Research article Special Issues

Modified 5-point fractional formula with Richardson extrapolation

  • Received: 28 October 2022 Revised: 17 January 2023 Accepted: 13 February 2023 Published: 20 February 2023
  • MSC : 26A33, 34A08, 34K37

  • In this paper, we establish a novel fractional numerical modification of the 5-point classical central formula; called the modified 5-point fractional formula for approximating the first fractional-order derivative in the sense of the Caputo operator. Accordingly, we then introduce a new methodology for Richardson extrapolation depending on the fractional central formula in order to obtain a high accuracy for the gained approximations. We compare the efficiency of the proposed methods by using tables and figures to show their reliability.

    Citation: Iqbal M. Batiha, Shameseddin Alshorm, Iqbal Jebril, Amjed Zraiqat, Zaid Momani, Shaher Momani. Modified 5-point fractional formula with Richardson extrapolation[J]. AIMS Mathematics, 2023, 8(4): 9520-9534. doi: 10.3934/math.2023480

    Related Papers:

  • In this paper, we establish a novel fractional numerical modification of the 5-point classical central formula; called the modified 5-point fractional formula for approximating the first fractional-order derivative in the sense of the Caputo operator. Accordingly, we then introduce a new methodology for Richardson extrapolation depending on the fractional central formula in order to obtain a high accuracy for the gained approximations. We compare the efficiency of the proposed methods by using tables and figures to show their reliability.



    加载中


    [1] A. C. Aitken, On interpolation by iteration of proportional parts, without the use of differences, Proc. Edinb. Math. Soc., 3 (1932), 56–76. https://doi.org/10.1017/S0013091500013808 doi: 10.1017/S0013091500013808
    [2] W. F. Ames, Numerical methods for partial differential equations, Academic Press, 1992.
    [3] O. Axelsson, V. A. Barker, Finite element solution of boundary value problems: theory and computation, Academic Press, 1984.
    [4] R. B. Albadarneh, I. M. Batiha, M. Zurigat, Numerical solutions for linear fractional differential equations of order $1 < \alpha < 2$ using finite difference method (FFDM), Int. J. Math. Comput. Sci., 16 (2016), 103–111.
    [5] R. B. Albadarneh, I. M. Batiha, A. Adwai, N. Tahat, A. K. Alomari, Numerical approach of Riemann-Liouville fractional derivative operator, Int. J. Electr. Comput. Eng., 11 (2021), 5367–5378.
    [6] E. L. Allgower, K. Georg, Numerical continuation methods: an introduction, Berlin, Heidelberg: Springer-Verlag, 1990. https://doi.org/10.1007/978-3-642-61257-2
    [7] A. V. Aho, J. E. Hopcroft, The design and analysis of computer algorithms, Pearson Education India, 1974.
    [8] M. Arshad, D. C. Lu, J. Wang, (N+1)-dimensional fractional reduced differential transform method for fractional order partial differential equations, Commun. Nonlinear Sci. Numer. Simul., 48 (2017), 509–519. https://doi.org/10.1016/j.cnsns.2017.01.018 doi: 10.1016/j.cnsns.2017.01.018
    [9] U. M. Ascher, R. M. M. Mattheij, R. D. Russell, Numerical solution of boundary value problems for ordinary differential equations, Englewood Cliffs: Prentice-Hall, 1988.
    [10] I. K. Argyros, F. Szidarovszky, The theory and applications of iteration methods, Boca Raton: CRC Press, 1993. https://doi.org/10.1201/9780203719169
    [11] I. Batiha, S. M. Alshorm, I. Jebril, M. A. Hammad, A brief review about fractional calculus, Int. J. Open Problems Complex Anal., 15 (2022), 39–56.
    [12] I. M. Batiha, S. Alshorm, A. Ouannas, S. Momani, O. Y. Ababneh, M. Albdareen, Modified three-point fractional formulas with Richardson extrapolation, Mathematics, 10 (2022), 1–16. https://doi.org/10.3390/math10193489 doi: 10.3390/math10193489
    [13] I. M. Batiha, R. El-Khazali, A. AlSaedi, S. Momani, The general solution of singular fractional-order linear time-invariant continuous systems with regular pencils, Entropy, 20 (2018), 1–14. https://doi.org/10.3390/e20060400 doi: 10.3390/e20060400
    [14] R. L. Burden, J. D. Faires, Numerical analysis, 9 Eds., Thomson Brooks/Cole, 2005.
    [15] R. El-Khazali, I. M. Batiha, S. Momani, Approximation of fractional-order operators, In: Fractional calculus, Singapore: Springer, 2018. https://doi.org/10.1007/978-981-15-0430-3_8
    [16] D. C. Joyce, Survey of extrapolation processes in numerical analysis, SIAM Review, 13 (1971), 435–490. https://doi.org/10.1137/1013092 doi: 10.1137/1013092
    [17] V. Martynyuk, M. Ortigueira, M. Fedula, O. Savenko, Methodology of electrochemical capacitor quality control with fractional order model, AEU-Int. J. Electr. Commun., 91 (2018), 118–124. https://doi.org/10.1016/j.aeue.2018.05.005 doi: 10.1016/j.aeue.2018.05.005
    [18] M. D. Ortigueira, J. T. Machado, Fractional derivatives: The perspective of system theory, Mathematics, 7 (2019), 1–14. https://doi.org/10.3390/math7020150 doi: 10.3390/math7020150
    [19] M. D. Ortigueira, A. G. Batista, On the relation between the fractional Brownian motion and the fractional derivatives, Phys. Lett. A, 372 (2008), 958–968. https://doi.org/10.1016/j.physleta.2007.08.062 doi: 10.1016/j.physleta.2007.08.062
    [20] V. De Santis, V. Martynyuk, A. Lampasi, M. Fedula, M. D. Ortigueira, Fractional-order circuit models of the human body impedance for compliance tests against contact currents, AEU-Int. J. Electr. Commun., 78 (2017), 238–244. https://doi.org/10.1016/j.aeue.2017.04.035 doi: 10.1016/j.aeue.2017.04.035
    [21] A. H. Salas, M. A. Hammad, B. M. Alotaibi, L. S. El-Sherif, S. A. El-Tantawy, Analytical and numerical approximations to some coupled forced damped duffing oscillators, Symmetry, 14 (2022), 1–13. https://doi.org/10.3390/sym14112286 doi: 10.3390/sym14112286
    [22] I. Talbi, A. Ouannas, A. Khennaoui, A. Berkane, I. M. Batiha, G. Grassi, et al., Different dimensional fractional-order discrete chaotic systems based on the Caputo $h$-difference discrete operator: dynamics, control, and synchronization, Adv. Differ. Equ., 2020 (2020), 1–15. https://doi.org/10.1186/s13662-020-03086-x doi: 10.1186/s13662-020-03086-x
    [23] Q. Wang, Homotopy perturbation method for fractional KdV equation, Appl. Math. Comput., 190 (2007), 1795–1802. https://doi.org/10.1016/j.amc.2007.02.065 doi: 10.1016/j.amc.2007.02.065
    [24] Z. Zlatev, I. Dimov, I. Farago, A. Havasiy, Richardson extrapolation, Berlin, Boston: De Gruyter, 2018. https://doi.org/10.1515/9783110533002
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1285) PDF downloads(61) Cited by(8)

Article outline

Figures and Tables

Figures(2)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog