Research article

A novel numerical method for solving the Caputo-Fabrizio fractional differential equation

  • Received: 23 September 2022 Revised: 03 January 2023 Accepted: 09 January 2023 Published: 20 February 2023
  • MSC : 26A33, 26C10

  • In this paper, a unique and novel numerical approach—the fractional-order Caputo-Fabrizio derivative in the Caputo sense—is developed for the solution of fractional differential equations with a non-singular kernel. After converting the differential equation into its corresponding fractional integral equation, we used Simpson's $ 1/3 $ rule to estimate the fractional integral equation. A thorough study is then conducted to determine the convergence and stability of the suggested method. We undertake numerical experiments to corroborate our theoretical findings.

    Citation: Sadia Arshad, Iram Saleem, Ali Akgül, Jianfei Huang, Yifa Tang, Sayed M Eldin. A novel numerical method for solving the Caputo-Fabrizio fractional differential equation[J]. AIMS Mathematics, 2023, 8(4): 9535-9556. doi: 10.3934/math.2023481

    Related Papers:

  • In this paper, a unique and novel numerical approach—the fractional-order Caputo-Fabrizio derivative in the Caputo sense—is developed for the solution of fractional differential equations with a non-singular kernel. After converting the differential equation into its corresponding fractional integral equation, we used Simpson's $ 1/3 $ rule to estimate the fractional integral equation. A thorough study is then conducted to determine the convergence and stability of the suggested method. We undertake numerical experiments to corroborate our theoretical findings.



