Research article Special Issues

A higher order evolution inequality with a gradient term in the exterior of the half-ball

  • Received: 29 October 2022 Revised: 18 January 2023 Accepted: 29 January 2023 Published: 14 February 2023
  • MSC : 35R45, 35B44, 35B33

  • We study the existence and nonexistence of weak solutions to a semilinear higher order (in time) evolution inequality involving a convection term in the exterior of the half-ball, under Dirichlet-type boundary conditions. A weight function of the form $ |x|^a $ is allowed in front of the power nonlinearity. When $ a > -2 $, we show that the dividing line with respect to existence or nonexistence is given by a critical exponent (Fujita critical exponent), which depends on the parameters of the problem, but independent of the order of the time-derivative. Our study yields naturally optimal nonexistence results for the corresponding stationary problem.

    Citation: Ibtehal Alazman, Ibtisam Aldawish, Mohamed Jleli, Bessem Samet. A higher order evolution inequality with a gradient term in the exterior of the half-ball[J]. AIMS Mathematics, 2023, 8(4): 9230-9246. doi: 10.3934/math.2023463

    Related Papers:

  • We study the existence and nonexistence of weak solutions to a semilinear higher order (in time) evolution inequality involving a convection term in the exterior of the half-ball, under Dirichlet-type boundary conditions. A weight function of the form $ |x|^a $ is allowed in front of the power nonlinearity. When $ a > -2 $, we show that the dividing line with respect to existence or nonexistence is given by a critical exponent (Fujita critical exponent), which depends on the parameters of the problem, but independent of the order of the time-derivative. Our study yields naturally optimal nonexistence results for the corresponding stationary problem.



    加载中


    [1] A. El Hamidi, G. G. Laptev, Existence and nonexistence results for higher-order semilinear evolution inequalities with critical potential, J. Math. Anal. Appl., 304 (2005), 451–463. https://doi.org/10.1016/j.jmaa.2004.09.019 doi: 10.1016/j.jmaa.2004.09.019
    [2] G. Caristi, Nonexistence of global solutions of higher order evolution inequalities in $\mathbb{R}^N$, In Nonlinear Equations: Methods, Models and Applications, Part of the Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, Basel, 54 (2003), 91–105.
    [3] R. Filippucci, M. Ghergu, Higher order evolution inequalities with nonlinear convolution terms, Nonlinear Anal., 221 (2022), 112881. https://doi.org/10.1016/j.na.2022.112881 doi: 10.1016/j.na.2022.112881
    [4] M. Jleli, B. Samet, C. Vetro, Nonexistence of solutions to higher order evolution inequalities with nonlocal source term on Riemannian manifolds, Complex Var. Elliptic, 2022, 1–18. https://doi.org/10.1080/17476933.2022.2061474 doi: 10.1080/17476933.2022.2061474
    [5] G. G. Laptev, Some nonexistence results for higher-order evolution inequalities in cone-like domains, Electron. Res. Announc., 7 (2001), 87–93. https://doi.org/10.1090/S1079-6762-01-00098-1 doi: 10.1090/S1079-6762-01-00098-1
    [6] G. G. Laptev, Nonexistence results for higher-order evolution partial differential inequalities, P. Am. Math. Soc., 131 (2003), 415–423. https://doi.org/10.1090/S0002-9939-02-06665-0 doi: 10.1090/S0002-9939-02-06665-0
    [7] E. Mitidieri, S. I. Pohozaev, A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities, P. Steklov I. Math., 234 (2001), 1–383.
    [8] S. Zheng, C. Wang, Large time behaviour of solutions to a class of quasilinear parabolic equations with convection terms, Nonlinearity, 21 (2008), 2179–2200.
    [9] P. Meier, On the critical exponent for reaction-diffusion equations, Arch. Ration. Mech. An., 109 (1990), 63–71. https://doi.org/10.1007/BF00377979 doi: 10.1007/BF00377979
    [10] Y. Na, M. Zhou, X. Zhou, G. Gai, Blow-up theorems of Fujita type for a semilinear parabolic equation with a gradient term, Adv. Differ. Equ., 128 (2018), 1–12. https://doi.org/10.1186/s13662-018-1582-2 doi: 10.1186/s13662-018-1582-2
    [11] M. Zhou, Y. Leng, Existence and nonexistence of the solutions to the Cauchy problem of quasilinear parabolic equation with a gradient term, Lith. Math. J., 61 (2021), 123–142. https://doi.org/10.1007/s10986-021-09511-2 doi: 10.1007/s10986-021-09511-2
    [12] Q. Zhou, Y. Nie, X. Han, Large time behavior of solutions to semilinear parabolic equations with gradient, J. Dyn. Control Syst., 22 (2016), 191–205. https://doi.org/10.1007/s10883-015-9294-3 doi: 10.1007/s10883-015-9294-3
    [13] C. Wang, S. Zheng, Z. Wang, Critical Fujita exponents for a class of quasilinear equations with homogeneous Neumann boundary data, Nonlinearity, 20 (2007), 1343–1359.
    [14] M. Jleli, B. Samet, Y. Sun, Higher order evolution inequalities with convection terms in an exterior domain of $\mathbb{R}^N$, J. Math. Anal. Appl., 519 (2023), 126738. https://doi.org/10.1016/j.jmaa.2022.126738 doi: 10.1016/j.jmaa.2022.126738
    [15] M. Jleli, B. Samet, Nonexistence results for systems of parabolic differential inequalities in 2D exterior domains, Asymptotic Anal., 113 (2019), 29–49.
    [16] M. Jleli, B. Samet, D. Ye, Critical criteria of Fujita type for a system of inhomogeneous wave inequalities in exterior domains, J. Differ. Equations, 268 (2019), 3035–3056. https://doi.org/10.1016/j.jde.2019.09.051 doi: 10.1016/j.jde.2019.09.051
    [17] Y. Sun, The absence of global positive solutions to semilinear parabolic differential inequalities in exterior domain, P. Am. Math. Soc., 145 (2017), 3455–3464. https://doi.org/10.1090/proc/13472 doi: 10.1090/proc/13472
    [18] Y. Sun, Nonexistence results for systems of elliptic and parabolic differential inequalities in exterior domains of $\mathbb{R}^N$, Pac. J. Math., 293 (2018), 245–256.
    [19] Q. S. Zhang, A general blow-up result on nonlinear boundary-value problems on exterior domains, P. Roy. Soc. Edinb. A, 131 (2001), 451–475. https://doi.org/10.1017/S0308210500000950 doi: 10.1017/S0308210500000950
    [20] Y. Gao, J. G. Liu, J. Lu, Weak solution of a continuum model for vicinal surface in the attachment-detachment-limited regime, SIAM J. Math. Anal., 49 (2017), 1705–1731. https://doi.org/10.1137/16M1094543 doi: 10.1137/16M1094543
    [21] Y. Gao, J. G. Liu, X. Y. Lu, Gradient flow approach to an exponential thin film equation: Global existence and latent singularity, ESAIM Contr. Optim. Ca., 25 (2019), 49. https://doi.org/10.1051/cocv/2018037 doi: 10.1051/cocv/2018037
    [22] Y. Gao, Global strong solution with BV derivatives to singular solid-on-solid model with exponential nonlinearity, J. Differ. Equations, 267 (2019), 4429–4447. https://doi.org/10.1016/j.jde.2019.05.011 doi: 10.1016/j.jde.2019.05.011
    [23] Y. Gao, J. G. Liu, X. Y. Lu, X. Xu, Maximal monotone operator theory and its applications to thin film equation in epitaxial growth on vicinal surface, Calc. Var. Partial Dif., 57 (2018), 1–21. https://doi.org/10.1007/s00526-018-1326-x doi: 10.1007/s00526-018-1326-x
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(966) PDF downloads(47) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog