Hall/CRC, Boca Raton, 2001. |
[12] | M. Montenego, Strong maximum principles for super-solutions of quasilinear elliptic equations, Nonlinear Anal., 37 (1999), 431–448. https://doi.org/10.1016/S0362-546X(98)00057-1 doi: 10.1016/S0362-546X(98)00057-1 |
[13] | A. Ambrosetti, R. M. Calahorrano, F. R. Dobarro, Global branching for discontinuous problems, Comment. Math. Univ. Ca., 31 (1990), 213–222. https://zbmath.org/0732.35101 |
[14] | G. Dai, X. Han, Exact multiplicity of one-sign solutions for a class of quasilinear eigenvalue problems, J. Math. Res. Appl., 34 (2014), 84–88. https://doi.org/10.3770/j.issn:2095-2651.2014.01.008 doi: 10.3770/j.issn:2095-2651.2014.01.008 |
[15] | G. A. Afrouzi, S. H. Rasouli, Stability properties of non-negative solutions to a non-autonomous p-Laplacian equation, Chaos Soliton. Fract., 29 (2006), 1095–1099. https://doi.org/10.1016/j.chaos.2005.08.165 doi: 10.1016/j.chaos.2005.08.165 |