In this paper, we consider a coupled system of Laplacian and bi-Laplacian equations with nonlinear dampings and source terms of variable-exponents nonlinearities. This system is supplemented with initial and mixed boundary conditions. First, we establish the existence and uniqueness results of a weak solution, under suitable assumptions on the variable exponents. Second, we show that the solutions with positive-initial energy blow-up in a finite time. Finally, we establish the global existence as well as the energy decay results of the solutions, using the stable-set and the multiplier methods, under appropriate conditions on the variable exponents and the initial data.
Citation: Salim A. Messaoudi, Mohammad M. Al-Gharabli, Adel M. Al-Mahdi, Mohammed A. Al-Osta. A coupled system of Laplacian and bi-Laplacian equations with nonlinear dampings and source terms of variable-exponents nonlinearities: Existence, uniqueness, blow-up and a large-time asymptotic behavior[J]. AIMS Mathematics, 2023, 8(4): 7933-7966. doi: 10.3934/math.2023400
[1] | Zhiqiang Li . The finite time blow-up for Caputo-Hadamard fractional diffusion equation involving nonlinear memory. AIMS Mathematics, 2022, 7(7): 12913-12934. doi: 10.3934/math.2022715 |
[2] | Sen Ming, Xiaodong Wang, Xiongmei Fan, Xiao Wu . Blow-up of solutions for coupled wave equations with damping terms and derivative nonlinearities. AIMS Mathematics, 2024, 9(10): 26854-26876. doi: 10.3934/math.20241307 |
[3] | Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Nasser-Eddine Tatar . On a nonlinear system of plate equations with variable exponent nonlinearity and logarithmic source terms: Existence and stability results. AIMS Mathematics, 2023, 8(9): 19971-19992. doi: 10.3934/math.20231018 |
[4] | Adel M. Al-Mahdi . The coupling system of Kirchhoff and Euler-Bernoulli plates with logarithmic source terms: Strong damping versus weak damping of variable-exponent type. AIMS Mathematics, 2023, 8(11): 27439-27459. doi: 10.3934/math.20231404 |
[5] | Sen Ming, Jiayi Du, Yaxian Ma . The Cauchy problem for coupled system of the generalized Camassa-Holm equations. AIMS Mathematics, 2022, 7(8): 14738-14755. doi: 10.3934/math.2022810 |
[6] | Ahmed Himadan . Well defined extinction time of solutions for a class of weak-viscoelastic parabolic equation with positive initial energy. AIMS Mathematics, 2021, 6(5): 4331-4344. doi: 10.3934/math.2021257 |
[7] | Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Maher Nour, Mostafa Zahri . Stabilization of a viscoelastic wave equation with boundary damping and variable exponents: Theoretical and numerical study. AIMS Mathematics, 2022, 7(8): 15370-15401. doi: 10.3934/math.2022842 |
[8] | Mohammad Kafini, Shadi Al-Omari . Local existence and lower bound of blow-up time to a Cauchy problem of a coupled nonlinear wave equations. AIMS Mathematics, 2021, 6(8): 9059-9074. doi: 10.3934/math.2021526 |
[9] | Khaled Zennir, Abderrahmane Beniani, Belhadji Bochra, Loay Alkhalifa . Destruction of solutions for class of wave p(x)−bi-Laplace equation with nonlinear dissipation. AIMS Mathematics, 2023, 8(1): 285-294. doi: 10.3934/math.2023013 |
[10] | Salah Boulaaras, Abdelbaki Choucha, Bahri Cherif, Asma Alharbi, Mohamed Abdalla . Blow up of solutions for a system of two singular nonlocal viscoelastic equations with damping, general source terms and a wide class of relaxation functions. AIMS Mathematics, 2021, 6(5): 4664-4676. doi: 10.3934/math.2021274 |
In this paper, we consider a coupled system of Laplacian and bi-Laplacian equations with nonlinear dampings and source terms of variable-exponents nonlinearities. This system is supplemented with initial and mixed boundary conditions. First, we establish the existence and uniqueness results of a weak solution, under suitable assumptions on the variable exponents. Second, we show that the solutions with positive-initial energy blow-up in a finite time. Finally, we establish the global existence as well as the energy decay results of the solutions, using the stable-set and the multiplier methods, under appropriate conditions on the variable exponents and the initial data.
The biharmonic equation, besides providing a benchmark problem for various analytical and numerical methods, arises in many practical applications. For example, the bending behavior of a thin elastic rectangular plate, as might be encountered in ship design and manufacture, or the equilibrium of an elastic rectangle, can be formulated in terms of the two-dimensional biharmonic equation, e.g., Timoshenko & Woinowsky-Krieger [1]. Also, Stokes flow of a viscous fluid in a rectangular cavity under the influence of the motion of the walls, can be described in terms of the solution of this equation, e.g., Pan and Acrivos (1967), Shankar [2], Srinivasan [3], Meleshko [4] or Shankar and Deshpande [5]. A more recent application of the biharmonic equation has been in the area of geometric and functional design, where it has been used as a mapping to produce efficient mathematical descriptions of surfaces in physical space, e.g., Sevant et al. [6] and Bloor and Wilson [7]. Interest in solutions of the biharmonic equation and their mathematical properties go back over 130 years, and comprehensive reviews of this work have been given by Meleshko [8,9]. In his review article, he concentrates upon the method of superposition in which the solution is described in terms of a sum of separable solutions of the biharmonic equation. In another work, Meleshko [4] obtained some results for Stokes flow in a rectangular cavity in which the solution is based upon the sum of terms consisting of the product of exponential and sinusoidal functions, where the coefficients in the series are determined from the requirement that the prescribed boundary conditions are satisfied, and Meleshko [10] described the work which has been done in trying to solve this problem, e.g., Meleshko and Gomilko [11]. Other physical phenomena like flows of electro-rheological fluids, fluids with temperature dependent viscocity, filtration processes through a porous media, image processing and thermorheological fluids give rise to mathematical models of hyperbolic, parabolic and biharmonic equations with variable exponents of nonlinearity. More details can also be found in references [12,13]. Recently, the hyperbolic equations with nonlinearities of variable exponents type had received a considerable amount of attention. We refer the reader to [14,15,16,17] and the references therein. Only few works concerning coupled systems of wave equations in the variable-exponents case have been found in the literature. For examples, Bouhoufani and Hamchi [18] obtained the global existence of a weak solution and established decay rates of the solutions, in a bounded domain, of a coupled system of nonlinear hyperbolic equations with variable-exponents. Messaoudi et al. [15] studied a system of wave equations with nonstandard nonlinearities and proved a theorem of existence and uniqueness of a weak solution, established a blow-up result for certain solutions with positive-initial energy and gave some numerical applications for their theoretical results. In [16], Messaoudi et al. considered the following system
utt−Δu+|ut|m(x)−2ut+f1(u,v)=0in Ω×(0,T),vtt−Δv+|vt|r(x)−2vt+f2(u,v)=0in Ω×(0,T), | (1.1) |
with initial and Dirichlet-boundary conditions (here, f1 and f2 are the coupling terms introduced in (1.3). The authors proved the existence of global solutions, obtained explicit decay rate estimates under suitable assumptions on the variable exponents m,r and p and presented some numerical tests. In this work, we consider the following initial-boundary-value problem
{utt+Δ2u+|ut|m(x)−2ut=f1(u,v)in Ω×(0,T),vtt−Δv+|vt|r(x)−2vt=f2(u,v)in Ω×(0,T),u=v=∂u∂η=0on ∂Ω×(0,T),u(0)=u0 and ut(0)=u1in Ω,v(0)=v0 and vt(0)=v1in Ω, | (1.2) |
where Ω is a smooth and bounded domain of Rn,(n=1,2,3), the exponents m and r are continuous functions on ¯Ω satisfying some conditions to be specified later, ∂u∂η denotes the external normal derivatives of u on the boundary ∂Ω and the coupling terms f1 and f2 are given as follows: for all x∈¯Ω and (u,v)∈R2,
f1(x,u,v)=∂∂uF(x,u,v) and f2(x,u,v)=∂∂vF(x,u,v), | (1.3) |
with
F(x,u,v)=a|u+v|p(x)+1+2b|uv|p(x)+12, | (1.4) |
where a,b>0 are two positive constants and p is a given continuous function on ¯Ω satisfying the condition (H.2) (below).
This section presents some material needed to prove the main result. Let q:Ω⟶[1,∞) be a continuous function. We define the Lebesgue space with a variable exponent by
Lq(.)(Ω)={f:Ω⟶R measurable in Ω: ϱq(.)(λf)<+∞, for some λ>0}, |
where
ϱq(.)(f)=∫Ω|f(x)|q(x)dx. |
Lemma 2.1. [13,19] If 1<q−≤q(x)≤q+<+∞ holds then, for any f∈Lq(.)(Ω),
min{‖f‖q−q(.),‖f‖q+q(.)}≤ϱq(.)(f)≤max{‖f‖q−q(.),‖f‖q+q(.)}, |
where
q−=essinfx∈Ω q(x) and q+=esssupx∈Ω q(x). |
Lemma 2.2. (Embedding property [20]) Let q:¯Ω⟶[1,∞) be a measurable function and k≥1 be an integer. Suppose that r is a log-Hölder continuous function on Ω, such that, for all x∈Ω, we have
{k≤q−≤q(x)≤q+<nr(x)n−kr(x),if r+<nk,k≤q−≤q+<∞,if r+≥nk. |
Then, the embedding Wk,r(.)0(Ω)↪Lq(.)(Ω) is continuous and compact.
Throughout this paper, we denote by V the following space
V={u∈H2(Ω): u=∂u∂η=0 on ∂Ω}=H20(Ω). |
So, V is a separable Hilbert space endowed with the inner product and norm, respectively,
(w,z)V=∫ΩΔwΔzdx and ‖w‖V=‖Δw‖2, |
where ‖Δw‖k=‖Δw‖Lk(Ω).
We assume the following hypotheses:
(H.1) The exponents m and r are continuous on ¯Ω such that
2≤m(x), if n=1,2,2≤m1≤m(x)≤m2≤6, if n=3 | (2.1) |
and
2≤r(x), if n=1,2,2≤r1≤r(x)≤r2≤6, if n=3, | (2.2) |
for all x∈¯Ω, where
m1= infx∈¯Ω m(x), m2= supx∈¯Ω m(x), r1= infx∈¯Ω r(x) and r2= supx∈¯Ω r(x). |
(H.2) The variable exponent p is a given continuous function on ¯Ω such that
3≤p−≤p(x)≤p+<+∞, if n=1,2,p(x)=3, if n=3, | (2.3) |
for all x∈¯Ω.
In this section, we prove the local existence of the solutions of (1.2). For this purpose, we introduce the definition of a weak solution for system (1.2). We multiply the first equation in (1.2) by Φ∈C∞0(Ω) and the second equation by Ψ∈C∞0(Ω), integrate each result over Ω, use Green's formula and the boundary conditions to obtain the following definition:
Definition 3.1. Let (u0,v0)∈V×H10(Ω),(u1,v1)∈L2(Ω)×L2(Ω). Any pair of functions (u,v), such that
{u∈L∞([0,T);V),v∈L∞([0,T);H10(Ω)),ut∈L∞([0,T);L2(Ω))∩Lm(.)(Ω×(0,T)),vt∈L∞([0,T);L2(Ω))∩Lr(.)(Ω×(0,T)), | (3.1) |
is called a weak solution of (1.2) on [0,T), if
{ddt∫ΩutΦdx+∫ΩΔuΔΦdx+∫Ω|ut|m(x)−2utΦdx=∫Ωf1Φdx,ddt∫ΩvtΨdx+∫Ω∇v∇Ψdx+∫Ω|vt|r(x)−2vtΨdx=∫Ωf2Ψdx,u(0)=u0,ut(0)=u1,v(0)=v0,vt(0)=v1, |
for a.e. t∈(0,T) and all test functions Φ∈V and Ψ∈H10(Ω). Note that C∞0(Ω) is dense in V and in H10(Ω) as well. In addition, the spaces V, H10(Ω)⊂Lm(.)(Ω)∩Lr(.)(Ω), under the conditions (H.1) and (H.2).
In order to establish an existence result of a local weak solution for the system (1.2); we, first, consider the following auxiliary problem:
{utt+Δ2u+ut|ut|m(x)−2=f(x,t)in Ω×(0,T),vtt−Δv+vt|vt|r(x)−2=g(x,t)in Ω×(0,T),u=v=∂u∂η=0on ∂Ω×(0,T),u(0)=u0,ut(0)=u1,v(0)=v0,vt(0)=v1in Ω, | (S) |
for given f,g∈L2(Ω×(0,T)) and T>0.
We have the following theorem of existence and uniqueness for Problem (S).
Theorem 3.1. Let n=1,2,3 and (u0,v0)∈V×H10(Ω),(u1,v1)∈H10(Ω)×L2(Ω). Assume that assumptions (H.1) and (H.2) hold. Then, the problem (S) admits a unique weak solution on [0,T).
Proof. Let {ωj}∞j=1 be an orthogonal basis of V and define, for all k≥1, (uk,vk) a sequence in Vk=span{ω1,ω2,...,ωk}⊂V, given by
uk(x,t)=Σkj=1aj(t)ωj(x) and vk(t)=Σkj=1bj(t)ωj(x) |
for all x∈Ω and t∈(0,T) and solves the following approximate problem:
{∫Ωuktt(x,t)ωjdx+∫ΩΔuk(x,t)Δωjdx+∫Ω|ukt(x,t)|m(x)−2ukt(x,t)ωjdx=∫Ωf(x,t)ωj,∫Ωvktt(x,t)ωjdx+∫Ω∇vk(x,t)∇ωjdx+∫Ω|vkt(x,t)|r(x)−2vkt(x,t)ωjdx=∫Ωg(x,t)ωj, | (Sk) |
for all j=1,2,...,k, with
uk(0)=uk0=Σki=1⟨u0,ωi⟩ωi, ukt(0)=uk1=Σki=1⟨u1,ωi⟩ωivk(0)=vk0=Σki=1⟨v0,ωi⟩ωi, vkt(0)=vk1=Σki=1⟨v1,ωi⟩ωi, | (3.2) |
such that
uk0⟶u0 and vk0⟶v0 in H10(Ω),uk1⟶u1 and vk1⟶v1 in L2(Ω). | (3.3) |
For any k≥1, problem (Sk) generates a system of k nonlinear ordinary differential equations. The ODE standard existence theory assures the existence of a unique local solution (uk,vk) for (Sk) on [0,Tk), with 0<Tk≤T. Next, we have to show that Tk=T,∀k≥1. Multiplying (Sk)1 and (Sk)2 by a′j(t) and b′j(t), respectively, and then summing each result over j=1,...,k, we obtain, for all 0<t≤Tk,
12ddt[∫Ω(|ukt(x,t)|2+(Δuk)2(x,t))dx]+∫Ω|ukt(x,t)|m(x)dx=∫Ωf(x,t)ukt(x,t)dx | (3.4) |
and
12ddt[∫Ω(|vkt(x,t)|2+|∇vk|2(x,t))dx]+∫Ω|vkt(x,t)|r(x)dx=∫Ωg(x,t)vkt(x,t)dx. | (3.5) |
The addition of (3.4) and (3.5), and then the integration of the result, over (0,t), lead to
12[‖ukt(t)‖22+‖uk(t)‖2V+‖vkt(t)‖22+‖∇vk(t)‖22]+∫t0∫Ω(|ukt(x,s)|m(x)+|vkt(x,s)|r(x))dxds=12[‖uk1‖22+‖uk0‖2V+‖vk1‖22+‖∇vk0‖22]+∫t0∫Ω[f(x,s)ukt(x,s)+g(x,s)vkt(x,s)]dxds. | (3.6) |
Using Young's inequality and the convergence (3.3), then Eq (3.6) becomes, for some C>0,
12[‖ukt(t)‖22+‖vkt(t)‖22+‖uk(t)‖2V+‖∇vk(t)‖22]+∫Tk0∫Ω(|ukt(x,s)|m(x)+|vkt(x,s)|r(x))dxds≤C+ε∫Tk0(‖ukt(s)‖22+‖vkt(s)‖22)ds+Cε∫T0∫Ω(|f(x,s)|2+|g(x,s)|2)dxds. |
Using the fact that f,g∈L2(Ω×(0,T)) and choosing ε=14T, we infer
12sup(0,Tk)[‖ukt‖22+‖vkt‖22+‖uk‖2V+‖∇vk‖22]+∫Tk0∫Ω(|ukt(x,s)|m(x)+|vkt(x,s)|r(x))dxds≤Cε+Tεsup(0,Tk)(‖ukt‖22+‖vkt‖22)≤CT, | (3.7) |
where CT>0 is a constant depending on T only. Consequently, the solution (uk,vk) can be extended to (0,T), for any k≥1. In addition, we have
{(uk) is bounded in L∞((0,T),V),(vk) is bounded in L∞((0,T),H10(Ω)),(ukt) is bounded in L∞((0,T),L2(Ω))∩Lm(.)(Ω×(0,T)),(vkt) is bounded in L∞((0,T),L2(Ω))∩Lr(.)(Ω×(0,T)). |
Therefore, we can extract two subsequences, denoted by (ul) and (vl), respectively, such that, when l→∞, we have
{ul→u weakly * in L∞((0,T),V),vl→v weakly * in L∞((0,T),H10(Ω)),ult→ut weakly * in L∞((0,T),L2(Ω)) and weakly in Lm(.)(Ω×(0,T)),vlt→vt weakly * in L∞((0,T),L2(Ω)) and weakly in Lr(.)(Ω×(0,T)). |
Under the assumptions (H.1) and (H.2) and using similar ideas and arguments as in [[15], Theorem 3.2, p.6], one can see that
∣ult∣m(.)−2ult→ ∣ut∣m(.)−2ut weakly in Lm(.)m(.)−1(Ω×(0,T)), |
∣vlt∣r(.)−2vlt→ ∣vt∣r(.)−2vt weakly in Lr(.)r(.)−1(Ω×(0,T)) |
and establish that (u,v) satisfies the two differential equations in (S), on Ω×(0,T).
To handle the initial conditions, we follow the same procedures as in [15], and we easily conclude that (u,v) satisfies the initial conditions. For the uniqueness, Assume that (S) has two weak solutions (u1,v1) and (u2,v2), in the sense of Definition 3.1. Let (Φ,Ψ)=(u1t−u2t,v1t−v2t), then (u,v)=(u1−u2,v1−v2) satisfies the following identities, for all t∈(0,T),
ddt[∫Ω(|ut|2+(Δu)2)dx]+2∫Ω(|u1t|m(x)−2u1t−|u2t|m(x)−2u2t)(u1t−u2t)dx=0 | (3.8) |
and
ddt[∫Ω(|vt|2+|∇v|2)dx]+2∫Ω(|v1t|r(x)−2v1t−|v2t|r(x)−2v2t)(v1t−v2t)dx=0. | (3.9) |
Integrating (3.8) and (3.9) over (0,t), with t≤T, we obtain
‖ut‖22+‖u‖2V+2∫t0∫Ω(|u1t|m(x)−2u1t−|u2t|m(x)−2u2t)(u1t−u2t)dxdτ=0 | (3.10) |
and
‖vt‖22+‖∇v‖22+2∫t0∫Ω(|v1t|r(x)−2v1t−|v2t|r(x)−2v2t)(v1t−v2t)dxdτ=0. | (3.11) |
But we have, for all x∈Ω,Y,Z∈R and q(x)≥2,
(|Y|q(x)−2Y−|Z|Zq(x)−2)(Y−Z)≥0, | (3.12) |
then, estimates (3.10) and (3.11) yield
‖ut‖2+‖u‖2V=‖vt‖2+‖∇v‖22=0. |
Thus, ut(.,t)=vt(.,t)=0 and u(.,t)=v(.,t)=0, for all t∈(0,T). Thanks to the boundary conditions, we conclude u=v=0 on Ω×(0,T), which proves the uniqueness of the solution. Therefore, (u,v) is the unique local solution of (S), in the sense of Definition 3.1, having the regularity (3.1).
Lemma 3.1. Let y∈L∞((0,T),V) and z∈L∞((0,T),H10(Ω)). Then
f1(y,z),f2(y,z)∈L2(Ω×(0,T)). | (3.13) |
Proof. From (1.3) and (1.4), we have, for all (u,v)∈R2,
f1(u,v)=(p(x)+1)[a|u+v|p(x)−1(u+v)+bu|u|p(x)−32|v|p(x)+12] | (3.14) |
and
f2(u,v)=(p(x)+1)[a|u+v|p(x)−1(u+v)+bv|v|p(x)−32|u|p(x)+12]. | (3.15) |
Let y∈L∞((0,T),V) and z∈L∞((0,T),H10(Ω)). Applying Young's inequality and the Sobolev embedding, we obtain, for all t∈(0,T) and some C1,C2>0, the following results:
∫Ω|f1(y,z)|2dx≤2[a2∫Ω|y+z|2p(x)dx+b2∫Ω|y|p(x)−1|z|p(x)+1dx]≤C0[∫Ω|y+z|2p+dx+∫Ω|y+z|2p−dx+∫Ω|y|3(p(x)−1)dx+∫Ω|z|32(p(x)+1)dx], | (3.16) |
where C0=2max{a2,3b2}>0. By the embeddings, we have for n=1,2,
●
1<32(p−+1)≤32(p++1)≤2p+≤3(p+−1)<∞, |
since 3≤p−≤p(x)≤p+<∞. Therefore, estimate (3.16) leads to
∫Ω|f1(y,z)|2dx≤C1[‖∇(y+z)‖2p+2+‖∇(y+z)‖2p−2+‖Δy‖3(p+−1)2+‖Δy‖3(p−−1)2]+C1[‖∇z‖32(p++1)2+‖∇z‖32(p−+1)2]<+∞, | (3.17) |
where C1=C0Ce.
● For n=3, we use the embedding H10(Ω) in L6(Ω) to obtain (3.17), since p≡3 on ¯Ω.
So, under the assumption (H.2), we have
∫Ω|f1(y,z)|2dx<∞, |
and similarly
∫Ω|f2(y,z)|2dx<∞, |
for all t∈(0,T). Which completes the proof.
Corollary 3.1. There exists a unique (u,v) solution of the problem:
{utt+Δ2u+|ut|m(x)−2ut=f1(y,z),in Ω×(0,T),vtt−Δv+|vt|r(x)−2vt=f2(y,z),in Ω×(0,T),u=v=∂u∂η=0on ∂Ω×(0,T),u(0)=u0 and ut(0)=u1in Ω,v(0)=v0 and vt(0)=v1,in Ω, | (R) |
in the sense of Definition 3.1 and having the regularity 3.1.
Proof. A combination of Theorem 3.1 and Lemma 3.1 implies this corollary.
Now, consider the following Banach spaces
AT={w∈L∞((0,T),V)/wt∈L∞((0,T),L2(Ω))}, |
equipped with the norm:
‖w‖2AT=sup(0,T)‖w‖2V+sup(0,T)‖wt‖22 |
and
BT={w∈L∞((0,T),H10(Ω))/wt∈L∞((0,T),L2(Ω))}, |
equipped with the norm:
‖w‖2BT=sup(0,T)‖∇w‖22+sup(0,T)‖wt‖22 |
and define a map F:AT×BT:⟶AT×BT by F(y,z)=(u,v).
Lemma 3.2. F maps D(0,d) into itself where
D(0,d)={(w,w)∈AT×BTsuch that||(w,w)||AT×BT≤d}. |
Proof. Let (y,z) be in D(0,d) and (u,v) be the corresponding solution of problem (R) (i.e., F(y,z)=(u,v)). Taking (Φ,Ψ)=(ut,vt) in Definition 3.1 and integrating each identity over (0,t), we obtain, for all t≤T,
12[‖ut‖22−‖u1‖22+‖Δu‖22−‖Δu0‖22]+∫t0∫Ω|ut(x,s)|m(x)dxds=∫t0∫Ωutf1(y,z)dxds | (3.18) |
and
12[‖vt‖22−‖v1‖22+‖∇v‖22−‖∇v0‖22]+∫t0∫Ω|vt(x,s)|r(x)dxds=∫t0∫Ωvtf2(y,z)dxds. | (3.19) |
The addition of (3.18) and (3.19) lead to
12[‖ut‖22+‖vt‖22+‖Δu‖22+‖∇v‖22]≤12[‖u1‖22+‖v1‖22+‖Δu0‖22+‖∇v0‖22]+∫t0(|∫Ωutf1(y,z)dx|+|∫Ωvtf2(y,z)dx|)ds. |
for all t∈(0,T). Therefore,
sup0≤t≤T(‖ut‖22+‖vt‖22+‖u‖2V+‖∇v‖22)≤γ+2sup0≤t≤T∫t0(|∫Ωutf1(y,z)dx|+|∫Ωvtf2(y,z)dx|)dτ, | (3.20) |
where γ=‖u1‖22+‖v1‖22+‖u0‖2V+‖∇v0‖22. Under the assumption (2.3) and applying Young's inequality and the Sobolev embedding (Lemma 2.2), we obtain for all t∈(0,T),
