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1. Introduction

Let Ω = {x ∈ RN
+ : |x| ≥ 1}, RN

+ = {x = (x1, x2, · · · , xN) ∈ RN : xN > 0} and N ≥ 2. The boundary of
Ω is denoted by

∂Ω =

1⋃
i=0

Γi,

where Γ0 = {x ∈ Ω : xN = 0} and Γ1 = {x ∈ Ω : xN > 0, |x| = 1}. We are concerned with the existence
an nonexistence of weak solutions to the evolution inequality

∂ku
∂tk − ∆(|u|m−1u) +

µ

|x|2
x · ∇(|u|m−1u) ≥ |x|a|u|p in (0,∞) ×Ω, (1.1)
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where u = u(t, x), k ≥ 1 is an integer, p > m ≥ 1, µ, a ∈ R and · is the inner product inRN . Problem (1.1)
is considered under the Dirichlet-type boundary conditions{

u ≥ 0 on (0,∞) × Γ0,

|u|m−1u ≥ f on (0,∞) × Γ1,
(1.2)

where f = f (x).
The issue of existence and nonexistence of solutions to higher order (in time) evolution inequalities

has been studied in several papers. For instance, Hamidi and Laptev [1] investigated the nonexistence
of weak solutions to higher-order evolution inequalities of the form

∂ku
∂tk − ∆u +

λ

|x|2
u ≥ |u|p in (0,∞) × RN ,

∂k−1u
∂tk−1 (0, x) ≥ 0 in RN ,

(1.3)

where N ≥ 3, λ ≥ −
(

N−2
2

)2
and p > 1. Namely, it was shown that, if one of the following assumptions

is satisfied:
λ ≥ 0, 1 < p ≤ 1 +

2
2
k + s∗

;

or

−

(
N − 2

2

)2

≤ λ < 0, 1 < p ≤ 1 +
2

2
k − s∗

,

where

s∗ =
N − 2

2
+

√
λ +

(
N − 2

2

)2

, s∗ = s∗ + 2 − N,

then (1.3) admits no nontrivial weak solution. In [2], Caristi considered evolution inequalities of the
form

∂ku
∂tk − |x|

σ∆mu ≥ |u|q in (0,∞) × RN , (1.4)

where m is a positive integer, q > 1 and σ ≤ 2m. In the case σ = 2m (critical degeneracy case) it
was proven that, if k ≥ 2, ∂k−1u

∂tk−1 (0, ·)|x|−N ∈ L1(RN) with a positive average, and one of the following
conditions holds:

(i) N , 2( j + 1) for j = 0,m − 1 and 1 < q ≤ k + 1;
(ii) N = 2( j + 1) with j = 0, · · · ,m − 1 and q > 1,

then (1.4) has no weak solution. In the case σ < 2m (the subcritical degeneracy case), it was shown
that, if k ≥ 2, ∂ ju

∂t j (0, ·)|x|−σ ∈ L1
loc(R

N) for j = 0, k − 2, ∂k−1u
∂tk−1 (0, ·)|x|−σ ∈ L1(RN) with a positive average,

and
q (k(N − 2m) + 2m − σ) ≤ Nk + 2m − σ(k + 1),

then (1.4) has no weak solution. Very recently, Filippucci and Ghergu [3] investigated evolution
inequalities of the form

∂ku
∂tk + (−∆)mu ≥ (K ∗ |u|p)|u|q, in (0,∞) × RN , (1.5)
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where N, k,m ≥ 1 are integers, p, q > 0 and K ∈ C(R+,R+) satisfies: K(|x|) ∈ L1
loc(R

N) and inf
0<r<R

K(r) =

K(R) for sufficiently large R. Namely, the authors proved the following results:

(i) If k is an even integer and q ≥ 1, then (1.5) admits some positive solutions u ∈ C∞((0,∞) × RN)
which verify ∂k−1u

∂tk−1 (0, ·) < 0 in RN;
(ii) If p + q > 2 and

lim sup
R→∞

K(R)R
2N+ 2m

k
p+q −N+2m(1− 1

k ) > 0,

then (1.5) has no nontrivial solutions such that

∂k−1u
∂tk−1 ≥ 0; or

∂k−1u
∂tk−1 (0, ·) ∈ L1(RN),

∫
RN

∂k−1u
∂tk−1 (0, x) dx > 0.

Other contributions related to higher order (in time) evolution equations and inequalities can be found
in [4–7].

In [8], Zheng and Wang studied the large time behavior of nonnegative solutions to parabolic
equations of the form

∂u
∂t
− ∆um − λ

x
|x|2
· ∇um = |x|σup (u ≥ 0) in (0,∞) × RN\ω, (1.6)

where k ∈ R, σ > −2, p > m ≥ 1 and ω is a bounded domain in RN containing the origin with a smooth
boundary ∂ω. Problem (1.6) was investigated under the homogeneous Neumann boundary condition

∂um

∂ν
(t, x) = 0 on (0,∞) × ∂ω (1.7)

and the homogeneous Dirichlet boundary condition

u(t, x) = 0 on (0,∞) × ∂ω. (1.8)

For problem (1.6) under the boundary condition (1.7), it was shown that (under a certain regularity on
the geometry of ω)

p∗ =

{
m + σ+2

N+λ
, if λ > −N,

∞, if λ ≤ −N
(1.9)

is critical in the sense of Fujita. When λ > 2 − N, it was proven that problem (1.6) under the
boundary condition (1.8), admits the same Fujita critical exponent p∗. Other contributions related
to parabolic equations involving terms of the form b(x) · ∇um can be found in [9–13] (see also the
references therein). Notice that in all the above mentioned references, only the parabolic case has been
treated. Moreover, the considered solutions have been assumed to be positive. Very recently, in [14],
the authors considered evolution inequalities of the form

∂ku
∂tk − ∆(|u|m−1u) − λ

x
|x|2
· ∇(|u|m−1u) ≥ |x|σ|u|p in (0,∞) × Bc

1, (1.10)

under different types of boundary conditions, where p > m ≥ 1 , B1 denotes the open ball of radius 1
centered at the origin point in RN with N ≥ 2 and Bc

1 denotes the complement of B1. For instance,
under the Dirichlet-type boundary condition

|u(t, x)|m−1u(t, x) ≥ f (x) on (0,∞) × ∂B1,
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where f ∈ L1(∂B1) has a positive average, the authors proved that when σ > −2, (1.10) admits as Fujita
critical exponent

pcr =

 m +
m(σ + 2)
λ + N − 2

if λ > 2 − N,

∞ if λ ≤ 2 − N.

More precisely, the authors proved the following results:

(i) If λ ≤ 2 − N and f ∈ L1(∂B1) has a positive average, then for all p > m, (1.10) admits no weak
solution;

(ii) If λ > 2 − N and f ∈ L1(∂B1) has a positive average, then for all m < p ≤ pcr, (1.10) admits no
weak solution;

(iii) If λ > 2 − N and p > pcr, then (1.10) admits (stationary) solutions for some f > 0.

For more contributions related to the issue of existence and nonexistence of solutions to evolution
equations and inequalities in exterior domains, see e.g., [15–19].

Our aim in this paper is to study the influence of the obstacle domain on the critical behavior
of (1.10) by considering the half-unit ball instead of the unit ball. Before presenting our main results,
we need to define weak solutions to (1.1) and (1.2).

Let
D = (0,∞) ×Ω and ∂Di = (0,∞) × Γi, i = 0, 1.

Notice that ∂Di ⊂ D for all i = 0, 1. We introduce the functional space V defined as follows.

Definition 1.1. A function ϕ = ϕ(t, x) belongs to V, if the following conditions are satisfied:

(i) ϕ ∈ Ck,2
t,x (D), ϕ ≥ 0;

(ii) supp(ϕ) ⊂⊂ D;
(iii) ϕ = 0 on ∂Di, i = 0, 1;

(iv)
∂ϕ

∂νi
≤ 0 on ∂Di, i = 0, 1, where νi denotes the outward unit normal vector on Γi, relative to D.

Using standard integrations by parts, we define weak solutions to (1.1) and (1.2) as follows.

Definition 1.2. We say that u ∈ Lp
loc(D) is a weak solutions to (1.1) and (1.2), if∫

D
|x|a|u|pϕ dx dt −

∫
∂D1

∂ϕ

∂ν1
f (x) dσ dt

≤ (−1)k
∫

D
u
∂kϕ

∂tk dx dt −
∫

D
|u|m−1u

(
∆ϕ + µ div

(
ϕx
|x|2

))
dx dt

(1.11)

for every ϕ ∈ V.

For µ ∈ R, let us introduce the parameter

αµ = −
N + µ

2
+

√
µ +

(N − µ
2

)2

. (1.12)

Our main results are stated in the following theorem.
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Theorem 1.3. Let N ≥ 2, k ≥ 1 (an integer) and µ, a ∈ R.

(I) Let f ∈ L1(Γ1) be such that ∫
Γ1

f (x)xN dσ > 0. (1.13)

Assume that
p > m, (αµ + N − 1)p − m(αµ + 1 + a + N) ≤ 0. (1.14)

Then (1.1) and (1.2) admits no weak solution.
(II) If

p > m, (αµ + N − 1)p − m(αµ + 1 + a + N) > 0, (1.15)

then (1.1) and (1.2) admits (stationary ) solutions in the sense of Definition 1.2, for some f > 0.

The proof of part (I) of Theorem 1.3 is based on nonlinear capacity estimates specifically adapted
to the domain, the operator −∆ +

µ

|x|2 x · ∇ and the boundary conditions (1.2). Part (II) is established by
the construction of expilicit solutions.
Remark 1.4. (i) Let us point out that the used method in [8] for proving the blow-up of solutions to (1.6)
requires the positivity of u. Namely, the authors used that functions of the form

` 7→ w`(t) :=
∫
RN\ω

u(t, x)ψl(|x|) dx

are nondecreasing for sufficiently large `, where ψ` ≥ 0 is a certain cut-off function. In this paper, no
restriction on the sign of solutions is imposed. Moreover, even in the case of positive solutions, it is
difficult to use the method in [8] for proving the blow-up of solutions in the hyperbolic case. Namely, in
order to show the blow-up of solutions to (1.6), the authors proved that the function w` defined above,
satisfies the differential inequality

dw`

dt
≥ γwp

` ,

for a certain constant γ > 0. A such inequality is related essentially to the parabolic nature of the
problem.
(ii) The emphasis of this paper is on blow up results. The existence result provided by part (II) of
Theorem 1.3 is a consequence of elliptic results. We refer to [20, 21], where some regularization
methods to deal with the degeneracy were used to obtain the strong solution with latent singularity. We
refer also to [22, 23], where global solutions have been obtained following the standard gradient flow
method. It will be interested to see if such methods can be adapted to the case of problem (1.1).
(iii) It is not difficult to show that for all µ ∈ R, one has

αµ + N − 1 > 0.

Hence, (1.14) is equivalent to

m < p ≤ m +
m(a + 2)
αµ + N − 1

, a > −2.

(iv) From the above remark, we observe that (1.15) is equivalent to

a ≤ −2; or p > m +
m(a + 2)
αµ + N − 1

, a > −2.
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Remark 1.5. (i) From Remark 1.4, we deduce that, if a ≤ −2, then (1.1) and (1.2) admits no critical
behavior. However, if a > −2, then (1.1) and (1.2) admits as Fujita critical exponent the real number

p∗ = p∗(m, a, µ,N) = m +
m(a + 2)
αµ + N − 1

.

(ii) It is interesting to observe that p∗ is independent on k. This implies that Theorem 1.3 holds true in
the parabolic (k = 1) as well as hyperbolic (k = 2) case.

Clearly, Theorem 1.3 yields existence and nonexistence results for the corresponding stationary
problem

− ∆(|u|m−1u) +
µ

|x|2
x · ∇(|u|m−1u) ≥ |x|a|u|p in Ω (1.16)

under the Dirichlet-type boundary conditions{
u ≥ 0 on Γ0,

|u|m−1u ≥ f on Γ1.
(1.17)

Corollary 1.6. Let N ≥ 2 and µ, a ∈ R.

(I) Let f ∈ L1(Γ1) be such that (1.13) holds. If (1.14) is satisfied, then (1.16) and (1.17) admits no
weak solution.

(II) If (1.15) holds, then (1.16) and (1.17) admits solutions for some f > 0.

The rest of the paper is organized as follows. In Section 2, we establish some preliminary lemmas
that will be useful in the proof of our main results. Namely, we first prove an a priori estimate for
problems (1.1) and (1.2). Next, we construct two families of functions belonging to V. The first family
will be used in the proof of part (I) of Theorem 1.3 in the case (αµ + N − 1)p −m(αµ + 1 + a + N) < 0,
and the second family will be used in the proof of the critical case (αµ+N−1)p−m(αµ+1+a+N) = 0.
Finally, Section 3 is devoted to the proof of Theorem 1.3.

Throughout this paper, the letters C,Ci denote always generic positive constants whose values are
unimportant and may vary at different occurrences.

2. Preliminaries

Let N ≥ 2, k ≥ 1 (an integer), p > m ≥ 1, µ, a ∈ R and f ∈ L1(Γ1). We denote by Lµ the differential
operator given by

Lµφ = ∆φ + µ div
(
φx
|x|2

)
.

2.1. A priori estimate

For ϕ ∈ V, we introduce the integral terms

ω1(ϕ) =

∫
supp(ϕ)

|x|
−a
p−1ϕ

−1
p−1

∣∣∣∣∣∣∂kϕ

∂tk

∣∣∣∣∣∣
p

p−1

dx dt (2.1)

and
ω2(ϕ) =

∫
supp(ϕ)

|x|
−am
p−mϕ

−m
p−m |Lµϕ|

p
p−m dx dt. (2.2)

We have the following a priori estimate.
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Lemma 2.1. Let u ∈ Lp
loc(D) be a weak solution to (1.1) and (1.2). Then

−

∫
∂D1

∂ϕ

∂ν1
f (x) dσ dt ≤ C

2∑
i=1

ωi(ϕ), (2.3)

for every ϕ ∈ V, provided that ωi(ϕ) < ∞, i = 1, 2.

Proof. Let u ∈ Lp
loc(D) be a weak solution to (1.1) and (1.2) and ϕ ∈ V be such that ωi(ϕ) < ∞, i = 1, 2.

Then, by (1.11), there holds∫
D
|x|a|u|pϕ dx dt −

∫
∂D1

∂ϕ

∂ν1
f (x) dσ dt ≤

∫
D
|u|

∣∣∣∣∣∣∂kϕ

∂tk

∣∣∣∣∣∣ dx dt +

∫
D
|u|m|Lµϕ| dx dt. (2.4)

Making use of Young’s inequality, we obtain∫
D
|u|

∣∣∣∣∣∣∂kϕ

∂tk

∣∣∣∣∣∣ dx dt =

∫
D

(
|x|

a
p |u|ϕ

1
p
) (
|x|

−a
p ϕ

−1
p

∣∣∣∣∣∣∂kϕ

∂tk

∣∣∣∣∣∣
)

dx dt

≤
1
2

∫
D
|x|a|u|pϕ dx dt + Cω1(ϕ). (2.5)

Similarly, we obtain ∫
D
|u|m|Lµϕ| dx dt ≤

1
2

∫
D
|x|a|u|pϕ dx dt + Cω2(ϕ). (2.6)

Therefore, combining (2.4)–(2.6), we obtain (2.3). �

2.2. Construction of families of functions belonging to V

Let us introduce the function

F(x) = xN |x|αµ
(
1 − |x|−(N+µ)−2αµ

)
, x ∈ Ω, (2.7)

where the parameter αµ is given by (1.12). Elementary calculations show that

F ≥ 0, LµF = 0 in Ω, F|Γ0∪Γ1 = 0 (2.8)

and
∂F
∂ν1
|Γ1 = −(N + µ + 2αµ)xN < 0,

∂F
∂ν0
|Γ0 = −|x|αµ

(
1 − |x|−(N+µ)−2αµ

)
< 0. (2.9)

Let ξ, ϑ, ι ∈ C∞(R) be three cut-off functions satisfying respectively

0 ≤ ξ ≤ 1, ξ(s) = 1 if |s| ≤ 1, ξ(s) = 0 if |s| ≥ 2, (2.10)

0 ≤ ϑ ≤ 1, ϑ(s) = 1 if s ≤ 0, ϑ(s) = 0 if s ≥ 1 (2.11)

and
ι ≥ 0, supp(ι) ⊂⊂ (0, 1). (2.12)
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For sufficiently large T,R and `, let

ιT (t) = ι`
( t
T

)
, t > 0, (2.13)

ξR(x) = F(x)ξ`
(
|x|2

R2

)
, x ∈ Ω, (2.14)

ϑR(x) = F(x)ϑ`
 ln

(
|x|
√

R

)
ln(
√

R)

 , x ∈ Ω. (2.15)

Next, we consider functions of the form

ϕ(t, x) = ιT (t)ξR(x), (t, x) ∈ D (2.16)

and
ψ(t, x) = ιT (t)ϑR(x), (t, x) ∈ D. (2.17)

Lemma 2.2. For sufficiently large T,R and `, the function ϕ defined by (2.16) belongs to V.

Proof. By (2.8), (2.10), (2.12)–(2.14) and (2.16), it can be easily seen that properties (i)–(iii) of
Definition 1.1 are satisfied. Moreover, for (t, x) ∈ ∂Di, i = 0, 1, one has

∂ϕ

∂νi
(t, x) = ιT (t)

∂ξR

∂νi
(x)

= ιT (t)
∂F
∂νi

(x), (2.18)

which implies by (2.9) that
∂ϕ

∂νi
(t, x) ≤ 0, (t, x) ∈ ∂Di.

This shows that property (iv) of Definition 1.1 is also satisfied. Therefore, ϕ ∈ V. �

Similarly, using (2.8), (2.9), (2.11), (2.12), (2.15) and (2.17), we obtain the following result.

Lemma 2.3. For sufficiently large T,R and `, the function ψ defined by (2.17) belongs to V.

2.3. Estimates of ωi(ϕ)

For sufficiently large T,R and `, let ϕ be the function defined by (2.16).

Lemma 2.4. The following estimate holds:

ω1(ϕ) ≤ CT 1− kp
p−1

(
ln R + Rαµ−

a
p−1 +N+1

)
. (2.19)

Proof. By (2.1) and (2.16), we obtain

ω1(ϕ) =

∫ T

0
ι
−1
p−1

T

∣∣∣∣∣∣dkιT
dtk

∣∣∣∣∣∣
p

p−1

dt

 (∫
1<|x|<

√
2R, xN>0

|x|
−a
p−1 ξR(x) dx

)
. (2.20)
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On the other hand, by (2.12) and (2.13), we obtain∣∣∣∣∣∣dkιT
dtk

∣∣∣∣∣∣ ≤ CT−kι`−k
( t
T

)
, 0 < t < T,

which yields ∫ T

0
ι
−1
p−1

T

∣∣∣∣∣∣dkιT
dtk

∣∣∣∣∣∣
p

p−1

dt ≤ CT
−kp
p−1

∫ T

0
ι`−

kp
p−1

( t
T

)
dt

= CT 1− kp
p−1

∫ 1

0
ι`−

kp
p−1 (s) ds,

that is, ∫ T

0
ι
−1
p−1

T

∣∣∣∣∣∣dkιT
dtk

∣∣∣∣∣∣
p

p−1

dt ≤ CT 1− kp
p−1 . (2.21)

Moreover, by (2.14), we have∫
1<|x|<

√
2R, xN>0

|x|
−a
p−1 ξR(x) dx =

∫
1<|x|<

√
2R, xN>0

|x|
−a
p−1 F(x)ξ`

(
|x|2

R2

)
dx. (2.22)

Using (2.7) and (2.10), we obtain∫
1<|x|<

√
2R, xN>0

|x|
−a
p−1 F(x)ξ`

(
|x|2

R2

)
dx ≤

∫
1<|x|<

√
2R, xN>0

|x|
−a
p−1 F(x) dx

≤

∫
1<|x|<

√
2R
|x|αµ+1− a

p−1 dx

= C
∫ √

2R

r=1
rαµ−

a
p−1 +N dr

≤ C
(
ln R + Rαµ−

a
p−1 +N+1

)
. (2.23)

Hence, in view of (2.20)–(2.23), we obtain (2.19). �

Lemma 2.5. The following estimate holds:

ω2(ϕ) ≤ CTR
(αµ+N−1)p−m(αµ+1+a+N)

p−m . (2.24)

Proof. By (2.2) and (2.16), we have

ω2(ϕ) =

(∫ T

0
ιT dt

) (∫
1<|x|<

√
2R, xN>0

|x|
−am
p−m ξ

−m
p−m

R |LµξR|
p

p−m dx
)
. (2.25)

By (2.13), we obtain ∫ T

0
ιT dt =

∫ T

0
ι`

( t
T

)
dt

= T
∫ 1

0
ι`(s) ds,

that is,
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0
ιT dt = CT. (2.26)

Moreover, by (2.14), for < |x| <
√

2R, xN > 0, we have

LµξR(x)

= Lµ

(
F(x)ξ`

(
|x|2

R2

))

= ∆

(
F(x)ξ`

(
|x|2

R2

))
+ µ div

 (F(x)ξ`
(
|x|2

R2

)
x

|x|2


= ξ`

(
|x|2

R2

)
∆F(x) + F(x)∆

(
ξ`

(
|x|2

R2

))
+ 2∇F(x) · ∇

(
ξ`

(
|x|2

R2

))
+ µξ`

(
|x|2

R2

)
div

(
F(x)x
|x|2

)
+

F(x)
|x|2

x · ∇
(
ξ`

(
|x|2

R2

))
= ξ`

(
|x|2

R2

)
LµF(x) + F(x)∆

(
ξ`

(
|x|2

R2

))
+

(
2∇F(x) +

F(x)
|x|2

x
)
· ∇

(
ξ`

(
|x|2

R2

))
= ξ`

(
|x|2

R2

)
LµF(x) + F(x)∆

(
ξ`

(
|x|2

R2

))
+ 2`R−2|x|ξ`−1

(
|x|2

R2

)
ξ′

(
|x|2

R2

) (
2∇F(x) ·

x
|x|

+ |x|−1F(x)
)
.

In view of (2.8) (LµF = 0), we obtain

LµξR(x) = F(x)∆
(
ξ`

(
|x|2

R2

))
+2`R−2|x|ξ`−1

(
|x|2

R2

)
ξ′

(
|x|2

R2

) (
2∇F(x) ·

x
|x|

+ |x|−1F(x)
)
, (2.27)

which implies by (2.10) that∫
1<|x|<

√
2R, xN>0

|x|
−am
p−m ξ

−m
p−m

R |LµξR|
p

p−m dx =

∫
R<|x|<

√
2R, xN>0

|x|
−am
p−m ξ

−m
p−m

R |LµξR|
p

p−m dx. (2.28)

On the other hand, by (2.7) and (2.10), for R < |x| <
√

2R, xN > 0, we obtain

C1xNRαµ ≤ F(x) ≤ C2xNRαµ ,

∣∣∣∣∣2∇F(x) ·
x
|x|

+ |x|−1F(x)
∣∣∣∣∣ ≤ CxNRαµ−1 (2.29)

and ∣∣∣∣∣∣∆
(
ξ`

(
|x|2

R2

))∣∣∣∣∣∣ ≤ CR−2ξ`−2
(
|x|2

R2

)
. (2.30)

Hence, in view of (2.27), (2.29), (2.30) and using that 0 ≤ ξ ≤ 1, there holds

|LµξR(x)| ≤ CxNRαµ−2ξ`−2
(
|x|2

R2

)
, R < |x| <

√
2R, xN > 0. (2.31)
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Thus, using (2.14), (2.28), (2.29) and (2.31), we get∫
1<|x|<

√
2R, xN>0

|x|
−am
p−m ξ

−m
p−m

R |LµξR|
p

p−m dx

≤ CR
(αµ−2)p

p−m

∫
R<|x|<

√
2R, xN>0

|x|
−am
p−m F

−m
p−m (x)x

p
p−m

N ξ`−
2p

p−m

(
|x|2

R2

)
dx

≤ CR
(αµ−2)p−αµm

p−m

∫
R<|x|<

√
2R, xN>0

xN |x|
−am
p−m dx

≤ CR
(αµ−2)p−αµm

p−m

∫
R<|x|<

√
2R
|x|1−

am
p−m dx

≤ CR
(αµ−2)p−αµm

p−m R1− am
p−m RN ,

that is, ∫
1<|x|<

√
2R, xN>0

|x|
−am
p−m ξ

−m
p−m

R |LµξR|
p

p−m dx ≤ CR
(αµ+N−1)p−m(αµ+1+a+N)

p−m . (2.32)

Finally, (2.24) follows from (2.25), (2.26) and (2.32). �

2.4. Estimates of ωi(ψ)

For sufficiently large T,R and `, let ψ be the function defined by (2.17).

Lemma 2.6. The following estimate holds:

ω1(ψ) ≤ CT 1− kp
p−1

(
ln R + Rαµ−

a
p−1 +N+1

)
. (2.33)

Proof. By (2.1) and (2.17), we obtain

ω1(ψ) =

∫ T

0
ι
−1
p−1

T

∣∣∣∣∣∣dkιT
dtk

∣∣∣∣∣∣
p

p−1

dt

 (∫
1<|x|<R, xN>0

|x|
−a
p−1ϑR(x) dx

)
. (2.34)

Moreover, by (2.15), we have∫
1<|x|<R, xN>0

|x|
−a
p−1ϑR(x) dx =

∫
1<|x|<R, xN>0

|x|
−a
p−1 F(x)ϑ`

 ln
(
|x|
√

R

)
ln(
√

R)

 dx. (2.35)

Using (2.7) and (2.11), we obtain∫
1<|x|<R, xN>0

|x|
−a
p−1 F(x)ϑ`

 ln
(
|x|
√

R

)
ln(
√

R)

 dx ≤

∫
1<|x|<R, xN>0

|x|
−a
p−1 F(x) dx

≤ C
(
ln R + Rαµ−

a
p−1 +N+1

)
. (2.36)

Hence, in view of (2.21), (2.34)–(2.36), we obtain (2.33). �

Lemma 2.7. Let (αµ + N − 1)p = m(αµ + 1 + a + N). Then, the following estimate holds:

ω2(ψ) ≤ CT (ln R)
−m
p−m . (2.37)
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Proof. By (2.2) and (2.17), we have

ω2(ψ) =

(∫ T

0
ιT dt

) (∫
1<|x|<R, xN>0

|x|
−am
p−mϑ

−m
p−m

R |LµϑR|
p

p−m dx
)
. (2.38)

Similar calculations to those done in the proof of Lemma 2.5 give us

LµϑR(x)

= F(x)∆

ϑ`
 ln

(
|x|
√

R

)
ln(
√

R)




+
`

ln(
√

R)|x|
ϑ`−1

 ln
(
|x|
√

R

)
ln(
√

R)

ϑ′
 ln

(
|x|
√

R

)
ln(
√

R)


(
2∇F(x) ·

x
|x|

+ |x|−1F(x)
)
,

(2.39)

which implies by (2.11) that∫
1<|x|<R, xN>0

|x|
−am
p−mϑ

−m
p−m

R |LµϑR|
p

p−m dx =

∫
√

R<|x|<R, xN>0
|x|

−am
p−mϑ

−m
p−m

R |LµϑR|
p

p−m dx. (2.40)

Moreover, by (2.7) and (2.11), we obtain, as |x| → ∞,

C1xN |x|αµ ≤ F(x) ≤ C2xN |x|αµ ,
∣∣∣∣∣2∇F(x) ·

x
|x|

+ |x|−1F(x)
∣∣∣∣∣ ≤ CxN |x|αµ−1 (2.41)

and ∣∣∣∣∣∣∣∣∆
ϑ`

 ln
(
|x|
√

R

)
ln(
√

R)



∣∣∣∣∣∣∣∣ ≤ C(ln R)−1|x|−2ϑ`−2

 ln
(
|x|
√

R

)
ln(
√

R)

 , √
R < |x| < R, xN > 0. (2.42)

In view of (2.39), (2.41), (2.42) and using that 0 ≤ ϑ ≤ 1, we get

|LµϑR(x)| ≤ CxN |x|αµ−2(ln R)−1ϑ`−2

 ln
(
|x|
√

R

)
ln(
√

R)

 , √
R < |x| < R, xN > 0. (2.43)

Next, it follows from (2.40), (2.41) and (2.43) that∫
1<|x|<R, xN>0

|x|
−am
p−mϑ

−m
p−m

R |LµϑR|
p

p−m dx

≤ C(ln R)
−p

p−m

∫
√

R<|x|<R, xN>0
|x|

(αµ−2)p−m(a+αµ)
p−m xNϑ

`−
2p

p−m

 ln
(
|x|
√

R

)
ln(
√

R)

 dx

≤ C(ln R)
−p

p−m

∫
√

R<|x|<R
|x|

(αµ−1)p−m(a+αµ+1)
p−m dx.

Using that (αµ + N − 1)p = m(α + 1 + a + N), we get∫
1<|x|<R, xN>0

|x|
−am
p−mϑ

−m
p−m

R |LµϑR|
p

p−m dx ≤ C(ln R)
−p

p−m

∫
√

R<|x|<R
|x|−N dx

= C(ln R)
−p

p−m

∫ R

r=
√

R
r−1 dr

≤ C(ln R)
−m
p−m . (2.44)

Finally, (2.37) follows from (2.26), (2.38) and (2.44). �
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3. Proof of Theorem 1.3

3.1. Proof of part (I)

We use the contradiction argument. Namely, we suppose that u ∈ Lp
loc(D) is a weak solutions to (1.1)

and (1.2). We first consider the case

p > m, (αµ + N − 1)p − m(αµ + 1 + a + N) < 0. (3.1)

By Lemmas 2.1 and 2.2, for sufficiently large T,R and `, there holds

−

∫
∂D1

∂ϕ

∂ν1
f (x) dσ dt ≤ C

2∑
i=1

ωi(ϕ), (3.2)

where ϕ is the function defined by (2.16). On the other hand, by (2.9), (2.18) and (2.26), we have

−

∫
∂D1

∂ϕ

∂ν1
f (x) dσ dt = −

∫
∂D1

ιT (t) f (x)
∂F
∂ν1

(x) dσ dt

= (N + µ + 2αµ)
(∫ T

0
ιT (t) dt

) ∫
Γ1

f (x)xN dσ

= CT
∫

Γ1

f (x)xN dσ. (3.3)

Then, using Lemmas 2.4 and 2.5, (3.2) and (3.3), we obtain

T
∫

Γ1

f (x)xN dσ ≤ C
(
T 1− kp

p−1
(
ln R + Rαµ−

a
p−1 +N+1

)
+ TR

(αµ+N−1)p−m(αµ+1+a+N)
p−m

)
,

that is, ∫
Γ1

f (x)xN dσ ≤ C
(
T
−kp
p−1

(
ln R + Rαµ−

a
p−1 +N+1

)
+ R

(αµ+N−1)p−m(αµ+1+a+N)
p−m

)
.

Next, taking T = Rθ, where

θ > max
{

0,
p − 1
kp

(
αµ −

a
p − 1

+ N + 1
)}
, (3.4)

the above estimate reduces to ∫
Γ1

f (x)xN dσ ≤ C
(
R
−θkp
p−1 ln R + Rζ1 + Rζ2

)
, (3.5)

where
ζ1 = αµ −

a
p − 1

+ N + 1 −
θkp

p − 1
, ζ2 =

(αµ + N − 1)p − m(αµ + 1 + a + N)
p − m

.

Notice that due to (3.4), one has ζ1 < 0. Moreover, by (3.1), we get ζ2 < 0. Therefore, passing to the
limit as R→ ∞ in (3.5), we obtain

∫
Γ1

f (x)xN dσ ≤ 0, which contradicts (1.13).
Next, we consider the case

p > m, (αµ + N − 1)p − m(αµ + 1 + a + N) = 0. (3.6)
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By Lemmas 2.1 and 2.3, for sufficiently large T,R and `, there holds

−

∫
∂D1

∂ψ

∂ν1
f (x) dσ dt ≤ C

2∑
i=1

ωi(ψ), (3.7)

where ψ is the function defined by (2.17). As in the previous case, using Lemmas 2.6 and 2.7, (2.9),
(2.17) and (3.7), we obtain

T
∫

Γ1

f (x)xN dσ ≤ C
(
T 1− kp

p−1
(
ln R + Rαµ−

a
p−1 +N+1

)
+ T (ln R)

−m
p−m

)
,

that is, ∫
Γ1

f (x)xN dσ ≤ C
(
T−

kp
p−1

(
ln R + Rαµ−

a
p−1 +N+1

)
+ (ln R)

−m
p−m

)
. (3.8)

Hence, taking T = Rθ, where the parameter θ satisfies (3.4), and passing to the limit as R→ ∞ in (3.8),
we reach a contradiction with (1.13). This completes the proof of part (I) of Theorem 1.3. �

3.2. Proof of part (II)

Assume that (1.15) holds. Let us consider a parameter δ satisfying

max
{
−µ − αµ, 1 +

m(a + 2)
p − m

, 1
}
< δ < N + αµ. (3.9)

Notice that −µ − αµ < N + αµ and 1 < N + αµ. Moreover, due to (1.15), one has 1 +
m(a+2)

p−m < N + αµ.
Hence, the set of δ satisfying (3.9) is nonempty. Let

0 < ε <
[
(N + αµ − δ)(δ + µ + αµ)

] 1
p−m

. (3.10)

We consider functions of the form

uδ,ε(x) = εx
1
m
N |x|

−δ
m , x ∈ Ω. (3.11)

Elementary calculations show that

−∆um
δ,ε +

µ

|x|2
x · ∇um

δ,ε = εm(N + αµ − δ)(δ + µ + αµ)xN |x|−δ−2, x ∈ Ω.

Hence, using (3.9)–(3.11), for all x ∈ Ω, we obtain

− ∆um
δ,ε +

µ

|x|2
x · ∇um

δ,ε

=

(
|x|aεpx

p
m
N |x|

−δp
m

)
εm−p(N + αµ − δ)(δ + µ + αµ)x1− p

m
N |x|−δ−2−a+

δp
m

= |x|aup
δ,ε(x)εm−p(N + αµ − δ)(δ + µ + αµ)x1− p

m
N |x|−δ−2−a+

δp
m

≥ |x|aup
δ,ε(x)|x|(δ−1)( p

m−1)−(a+2)

≥ |x|aup
δ,ε(x).

Therefore, uδ,ε is a stationary solution to (1.1) and (1.2) with f (x) = εmxN , x ∈ Γ1. This completes the
proof of part (II) of Theorem 1.3. �
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4. Conclusions

We investigated The existence and nonexistence of weak solutions to the evolution inequality (1.1)
under the Dirichlet-type boundary conditions (1.2). When a ≤ −2, we proved that (1.1) and (1.2)
admit no critical behavior, namely, for all p > m ≥ 1, (1.1) and (1.2) admit stationary solutions for
some f > 0. When a > −2, we proved that (1.1) and (1.2) admit a critical exponent

p∗ = p∗(m, a, µ,N) = m +
m(a + 2)
αµ + N − 1

,

in the following sense:

(i) If
m < p ≤ p∗,

then (1.1) and (1.2) admit no weak solution, provided that f ∈ L1(Γ1) and∫
Γ1

f (x)xN dσ > 0.

(ii) If
p > p∗,

then (1.1) and (1.2) admit (stationary) solutions, for some f > 0.

It is interesting to observe that in the case a > −2, the critical exponent p∗ depends only on m, a, µ
and N, but it is independent of k, the order of the time-derivative. Therefore, our obtained results hold
in both parabolic and hyperbolic cases. Finally, let us mention that comparing with previous existing
results in the literature, in this study no restriction on the sign of solutions is imposed.
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