In this paper, we establish a novel fractional numerical modification of the 5-point classical central formula; called the modified 5-point fractional formula for approximating the first fractional-order derivative in the sense of the Caputo operator. Accordingly, we then introduce a new methodology for Richardson extrapolation depending on the fractional central formula in order to obtain a high accuracy for the gained approximations. We compare the efficiency of the proposed methods by using tables and figures to show their reliability.
Citation: Iqbal M. Batiha, Shameseddin Alshorm, Iqbal Jebril, Amjed Zraiqat, Zaid Momani, Shaher Momani. Modified 5-point fractional formula with Richardson extrapolation[J]. AIMS Mathematics, 2023, 8(4): 9520-9534. doi: 10.3934/math.2023480
In this paper, we establish a novel fractional numerical modification of the 5-point classical central formula; called the modified 5-point fractional formula for approximating the first fractional-order derivative in the sense of the Caputo operator. Accordingly, we then introduce a new methodology for Richardson extrapolation depending on the fractional central formula in order to obtain a high accuracy for the gained approximations. We compare the efficiency of the proposed methods by using tables and figures to show their reliability.
[1] | A. C. Aitken, On interpolation by iteration of proportional parts, without the use of differences, Proc. Edinb. Math. Soc., 3 (1932), 56–76. https://doi.org/10.1017/S0013091500013808 doi: 10.1017/S0013091500013808 |
[2] | W. F. Ames, Numerical methods for partial differential equations, Academic Press, 1992. |
[3] | O. Axelsson, V. A. Barker, Finite element solution of boundary value problems: theory and computation, Academic Press, 1984. |
[4] | R. B. Albadarneh, I. M. Batiha, M. Zurigat, Numerical solutions for linear fractional differential equations of order $1 < \alpha < 2$ using finite difference method (FFDM), Int. J. Math. Comput. Sci., 16 (2016), 103–111. |
[5] | R. B. Albadarneh, I. M. Batiha, A. Adwai, N. Tahat, A. K. Alomari, Numerical approach of Riemann-Liouville fractional derivative operator, Int. J. Electr. Comput. Eng., 11 (2021), 5367–5378. |
[6] | E. L. Allgower, K. Georg, Numerical continuation methods: an introduction, Berlin, Heidelberg: Springer-Verlag, 1990. https://doi.org/10.1007/978-3-642-61257-2 |
[7] | A. V. Aho, J. E. Hopcroft, The design and analysis of computer algorithms, Pearson Education India, 1974. |
[8] | M. Arshad, D. C. Lu, J. Wang, (N+1)-dimensional fractional reduced differential transform method for fractional order partial differential equations, Commun. Nonlinear Sci. Numer. Simul., 48 (2017), 509–519. https://doi.org/10.1016/j.cnsns.2017.01.018 doi: 10.1016/j.cnsns.2017.01.018 |
[9] | U. M. Ascher, R. M. M. Mattheij, R. D. Russell, Numerical solution of boundary value problems for ordinary differential equations, Englewood Cliffs: Prentice-Hall, 1988. |
[10] | I. K. Argyros, F. Szidarovszky, The theory and applications of iteration methods, Boca Raton: CRC Press, 1993. https://doi.org/10.1201/9780203719169 |
[11] | I. Batiha, S. M. Alshorm, I. Jebril, M. A. Hammad, A brief review about fractional calculus, Int. J. Open Problems Complex Anal., 15 (2022), 39–56. |
[12] | I. M. Batiha, S. Alshorm, A. Ouannas, S. Momani, O. Y. Ababneh, M. Albdareen, Modified three-point fractional formulas with Richardson extrapolation, Mathematics, 10 (2022), 1–16. https://doi.org/10.3390/math10193489 doi: 10.3390/math10193489 |
[13] | I. M. Batiha, R. El-Khazali, A. AlSaedi, S. Momani, The general solution of singular fractional-order linear time-invariant continuous systems with regular pencils, Entropy, 20 (2018), 1–14. https://doi.org/10.3390/e20060400 doi: 10.3390/e20060400 |
[14] | R. L. Burden, J. D. Faires, Numerical analysis, 9 Eds., Thomson Brooks/Cole, 2005. |
[15] | R. El-Khazali, I. M. Batiha, S. Momani, Approximation of fractional-order operators, In: Fractional calculus, Singapore: Springer, 2018. https://doi.org/10.1007/978-981-15-0430-3_8 |
[16] | D. C. Joyce, Survey of extrapolation processes in numerical analysis, SIAM Review, 13 (1971), 435–490. https://doi.org/10.1137/1013092 doi: 10.1137/1013092 |
[17] | V. Martynyuk, M. Ortigueira, M. Fedula, O. Savenko, Methodology of electrochemical capacitor quality control with fractional order model, AEU-Int. J. Electr. Commun., 91 (2018), 118–124. https://doi.org/10.1016/j.aeue.2018.05.005 doi: 10.1016/j.aeue.2018.05.005 |
[18] | M. D. Ortigueira, J. T. Machado, Fractional derivatives: The perspective of system theory, Mathematics, 7 (2019), 1–14. https://doi.org/10.3390/math7020150 doi: 10.3390/math7020150 |
[19] | M. D. Ortigueira, A. G. Batista, On the relation between the fractional Brownian motion and the fractional derivatives, Phys. Lett. A, 372 (2008), 958–968. https://doi.org/10.1016/j.physleta.2007.08.062 doi: 10.1016/j.physleta.2007.08.062 |
[20] | V. De Santis, V. Martynyuk, A. Lampasi, M. Fedula, M. D. Ortigueira, Fractional-order circuit models of the human body impedance for compliance tests against contact currents, AEU-Int. J. Electr. Commun., 78 (2017), 238–244. https://doi.org/10.1016/j.aeue.2017.04.035 doi: 10.1016/j.aeue.2017.04.035 |
[21] | A. H. Salas, M. A. Hammad, B. M. Alotaibi, L. S. El-Sherif, S. A. El-Tantawy, Analytical and numerical approximations to some coupled forced damped duffing oscillators, Symmetry, 14 (2022), 1–13. https://doi.org/10.3390/sym14112286 doi: 10.3390/sym14112286 |
[22] | I. Talbi, A. Ouannas, A. Khennaoui, A. Berkane, I. M. Batiha, G. Grassi, et al., Different dimensional fractional-order discrete chaotic systems based on the Caputo $h$-difference discrete operator: dynamics, control, and synchronization, Adv. Differ. Equ., 2020 (2020), 1–15. https://doi.org/10.1186/s13662-020-03086-x doi: 10.1186/s13662-020-03086-x |
[23] | Q. Wang, Homotopy perturbation method for fractional KdV equation, Appl. Math. Comput., 190 (2007), 1795–1802. https://doi.org/10.1016/j.amc.2007.02.065 doi: 10.1016/j.amc.2007.02.065 |
[24] | Z. Zlatev, I. Dimov, I. Farago, A. Havasiy, Richardson extrapolation, Berlin, Boston: De Gruyter, 2018. https://doi.org/10.1515/9783110533002 |