    加载中


    [1] M. Abdulhameed, D. Vieru, R. Roslanc, Magnetohydrodynamic electroosmotic flow of Maxwell fluids with Caputo-Fabrizio derivatives through circular tubes, Comput. Math. Appl., 74 (2017), 2503–2519. http://doi.org/10.1016/j.camwa.2017.07.040 doi: 10.1016/j.camwa.2017.07.040
    [2] T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80 (2017), 11–27. http://doi.org/10.1016/S0034-4877(17)30059-9 doi: 10.1016/S0034-4877(17)30059-9
    [3] H. Abboubakar, P. Kumar, N. A. Rangaig, S. Kumar, A malaria model with Caputo-Fabrizio and Atangana-Baleanu derivatives, Int. J. Model. Simul. Sci. Comput., 12 (2021), 2150013. http://doi.org/10.1142/S1793962321500136 doi: 10.1142/S1793962321500136
    [4] J. F. G. Aguilar, H. Y. Martinez, C. C. Ramon, I. C. Ordunia, R. F. E. Jimenez, V. H. O. Peregrino, Modeling of a mass-spring-damper system by fractional derivatives with and without a singular Kernel, Entropy, 17 (2015), 6289–6303. http://doi.org/10.3390/e17096289 doi: 10.3390/e17096289
    [5] B. S. T. Alkahtani, A. Atangana, Controlling the wave movement on the surface of shallow water with the Caputo-Fabrizio derivative with fractional order, Chaos Soliton. Fract., 89 (2016), 539–546. http://doi.org/10.1016/j.chaos.2016.03.012 doi: 10.1016/j.chaos.2016.03.012
    [6] I. Area, J. J. Nieto, Fractional-order logistic differential equation with Mittag–Leffler-type kernel, Fractal Fract., 5 (2021), 273. http://doi.org/10.3390/fractalfract5040273 doi: 10.3390/fractalfract5040273
    [7] S. Arshad, D. Baleanu, J. Huang, Y. Tang, M. M. Al Qurashi, Dynamical analysis of fractional order model of immunogenic tumors, Adv. Mech. Eng., 8 (2016), 1–13. https://doi.org/10.1177/1687814016656704 doi: 10.1177/1687814016656704
    [8] A. Atangana, A. Secer, A note on fractional order derivatives and table of fractional derivatives of some special function, Abstr. Appl. Anal., 2013 (2013), 279681. http://doi.org/10.1155/2013/279681 doi: 10.1155/2013/279681
    [9] D. Avci, M. Yavuz, N. Ozdemir, Fundamental solutions to the Cauchy and Dirichlet problems for a heat conduction equation equipped with the Caputo-Fabrizio differentiation, In: Heat conduction: methods, applications and research, Nova Science Publishers, 2019, 95–107.
    [10] D. Baleanu, S. Arshad, A. Jajarmi, W. Shokat, F. A. Ghassabzade, M. Wali, Dynamical behaviours and stability analysis of a generalized fractional model with a real case study, J. Adv. Res., in press. http://doi.org/10.1016/j.jare.2022.08.010
    [11] M. Bologna, P. Grigolini, B. J. West, Physics of fractal operators, New York: Springer, 2003. http://doi.org/10.1007/978-0-387-21746-8
    [12] M. Caputo, M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Progr. Fract. Differ. Appl., 2 (2016), 1–11. http://doi.org/10.18576/pfda/020101 doi: 10.18576/pfda/020101
    [13] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. http://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [14] S. Das, I. Pan, Kriging based surrogate modeling for fractional order control of microgrids, IEEE Trans. Smart Grid, 6 (2015), 36–44. http://doi.org/10.1109/TSG.2014.2336771 doi: 10.1109/TSG.2014.2336771
    [15] H. Dehestani, Y. Ordokhani, An efficient approach based on Legendre–Gauss–Lobatto quadrature and discrete shifted Hahn polynomials for solving Caputo–Fabrizio fractional Volterra partial integro-differential equations, J. Comput. Appl. Math., 403 (2022), 113851. http://doi.org/10.1016/j.cam.2021.113851 doi: 10.1016/j.cam.2021.113851
    [16] N. Djeddi, S. Hasan, M. Al-Smadi, S. Momani, Modified analytical approach for generalized quadratic and cubic logistic models with Caputo-Fabrizio fractional derivative, Alex. Eng. J., 59 (2020), 5111–5122. http://doi.org/10.1016/j.aej.2020.09.041 doi: 10.1016/j.aej.2020.09.041
    [17] J. Dison, S. Mekee, Weakly singular discrete Gronwall inequalities, Z. Angew. Math. Mech., 66 (1986), 535–544. https://doi.org/10.1002/zamm.19860661107 doi: 10.1002/zamm.19860661107
    [18] F. Evirgen, M. Yavuz, An alternative approach for nonlinear optimization problem with Caputo-Fabrizio derivative, ITM Web Conf., 22 (2018), 01009. http://doi.org/10.1051/itmconf/20182201009 doi: 10.1051/itmconf/20182201009
    [19] M. Farman, H. Besbes, K. S. Nisar, M. Omri, Analysis and dynamical transmission of Covid-19 model by using Caputo-Fabrizio derivative, Alex. Eng. J., 66 (2023), 597–606. http://doi.org/10.1016/j.aej.2022.12.026 doi: 10.1016/j.aej.2022.12.026
    [20] M. A. Firoozjaee, H. Jafari, A. Lia, D. Baleanu, Numerical approach of Fokker-Planck equation with Caputo-Fabrizio fractional derivative using Ritz approximation, J. Comput. Appl. Math., 339 (2018), 367–373. http://doi.org/10.1016/j.cam.2017.05.022 doi: 10.1016/j.cam.2017.05.022
    [21] J. F. Gómez-Aguilar, M. G. López-López, V. M. Alvarado-Martínez, J. Reyes-Reyes, M. Adam-Medina, Modeling diffusive transport with a fractional derivative without singular kernel, Physic A, 447 (2016), 467–481. http://doi.org/10.1016/j.physa.2015.12.066 doi: 10.1016/j.physa.2015.12.066
    [22] A. Horani, R. Khalil, M. Sababheh, A. Yousef, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. http://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [23] N. Harrouche, S. Momani, S. Hasan, M. Al-Smadi, Computational algorithm for solving drug pharmacokinetic model under uncertainty with non-singular kernel type Caputo-Fabrizio fractional derivative, Alex. Eng. J., 60 (2021), 4347–4362. http://doi.org/10.1016/j.aej.2021.03.016 doi: 10.1016/j.aej.2021.03.016
    [24] A. Jajarmi, D. Baleanu, A new fractional analysis on the interaction of HIV with $CD_{4}^{+}$ T-cells, Chaos Soliton. Fract., 113 (2018), 221–229. http://doi.org/10.1016/j.chaos.2018.06.009 doi: 10.1016/j.chaos.2018.06.009
    [25] A. Jajarmi, S. Arshad, D. Baleanu, A new fractional modelling and control strategy for the outbreak of dengue fever, Physica A, 535 (2019), 122524. https://doi.org/10.1016/j.physa.2019.122524 doi: 10.1016/j.physa.2019.122524
    [26] T. Jin, X. Yang, H. Xia, H. Ding, Reliability index and option pricing formulas of the first-hitting time model based on the uncertain fractional order differential equation with Caputo type, Fractals, 29 (2021), 2150012. https://doi.org/10.1142/S0218348X21500122 doi: 10.1142/S0218348X21500122
    [27] T. Jin, X. Yang, Monotonicity theorem for the uncertain fractional differential equation and application to uncertain financial market, Math. Comput. Simulat., 190 (2021), 203–221. http://doi.org/10.1016/j.matcom.2021.05.018 doi: 10.1016/j.matcom.2021.05.018
    [28] G. Jumarie, On the solution of the stochastic differential equation of exponential growth driven by fractional Brownian motion, Appl. Math. Lett., 18 (2005), 817–826. http://doi.org/10.1016/j.aml.2004.09.012 doi: 10.1016/j.aml.2004.09.012
    [29] G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions further results, Comput. Math. Appl., 51 (2006), 1367–1376. http://doi.org/10.1016/j.camwa.2006.02.001 doi: 10.1016/j.camwa.2006.02.001
    [30] A. Keten, M. Yavuz, D. Baleanu, Nonlocal Cauchy problem via a fractional operator involving power kernel in Banach spaces, Fractal Fract., 3 (2019), 27. http://doi.org/10.3390/fractalfract3020027 doi: 10.3390/fractalfract3020027
    [31] A. Khan, T. Akram, A. Khan, S. Ahmad, K. Nonlaopon, Investigation of time fractional nonlinear KdV-Burgers equation under fractional operators with non-singular kernels, AIMS Mathematics, 8 (2023), 1251–1268. http://doi.org/10.3934/math.2023063 doi: 10.3934/math.2023063
    [32] K. Khan, A. Ali, M. De la Sen, M. Irfan, Localized modes in time-fractional modified coupled Korteweg-de Vries equation with singular and non-singular kernels, AIMS Mathematics, 7 (2022), 1580–1602. http://doi.org/10.3934/math.2022092 doi: 10.3934/math.2022092
    [33] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, London and New York: Elsevier, 2006.
    [34] J. Klafter, S. C. Lim, R. Metzler, Fractional dynamics: recent advances, Singapore: World Scientific, 2011. http://doi.org/10.1142/8087
    [35] C. Li, J. Lu, J. Wang, Observer-based robust stabilisation of a class of non-linear fractional-order uncertain systems: an linear matrix inequalitie approach, IET Control Theory Appl., 6 (2012), 2757–2764. http://doi.org/10.1049/iet-cta.2012.0312 doi: 10.1049/iet-cta.2012.0312
    [36] J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015) 87–92. http://doi.org/10.12785/pfda/010202 doi: 10.12785/pfda/010202
    [37] Q. Liu, T. Jin, M. Zhu, C. Tian, F. Li, D. Jiang, Uncertain currency option pricing based on the fractional differential equation in the Caputo sense, Fractal Fract., 6 (2022), 407. http://doi.org/10.3390/fractalfract6080407 doi: 10.3390/fractalfract6080407
    [38] C. Ludwin, Blood alcohol content, Undergraduate Journal of Mathematical Modeling: One + Two, 3 (2011), 1. http://doi.org/10.5038/2326-3652.3.2.1 doi: 10.5038/2326-3652.3.2.1
    [39] R. L. Magin, Fractional calculus in bioengineering, Crit. Rev. Biomed. Eng., 32 (2006), 1–104. http://doi.org/10.1615/critrevbiomedeng.v32.i1.10 doi: 10.1615/critrevbiomedeng.v32.i1.10
    [40] I. A. Mirza, D. Vierub, Fundamental solutions to advection-diffusion equation with time-fractional Caputo-Fabrizio derivative, Comput. Math. Appl., 73 (2017), 1–10. http://doi.org/10.1016/j.camwa.2016.09.026 doi: 10.1016/j.camwa.2016.09.026
    [41] V. F. Morales-Delgado, J. F. Gómez-Aguilar, K. M. Saad, M. A. Khan, P. Agarwal, Analytic solution for oxygen diffusion from capillary to tissues involving external force effects: A fractional calculus approach, Physica A, 523 (2019), 48–65. http://doi.org/10.1016/j.physa.2019.02.018 doi: 10.1016/j.physa.2019.02.018
    [42] S. Momani, N. Djeddi, M. Al-Smadi, S. Al-Omari, Numerical investigation for Caputo-Fabrizio fractional Riccati and Bernoulli equations using iterative reproducing kernel method, Appl. Numer. Math., 170 (2021), 418–434. http://doi.org/10.1016/j.apnum.2021.08.005 doi: 10.1016/j.apnum.2021.08.005
    [43] J. J. Nieto, Solution of a fractional logistic ordinary differential equation, Appl. Math. Lett., 123 (2022), 107568. http://doi.org/10.1016/j.aml.2021.107568 doi: 10.1016/j.aml.2021.107568
    [44] S. Noeiaghdam, S. Micula, J. J. Nieto, A novel technique to control the accuracy of a nonlinear fractional order model of covid-19: Application of the CESTAC method and the CADNA library, Mathematics, 9 (2021), 1321. http://doi.org/10.3390/math9121321 doi: 10.3390/math9121321
    [45] H. M. Ozaktas, O. Arikan, M. A. Kutay, G. Bozdagt, Digital computation of the fractional Fourier transform, IEEE Transactionson Signal Processing, 44 (1996), 2141–2150. http://doi.org/10.1109/78.536672 doi: 10.1109/78.536672
    [46] A. J. J. Obaid, Comparing the Atangana-Baleanu and Caputo-Fabrizio derivative with fractional-order: Allen Cahn model, Chaos Soliton. Fract., 89 (2016), 552–559. http://doi.org/10.1016/j.chaos.2016.03.026 doi: 10.1016/j.chaos.2016.03.026
    [47] K. B. Oldham, J. Spanier, The fractional calculus, New York: Academic Press, 1974.
    [48] K. M. Owolabi, A. Atangana, Analysis and application of new fractional Adams-Bashforth scheme with Caputo-Fabrizio derivative, Chaos Soliton. Fract., 105 (2017), 111–119. http://doi.org/10.1016/j.chaos.2017.10.020 doi: 10.1016/j.chaos.2017.10.020
    [49] P. Pandey, J. F. Gómez-Aguilar, M. K. A. Kaabar, Z. Sirid, A. A. Mousa, Mathematical modeling of COVID-19 pandemic in India using Caputo-Fabrizio fractional derivative, Comput. Biol. Med., 145 (2022), 105518. http://doi.org/10.1016/j.compbiomed.2022.105518 doi: 10.1016/j.compbiomed.2022.105518
    [50] I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal., 5 (2002), 367–386.
    [51] J. RongLoh, A. Isah, C. Phang, Y. T. Toh, On the new properties of Caputo-Fabrizio operator and its application in deriving shifted Legendre operational matrix, Appl. Numer. Math., 132 (2018), 138–153. http://doi.org/10.1016/j.apnum.2018.05.016 doi: 10.1016/j.apnum.2018.05.016
    [52] Q. Rubbab, M. Nazeer, F. Ahmad, Y. Chu, M. I. Khan, S. Kadry, Numerical simulation of advection–diffusion equation with caputo-fabrizio time fractional derivative in cylindrical domains: Applications of pseudo-spectral collocation method, Alex. Eng. J., 60 (2021), 1731–1738. http://doi.org/10.1016/j.aej.2020.11.022 doi: 10.1016/j.aej.2020.11.022
    [53] S. G. Samko, A. A. Kilbas, O. I. Maritchev, Integrals and derivatives of the fractional order and some of their applications, (Russian), Minsk, Belarus: Nauka i Tekhnika, 1987.
    [54] L. Shi, S. Tayebi, O. A. Arqub, M. S. Osman, P. Agarwal, W. Mahamoud, et al., The novel cubic B-spline method for fractional Painleve and Bagley-Trovik equations in the Caputo, Caputo-Fabrizio, and conformable fractional sense, Alex. Eng. J., 65 (2023), 413–426. http://doi.org/10.1016/j.aej.2022.09.039 doi: 10.1016/j.aej.2022.09.039
    [55] W. R. Schneider, W. Wyess, Fractional diffusion and wave equations, J. Math. Phys., 30 (1989), 134–144. http://doi.org/10.1063/1.528578 doi: 10.1063/1.528578
    [56] V. E. Tarasov, Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media, Berlin, Heidelberg: Springer, 2010. http://doi.org/10.1007/978-3-642-14003-7
    [57] X. Yang, H. M. Srivastava, J. A. M. Tenreiro, A new fractional derivative without singular kernel: application to the modelling of the steady heat flow, Thermal Sci., 20 (2016), 753–756. http://doi.org/10.2298/TSCI151224222Y doi: 10.2298/TSCI151224222Y
    [58] M. Yavuz, N. Özdemir, European vanilla option pricing model of fractional order without singular kernel, Fractal Fract., 2 (2018), 3. http://doi.org/10.3390/fractalfract2010003 doi: 10.3390/fractalfract2010003
    [59] M. Yavuz, N. Özdemir, Comparing the new fractional derivative operators involving exponential and Mittag Leffler kernel, Discrete Contin. Dyn. Syst. S, 13 (2020), 995–1006. http://doi.org/10.3934/dcdss.2020058 doi: 10.3934/dcdss.2020058
    [60] T. A. Yıldız, S. Arshad, D. Baleanu, New observations on optimal cancer treatments for a fractional tumor growth model with and without singular kernel, Chaos Soliton. Fract., 117 (2018), 226–239. http://doi.org/10.1016/j.chaos.2018.10.029 doi: 10.1016/j.chaos.2018.10.029
    [61] M. Yavuz, E. Bonyah, New approaches to the fractional dynamics of schistosomiasis disease model, Physica A, 525 (2019), 373–393. http://doi.org/10.1016/j.physa.2019.03.069 doi: 10.1016/j.physa.2019.03.069
    [62] M. Yavuz, N. Ozdemir, Analysis of an epidemic spreading model with exponential decay law, Mathematical Sciences & Applications E-Notes, 8 (2020), 142–154. http://doi.org/10.36753/mathenot.691638 doi: 10.36753/mathenot.691638
    [63] H. Yépez-Martínez, J. F. Gómez-Aguilar, A new modified definition of Caputo-Fabrizio fractional-order derivative and their applications to the Multi Step Homotopy Analysis Method (MHAM), J. Comput. Appl. Math., 346 (2019), 247–260. http://doi.org/10.1016/j.cam.2018.07.023 doi: 10.1016/j.cam.2018.07.023
    [64] F. Youbi, S. Momani, S. Hasan, M. Al-Smadi, Effective numerical technique for nonlinear Caputo-Fabrizio systems of fractional Volterra integro-differential equations in Hilbert space, Alex. Eng. J., 61 (2022), 1778–1786. http://doi.org/10.1016/j.aej.2021.06.086 doi: 10.1016/j.aej.2021.06.086
    [65] T. Zhang, Y. Li, Exponential Euler scheme of multi-delay Caputo–Fabrizio fractional-order differential equations, Appl. Math. Lett., 124 (2022), 107709. http://doi.org/10.1016/j.aml.2021.107709 doi: 10.1016/j.aml.2021.107709
    [66] D. Zhao, M. Luo, Representations of acting processes and memory effects: general fractional derivative and its application to theory of heat conduction with finite wave speeds, Appl. Math. Comput., 346 (2019), 531–544. http://doi.org/10.1016/j.amc.2018.10.037 doi: 10.1016/j.amc.2018.10.037
    [67] A. Zappone, E. Jorswieck, Energy efficiency in wireless networks via fractional programming theory found, Trends Commun. Inf. Theory, 11 (2014), 185–396. http://doi.org/10.1561/0100000088 doi: 10.1561/0100000088
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2081) PDF downloads(293) Cited by(7)

Article outline

Figures and Tables

Figures(9)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog