We study the existence and nonexistence of weak solutions to a semilinear higher order (in time) evolution inequality involving a convection term in the exterior of the half-ball, under Dirichlet-type boundary conditions. A weight function of the form $ |x|^a $ is allowed in front of the power nonlinearity. When $ a > -2 $, we show that the dividing line with respect to existence or nonexistence is given by a critical exponent (Fujita critical exponent), which depends on the parameters of the problem, but independent of the order of the time-derivative. Our study yields naturally optimal nonexistence results for the corresponding stationary problem.
Citation: Ibtehal Alazman, Ibtisam Aldawish, Mohamed Jleli, Bessem Samet. A higher order evolution inequality with a gradient term in the exterior of the half-ball[J]. AIMS Mathematics, 2023, 8(4): 9230-9246. doi: 10.3934/math.2023463
We study the existence and nonexistence of weak solutions to a semilinear higher order (in time) evolution inequality involving a convection term in the exterior of the half-ball, under Dirichlet-type boundary conditions. A weight function of the form $ |x|^a $ is allowed in front of the power nonlinearity. When $ a > -2 $, we show that the dividing line with respect to existence or nonexistence is given by a critical exponent (Fujita critical exponent), which depends on the parameters of the problem, but independent of the order of the time-derivative. Our study yields naturally optimal nonexistence results for the corresponding stationary problem.
[1] | A. El Hamidi, G. G. Laptev, Existence and nonexistence results for higher-order semilinear evolution inequalities with critical potential, J. Math. Anal. Appl., 304 (2005), 451–463. https://doi.org/10.1016/j.jmaa.2004.09.019 doi: 10.1016/j.jmaa.2004.09.019 |
[2] | G. Caristi, Nonexistence of global solutions of higher order evolution inequalities in $\mathbb{R}^N$, In Nonlinear Equations: Methods, Models and Applications, Part of the Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, Basel, 54 (2003), 91–105. |
[3] | R. Filippucci, M. Ghergu, Higher order evolution inequalities with nonlinear convolution terms, Nonlinear Anal., 221 (2022), 112881. https://doi.org/10.1016/j.na.2022.112881 doi: 10.1016/j.na.2022.112881 |
[4] | M. Jleli, B. Samet, C. Vetro, Nonexistence of solutions to higher order evolution inequalities with nonlocal source term on Riemannian manifolds, Complex Var. Elliptic, 2022, 1–18. https://doi.org/10.1080/17476933.2022.2061474 doi: 10.1080/17476933.2022.2061474 |
[5] | G. G. Laptev, Some nonexistence results for higher-order evolution inequalities in cone-like domains, Electron. Res. Announc., 7 (2001), 87–93. https://doi.org/10.1090/S1079-6762-01-00098-1 doi: 10.1090/S1079-6762-01-00098-1 |
[6] | G. G. Laptev, Nonexistence results for higher-order evolution partial differential inequalities, P. Am. Math. Soc., 131 (2003), 415–423. https://doi.org/10.1090/S0002-9939-02-06665-0 doi: 10.1090/S0002-9939-02-06665-0 |
[7] | E. Mitidieri, S. I. Pohozaev, A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities, P. Steklov I. Math., 234 (2001), 1–383. |
[8] | S. Zheng, C. Wang, Large time behaviour of solutions to a class of quasilinear parabolic equations with convection terms, Nonlinearity, 21 (2008), 2179–2200. |
[9] | P. Meier, On the critical exponent for reaction-diffusion equations, Arch. Ration. Mech. An., 109 (1990), 63–71. https://doi.org/10.1007/BF00377979 doi: 10.1007/BF00377979 |
[10] | Y. Na, M. Zhou, X. Zhou, G. Gai, Blow-up theorems of Fujita type for a semilinear parabolic equation with a gradient term, Adv. Differ. Equ., 128 (2018), 1–12. https://doi.org/10.1186/s13662-018-1582-2 doi: 10.1186/s13662-018-1582-2 |
[11] | M. Zhou, Y. Leng, Existence and nonexistence of the solutions to the Cauchy problem of quasilinear parabolic equation with a gradient term, Lith. Math. J., 61 (2021), 123–142. https://doi.org/10.1007/s10986-021-09511-2 doi: 10.1007/s10986-021-09511-2 |
[12] | Q. Zhou, Y. Nie, X. Han, Large time behavior of solutions to semilinear parabolic equations with gradient, J. Dyn. Control Syst., 22 (2016), 191–205. https://doi.org/10.1007/s10883-015-9294-3 doi: 10.1007/s10883-015-9294-3 |
[13] | C. Wang, S. Zheng, Z. Wang, Critical Fujita exponents for a class of quasilinear equations with homogeneous Neumann boundary data, Nonlinearity, 20 (2007), 1343–1359. |
[14] | M. Jleli, B. Samet, Y. Sun, Higher order evolution inequalities with convection terms in an exterior domain of $\mathbb{R}^N$, J. Math. Anal. Appl., 519 (2023), 126738. https://doi.org/10.1016/j.jmaa.2022.126738 doi: 10.1016/j.jmaa.2022.126738 |
[15] | M. Jleli, B. Samet, Nonexistence results for systems of parabolic differential inequalities in 2D exterior domains, Asymptotic Anal., 113 (2019), 29–49. |
[16] | M. Jleli, B. Samet, D. Ye, Critical criteria of Fujita type for a system of inhomogeneous wave inequalities in exterior domains, J. Differ. Equations, 268 (2019), 3035–3056. https://doi.org/10.1016/j.jde.2019.09.051 doi: 10.1016/j.jde.2019.09.051 |
[17] | Y. Sun, The absence of global positive solutions to semilinear parabolic differential inequalities in exterior domain, P. Am. Math. Soc., 145 (2017), 3455–3464. https://doi.org/10.1090/proc/13472 doi: 10.1090/proc/13472 |
[18] | Y. Sun, Nonexistence results for systems of elliptic and parabolic differential inequalities in exterior domains of $\mathbb{R}^N$, Pac. J. Math., 293 (2018), 245–256. |
[19] | Q. S. Zhang, A general blow-up result on nonlinear boundary-value problems on exterior domains, P. Roy. Soc. Edinb. A, 131 (2001), 451–475. https://doi.org/10.1017/S0308210500000950 doi: 10.1017/S0308210500000950 |
[20] | Y. Gao, J. G. Liu, J. Lu, Weak solution of a continuum model for vicinal surface in the attachment-detachment-limited regime, SIAM J. Math. Anal., 49 (2017), 1705–1731. https://doi.org/10.1137/16M1094543 doi: 10.1137/16M1094543 |
[21] | Y. Gao, J. G. Liu, X. Y. Lu, Gradient flow approach to an exponential thin film equation: Global existence and latent singularity, ESAIM Contr. Optim. Ca., 25 (2019), 49. https://doi.org/10.1051/cocv/2018037 doi: 10.1051/cocv/2018037 |
[22] | Y. Gao, Global strong solution with BV derivatives to singular solid-on-solid model with exponential nonlinearity, J. Differ. Equations, 267 (2019), 4429–4447. https://doi.org/10.1016/j.jde.2019.05.011 doi: 10.1016/j.jde.2019.05.011 |
[23] | Y. Gao, J. G. Liu, X. Y. Lu, X. Xu, Maximal monotone operator theory and its applications to thin film equation in epitaxial growth on vicinal surface, Calc. Var. Partial Dif., 57 (2018), 1–21. https://doi.org/10.1007/s00526-018-1326-x doi: 10.1007/s00526-018-1326-x |