|∫Ωutf1(y,z)dx|≤(p++1)[a∫Ω|ut||y+z|p(x)dx+b∫Ω|ut|.|y|p(x)−12|z|p(x)+12dx]≤(p++1)[ε(a+b)2∫Ω|ut|2dx+2aε∫Ω|y+z|2p(x)dx+2bε∫Ω|y|p(x)−1|z|p(x)+1dx]≤c1[ε2‖ut‖22+Cε(∫Ω|y+z|2p++∫Ω|y+z|2p−+∫Ω|y|3(p(x)−1)+∫Ω|z|32(p(x)+1))]≤c2[ε‖ut‖22+‖Δy‖2p−2+‖∇z‖2p−2+‖Δy‖2p+2+‖∇z‖2p+2]+c2[‖Δy‖3(p−−1)2+‖Δy‖3(p+−1)2+‖∇z‖32(p−+1)2+‖∇z‖32(p++1)2], | (3.21) |
where ε,c1,c2 are positive constants. Likewise, we get
|∫Ωvtf2(y,z)dx|≤(p++1)[a∫Ω|vt||y+z|p(x)dx+b∫Ω|vt|.|z|p(x)−12|y|p(x)+12dx]≤c2[ε‖vt‖22+‖Δy‖2p−2+‖∇z‖2p−2+‖Δy‖2p+2+‖∇z‖2p+2]+c2[‖∇z‖3(p−−1)2+‖∇z‖3(p+−1)2+‖Δy‖32(p−+1)2+‖Δy‖32(p++1)2]. | (3.22) |
Combining (3.21) and (3.22), yields
sup(0,T)∫t0(|∫Ωutf1(y,z)dx|+|∫Ωvtf2(y,z)dx|)ds≤εTc2‖(u,v)‖2AT×BT+2Tc2(‖(y,z)‖2p−AT×BT+‖(y,z)‖2p+AT×BT)+Tc2(‖(y,z)‖3(p−−1)AT×BT+‖(y,z)‖3(p+−1)AT×BT+‖(y,z)‖32(p−+1)AT×BT+‖(y,z)‖32(p++1)AT×BT). | (3.23) |
By substituting (3.23) into (3.20), we obtain, for some c_{3} > 0,
\begin{align} &\frac{1}{2} \left\Vert (u, v) \right\Vert ^{2}_{A_{T}\times B_{T}} \leq \gamma_{0} + \varepsilon Tc_{3} \left\Vert (u, v) \right\Vert^{2}_{A_{T}\times B_{T}} \\ &+ 2Tc_{3} \left( \left\Vert (y, z) \right\Vert^{2p^{-}}_{A_{T}\times B_{T}}+\left\Vert (y, z) \right\Vert^{2p^{+}}_{A_{T}\times B_{T} } \right) \\ &+ Tc_{3}\left( \left\Vert (y, z) \right\Vert^{3(p^{-}-1)}_{A_{T}\times B_{T} }+\left\Vert (y, z) \right\Vert^{3(p^{+}-1)}_{A_{T}\times B_{T} }+\left\Vert (y, z) \right\Vert^{\frac{3}{2}(p^{-}+1)}_{A_{T}\times B_{T} }+\left\Vert (y, z) \right\Vert^{\frac{3}{2}(p^{+}+1)}_{A_{T}\times B_{T} }\right). \end{align} | (3.24) |
Choosing \varepsilon such that \varepsilon Tc_{3} = \frac{1}{4} and recalling that \left\Vert (y, z) \right\Vert_{A_{T}\times B_{T}} \leq d, for some d > 1 (large enough), inequality (3.24) implies
\begin{align*} & \left\Vert (u, v) \right\Vert ^{2}_{A_{T}\times B_{T}} \leq 4 \gamma_{0} + 8Tc_{3} \left( \left\Vert (y, z) \right\Vert^{2p^{-}}_{A_{T}\times B_{T} }+\left\Vert (y, z) \right\Vert^{2p^{+}}_{A_{T}\times B_{T} } \right) \\ & + 4Tc_{3} \left( \left\Vert (y, z) \right\Vert^{3(p^{-}-1)}_{A_{T}\times B_{T} }+\left\Vert (y, z) \right\Vert^{3(p^{+}-1)}_{A_{T}\times B_{T} }+\left\Vert (y, z) \right\Vert^{\frac{3}{2}(p^{-}+1)}_{A_{T}\times B_{T} }+\left\Vert (y, z) \right\Vert^{\frac{3}{2}(p^{+}+1)}_{A_{T}\times B_{T} }\right) \notag \\ & \leq 4 \gamma_{0}+ Tc_{4}d^{3(p^{+}-1)}, \ c_{4} > 0\notag, \end{align*} |
So, if we take d such that d^{2} > > 4 \gamma_{0} and T \leq T_{0} = \frac{d^{2}-4 \gamma_{0}}{c_{4}d^{3(p^{+}-1)}}, we find
4 \gamma_{0} + Tc_{4}d^{3(p^{+}-1)} \leq d^{2}. |
Therefore,
\begin{align*} \left\Vert (u, v) \right\Vert ^{2}_{A_{T}\times B_{T}} \leq d^{2}. \end{align*} |
Thus, F maps D(0, d) to D(0, d) .
Lemma 3.3. F: D(0, d) \longrightarrow D(0, d) is a contraction.
Proof. Let (y_{1}, z_{1}) and (y_{2}, z_{2}) be in D(0, d) and set (u_{1}, v_{1}) = F(y_{1}, z_{1}) and (u_{2}, v_{2}) = F(y_{2}, z_{2}). Clearly, (U, V) = (u_{1}-u_{2}, v_{1}-v_{2}) is a weak solution of the following system
\begin{equation*} \left\{ \begin{array}{ll} U_{tt}+ \Delta ^{2} U+\left\vert u_{1t}\right\vert ^{m\left( x\right)-2} u_{1t}-\left\vert u_{2t}\right\vert ^{m\left( x\right) -2}u_{2t}\\ = f_{1}(y_{1}, z_{1})-f_{1}(y_{2}, z_{2})& \text{in }\Omega\times \left( 0, T\right), \\ V_{tt}-\Delta V+\left\vert v_{1t}\right\vert ^{r\left( x\right)-2}v_{1t}-\left\vert v_{2t}\right\vert ^{r\left( x\right) -2}v_{2t} \\ = f_{2}(y_{1}, z_{1})-f_{2}(y_{2}, z_{2})& \text{in }\Omega\times \left( 0, T\right), \\ U = V = 0& \text{on }\partial \Omega \times \left( 0, T\right), \\ (U\left( 0\right), V\left( 0\right)) = (U_{t}\left( 0\right), V_{t}\left( 0\right)) = (0, 0)& \text{in } \Omega, \end{array}\right. \end{equation*} |
in the sense of Definition 3.1. So, taking (\Phi, \Psi) = (U_{t}, V_{t}), in this definition, using Green's formula together with the boundary conditions and then, integrating each result over (0, t), we obtain, for a.e. t \leq T,
\begin{align*} &\frac{1}{2} \left( \Vert U_{t} \Vert ^{2}_{2}+ \Vert \Delta U \Vert ^{2}_{2} \right) +\int_{0}^{t} \int_{\Omega }\left({u_{1}}_{t} \left\vert {u_{1}}_{t} \right\vert ^{m\left( x\right)-2}-{u_{2}}_{t} \left\vert {u_{2}}_{t}\right\vert ^{m\left(x\right) -2} \right) U_{t}dx ds \notag \\ & \leq \int_{0 }^{t} \int_{\Omega } \left\vert f_{1}(y_{1}, z_{1})- f_{1}(y_{2}, z_{2})\right\vert \vert U_{t}\vert dx ds \end{align*} |
and
\begin{align*} &\frac{1}{2} \left( \Vert V_{t} \Vert ^{2}_{2}+ \Vert \nabla V \Vert^{2}_{2} \right) +\int_{0}^{t} \int_{\Omega }\left( {v_{1}}_{t} \left\vert {v_{1}}_{t}\right\vert ^{r\left( x\right)-2}-{v_{2}}_{t}\left\vert {v_{2}}_{t}\right\vert ^{r\left( x\right) -2} \right) V_{t}dx ds \notag \\ &\leq \int_{0 }^{t}\int_{\Omega } \left\vert f_{2}\left(y_{1}, z_{1}\right)-f_{2}\left(y_{2}, z_{2}\right)\right\vert \vert V_{t}\vert dx ds. \end{align*} |
Under the condition (H.2), using Hölder's inequality and inequality (3.12), these two estimates give, for n = 1, 2, 3 ,
\begin{align} \Vert U_{t}\Vert ^{2}_{2}+ \Vert U \Vert^{2}_{\mathcal{V}} \leq 4 \int_{0}^{t} \Vert U_{t}\Vert_{2} \Vert f_{1}(y_{1}, z_{1})- f_{1}(y_{2}, z_{2})\Vert_{2} ds \end{align} | (3.25) |
and
\begin{align} \Vert V_{t}\Vert ^{2}_{2}+ \Vert \nabla V \Vert^{2}_{2} \leq 4 \int_{0}^{t} \Vert V_{t} \Vert_{2} \Vert f_{2}\left(y_{1}, z_{1}\right)-f_{2}\left(y_{2}, z_{2}\right) \Vert_{2}ds. \end{align} | (3.26) |
The addition of (3.25) and (3.26) imply
\begin{align} & \Vert U_{t}\Vert ^{2}_{2}+\Vert V_{t}\Vert ^{2}_{2}+\Vert U \Vert^{2}_{\mathcal{V}}+ \Vert \nabla V \Vert^{2}_{2} \leq 4 \int_{0}^{t} \Vert U_{t} \Vert_{2} \Vert f_{1}(y_{1}, z_{1})- f_{1}(y_{2}, z_{2})\Vert_{2} ds \\ & +4 \int_{0}^{t} \Vert V_{t} \Vert_{2} \Vert f_{2}\left(y_{1}, z_{1}\right)-f_{2}\left(y_{2}, z_{2}\right) \Vert_{2}ds, \end{align} | (3.27) |
for all t \in (0, T). Now, we estimate the terms:
\Vert f_{1}(y_{1}, z_{1})- f_{1}(y_{2}, z_{2})\Vert_{2} \ \text{and} \ \Vert f_{2}\left(y_{1}, z_{1}\right)-f_{2}\left(y_{2}, z_{2}\right) \Vert_{2}. |
Using appropriate algebraic inequalities (see [21]), we obtain for two constants C_{1}, C_{2} > 0 and for all x\in\Omega and t \in (0, T),
\begin{align} \int_{\Omega } \left\vert f_{1}(y_{1}, z_{1})- f_{1}(y_{2}, z_{2}) \right\vert^{2}dx \leq I_{1}+ I_{2}+ I_{3}+ I_{4}, \end{align} | (3.28) |
where
\begin{gather*} \begin{aligned} I_1& = C_1 \int_{\Omega } | y_{1}-y_{2}|^2 ( | y_{1}|^{2(p(x)-1)} + | z_{1} |^{2(p(x)-1)} )dx \\ &\quad+ C_1 \int_{\Omega } | y_{1}-y_{2}|^2 ( | y_{2} |^{2(p(x)-1)}+| z_{2}|^{2(p(x)-1)} )dx, \end{aligned} \\ \begin{aligned} I_2& = C_1 \int_{\Omega } | z_{1}-z_{2}|^2 ( | y_{1} |^{2(p(x)-1)} + | z_{1}|^{2(p(x)-1)} )dx\\ &\quad +C_1 \int_{\Omega } | z_{1}-z_{2}|^2 ( | y_{1}|^{2(p(x)-1)}+| z_{2}|^{2(p(x)-1)} )dx, \end{aligned}\\ I_3 = C_2 \int_{\Omega } | z_{1}-z_{2}|^2 | y_{1}|^{p(x)-1} \big( | z_{1} |^{p(x)-1} + | z_{2} |^{p(x)-1} \Big)dx, \\ I_4 = C_2 \int_{\Omega } | y_{1}-y_{2}|^2 | z_{2} |^{p(x)+1} \Big( | y_{1}|^{p(x)-3} + | y_{2} |^{p(x)-3} \big)dx. \end{gather*} |
By using Hölder's and Young's inequalities and the Sobolev embedding (Lemma 2.2), we get the following estimate for a typical term in I_{1} and I_{2},
\begin{align} &\int_{\Omega } \left\vert y_{1}-y_{2}\right\vert^{2} \left\vert y_{1} \right\vert^{2(p(x)-1)}dx \leq 2 \left( \int_{\Omega}^{}|y_{1}-y_{2}|^{6} dx\right) ^{\frac{1}{3}} \left( \int_{\Omega}^{}|y_{1}|^{3(p(x)-1)}\right) ^\frac{ 2}{3} \\ & \leq C ||y_{1}-y_{2}||_{6}^{2} \left[ \left( \int_{\Omega}^{}|y_{1}|^{3(p^{+}-1)}dx\right) ^{\frac{2}{3}} +\left( \int_{\Omega}^{}|y_{1}|^{3(p^{-}-1})dx \right) ^{\frac{2}{3}}\right] \\ & \leq C ||\Delta (y_{1}-y_{2})||_{2}^{2} \left( ||y_{1}||^{2(p^{+}-1)}_{3(p^{+}-1)} +||y_{1}||^{2(p^{-}-1)}_{3(p^{-}-1)}\right) \\ & \leq C ||\Delta Y||_{2}^{2} \left( ||\Delta y_{1}||_{2}^{2(p^{+}-1)}+||\Delta y_{1}||_{2}^{2(p^{-}-1)} \right) \\ &\leq C ||\Delta Y||_{2}^{2} \left( ||(y_{1}, z_{1})||_{ A_{T} \times B_{T} }^{2(p^{+}-1)}+ ||(y_{1}, z_{1})||_{A_{T} \times B_{T} } ^{2(p^{-}-1)}\right), \end{align} | (3.29) |
since
● 1\leq 3(p^{-}-1) \leq 3(p^{+}-1) < \infty, when n = 1, 2.
● 1 \leq 3(p^{-}-1) = 3(p^{+}-1) = 6 = \frac{ 2n}{n-2}, when n = 3.
Likewise, we obtain
\begin{align} \int_{\Omega } \left\vert z_{1}-z_{2}\right\vert^{2} \left\vert y_{2} \right\vert^{2(p(x)-1)}dx \leq C ||\nabla Z||_{2}^{2} \left( ||(y_{2}, z_{2})||_{A_{T}\times B_{T} } ^{2(p^{+}-1)}+ ||(y_{2}, z_{2})||_{A_{T}\times B_{T} } ^{2(p^{-}-1)}\right). \end{align} | (3.30) |
Since (y_{1}, z_{1}), (y_{2}, z_{2}) \in D(0, d) and d > 1, estimates (3.29) and (3.30) lead to
I_{1} \leq C ||\Delta Y||_{2}^{2} \quad d^{2(p^{+}-1)} \ \text{and } \ I_{2} \leq C ||\nabla Z||_{2}^{2} \quad d^{2(p^{+}-1)}. |
Hence,
\begin{align} I_{1} + I_{2} \leq C d^{2(p^{+}-1)}\left( ||\Delta Y||_{2}^{2}+||\nabla Z||_{2}^{2}\right). \end{align} | (3.31) |
Similarly, a typical term in I_{3} can be handled as follows
\begin{align*} &\int_{\Omega } \left\vert z_{1}-z_{2}\right\vert^{2} \left\vert y_{1}\right\vert^{p(x)-1} \left\vert z_{1} \right\vert^{p(x)-1}dx \notag \\ & \leq 2 \left( \int_{\Omega}^{}|z_{1}-z_{2}|^{6} dx\right)^{\frac{1}{3}} \left( \int_{\Omega}^{}|y_{1}|^{\frac{3}{2}(p(x)-1)} |z_{1}|^{\frac{3}{2}(p(x)-1)} \right)^\frac{2}{3} \notag \\ & \leq C ||z_{1}-z_{2}||_{6}^{2}\left[ \left( \int_{\Omega}|y_{1}|^{\frac{3}{2}(p(x)-1)}dx \right)^{\frac{2}{3}}+ \left( \int_{\Omega}|z_{1}|^{\frac{3}{2}(p(x)-1)}dx\right)^{\frac{2}{3}} \right] \notag \\ & \leq C ||\nabla(z_{1}-z_{2})||_{2}^{2} \left( || y_{1}||^{(p^{+}-1)}_{\frac{3}{2}(p^{+}-1)} +|| y_{1}||^{(p^{-}-1)}_{\frac{3}{2}(p^{-}-1)}+|| z_{1}||^{(p^{+}-1)}_{\frac{3}{2}(p^{+}-1)}+ || z_{1}||^{(p^{-}-1)}_{\frac{3}{2}(p^{-}-1)}\right)\notag \\ & \leq C ||\nabla(z_{1}-z_{2})||_{2}^{2} \left( ||\Delta y_{1}||^{(p^{+}-1)}_{2} +||\Delta y_{1}||^{(p^{-}-1)}_{2}+||\nabla z_{1}||^{(p^{+}-1)}_{2}+ ||\nabla z_{1}||^{(p^{-}-1)}_{2}\right)\notag \\ & \leq 2C ||\nabla Z||_{2}^{2} \left( ||(y_{1}, z_{1})||_{A_{T} \times B_{T} } ^{(p^{+}-1)}+ ||(y_{1}, z_{1})||_{A_{T} \times B_{T} }^{(p^{-}-1)}\right), \end{align*} |
since
● 1\leq \frac{3}{2}(p^{-}-1) \leq \frac{3}{2}(p^{+}-1) < \infty, when n = 1, 2.
● 1 \leq \frac{3}{2}(p^{-}-1) = \frac{3}{2}(p^{+}-1) = 6 = \frac{ 2n}{n-2}, when n = 3.
Therefore,
\begin{align} I_{3}\leq Cd^{p^{+}-1} ||\nabla Z||_{2}^{2}, \end{align} | (3.32) |
since (y_{1}, z_{1}), (y_{2}, z_{2}) \in D(0, d). Using the same arguments, a typical term in I_{4}, can be estimated as follows:
Case 1: If n = 1, 2, we have 3 \leq p^{-} \leq p^{+} < \infty . So,
\begin{align*} &\int_{\Omega } \left\vert y_{1}-y_{2} \right\vert^{2} \left\vert z_{2}\right\vert^{p(x)+1} \left\vert y_{1}\right\vert^{p(x)-3}dx \\ & \leq 2 \left( \int_{\Omega}^{}|y_{1}-y_{2}|^{3} dx\right) ^{\frac{2}{3}} \left( \int_{\Omega}^{}|z_{2}|^{3(p(x)+1)} |y_{1}|^{3(p(x)-3)} \right)^\frac{1}{3} \nonumber \\ & \leq C ||y_{1}-y_{2}||_{3}^{2} \left[ \left( \int_{\Omega}|z_{2}|^{6(p(x)+1)}dx \right)^{\frac{1}{3}}+ \left( \int_{\Omega}|y_{1}|^{6(p(x)-3)}dx\right)^{\frac{1}{3}} \right] \nonumber \\ & \leq C ||\Delta Y||_{2}^{2}\left( ||\nabla z_{2}||^{2(p^{+}+1)}_{2} +||\nabla z_{2}||^{2(p^{-}+1)}_{2}+||\Delta y_{1}||^{2(p^{+}-3)}_{2}+ ||\Delta y_{1}||^{2(p^{-}-3)}_{2}\right)\nonumber \\ & \leq 4C ||\Delta Y||_{2}^{2} \quad d^{2(p^{+}+1)}, \end{align*} |
since (y_{1}, z_{1}), (y_{2}, z_{2})\in D(0, d) and d > 1.
Case 2: If n = 3, then p \equiv 3 on \overline{\Omega}. Hence,
\begin{align*} \int_{\Omega } \left\vert y_{1}-y_{2} \right\vert^{2} \left\vert z_{2} \right\vert ^{p(x)+1} \left\vert y_{1} \right\vert^{p(x)-3}dx& = \int_{\Omega } \left\vert y_{1}-y_{2} \right\vert^{2} \left\vert z_{2} \right\vert^{4}dx \nonumber \\ &\leq C \left( \int_{\Omega } \left\vert y_{1}-y_{2} \right\vert ^{6}dx \right)^{\frac{1}{3}} \left( \int_{\Omega } \left\vert z_{2} \right\vert^{6} dx \right)^{\frac{2}{3}} \nonumber \\ &\leq C ||y_{1}-y_{2}||_{6}^{2}. ||z_{2}||_{6}^{4} \nonumber \\ & \leq C ||\Delta Y||_{2}^{2}.||(y_{2}, z_{2})||_{A_{T} \times B_{T}}^{4}. \end{align*} |
So, for all t\in (0, T), we deduce that
\begin{align} I_{4}\leq C ||\Delta Y||_{2}^{2} d^{2(p^{+}+1)}. \end{align} | (3.33) |
Finally, by substituting (3.31)–(3.33) in (3.28), the following can be obtained
\begin{align} \int_{\Omega } \left\vert f_{1}(y_{1}, z_{1})- f_{1}(y_{2}, z_{2}) \right\vert^{2}dx \leq C d^{2(p^{+}+1)}\left( ||\Delta Y||_{2}^{2}+||\nabla Z||_{2}^{2}\right), \end{align} | (3.34) |
for all t\in(0, T). Similarly, we get
\begin{align} \int_{\Omega } \left\vert f_{2}(y_{1}, z_{1})- f_{2}(y_{2}, z_{2}) \right\vert^{2}dx \leq C d^{2(p^{+}+1)}\left( ||\Delta Y||_{2}^{2}+||\nabla Z||_{2}^{2}\right). \end{align} | (3.35) |
Now, we use (3.34) and (3.35) in (3.27) to obtain
\begin{align*} \left\Vert (u, v) \right\Vert ^{2}_{A_{T}\times B_{T}} & \leq Cd^{2(p^{+}+1)} \sup\limits_{(0, T)} \int_{0 }^{t}\left( \left\Vert \Delta Y(s) \right\Vert^{2}_{2} +\left\Vert \nabla Z(s) \right\Vert^{2}_{2} \right)ds \notag \\ & \leq Cd^{2(p^{+}+1)}T \left\Vert ( Y, Z) \right\Vert^{2}_{A_{T}\times B_{T}}. \end{align*} |
Hence, if we take T small enough, we get for, 0 < \gamma < 1,
\begin{align*} \left\Vert (u, v) \right\Vert ^{2}_{A_{T}\times B_{T}} \leq \gamma \left\Vert (Y, Z) \right\Vert^{2}_{A_{T}\times B_{T}}. \end{align*} |
Thus,
\begin{align*} \left\Vert K(y_{1}, z_{1})- K(y_{2}, z_{2}) \right\Vert ^{2}_{A_{T}\times B_{T}} \leq \gamma \left\Vert (y_{1}, z_{1})- (y_{2}, z_{2}) \right\Vert^{2}_{A_{T}\times B_{T}}. \end{align*} |
This proves that F:D(0, d) \longrightarrow D(0, d) is a contraction.
Theorem 3.2. Let n = 1, 2, 3. Under the assumptions (H.1) and (H.2) and for any (u_{0}, v_{0})\in \mathcal{V} \times H^1_0(\Omega), (u_{1}, v_{1})\in H^1_0(\Omega) \times L^{2}(\Omega) the problem (1.2) admits a unique weak solution (u, v), in the sense of Definition 3.1, having the regularity (3.1), for T small enough.
Proof. The above Lemmas and the Banach-fixed-point theorem guarantee the existence of a unique (u, v) \in D(0, d), such that F(u, v) = (u, v), which is a local weak solution of (1.2).
Remark 3.1. From the definitions (1.3) and (1.4), one can easily see that, for all (u, v)\in \mathbb{R}^{2},
\begin{equation} u\ f_1( x, u, v) +vf_2( x, u, v) = ( p( x) +1) F( x, u, v). \end{equation} | (3.36) |
We, also, have the following results.
Lemma 3.1. [22] There exist C_1, C_2 > 0 such that, for all \ x\in \overline{\Omega } and (u, v) \in \mathbb{R}^2 , we have
\begin{equation} C_1\big( | u| ^{{p( x) +1}}+| v| ^{{p( x) +1}}\big) \leq F( x, u, v) \leq C_2( | u| ^{{p( x) +1}}+| v| ^{{p( x) +1}}). \end{equation} | (3.37) |
Corollary 3.2. For all \ x\in \overline{\Omega } and (u, v) \in \mathbb{R}^2 , we have
\begin{equation} C_1 \big(\zeta \left( u\right)+ \zeta \left( v\right)\big) \leq \int_{\Omega} F( x, u, v) dx \leq C_2 \big( \zeta \left( u\right)+\zeta \left( v\right)\big), \end{equation} | (3.38) |
where
\begin{equation*} \zeta \left( u\right) = \int_{\Omega }\left\vert u\ \right\vert ^{^{p\left( x\right) +1}}dx \ and \ \zeta \left( v\right) = \int_{\Omega }\left\vert v\ \right\vert ^{^{p\left( x\right) +1}}dx. \end{equation*} |
Now, we introduce the energy functional associated with our problem
\begin{equation} E(t) = \frac{1}{2}\left( \left\Vert u_{t}\right\Vert _{2}^{2}+\left\Vert v_{t}\right\Vert _{2}^{2} +\left\Vert \Delta u \right\Vert _{2}^{2}+\left\Vert \nabla v \right\Vert _{2}^{2} \right) -\int_{\Omega }F\left( x, u, v\right)dx, \end{equation} | (3.39) |
for all t\in [0, T). A direct computation implies, for a.e. \ t \in (0, T),
\begin{align} E^{^{\prime }}\left( t\right) & = -\int_{\Omega }\left\vert u_{t}\right\vert ^{m\left( x\right) }dx-\int_{\Omega }\left\vert v_{t}\right\vert ^{r\left( x\right) }dx\leq 0. \end{align} | (3.40) |
In this section, our goal is to prove that any solution of Problem (1.2) blows-up in some finite time T^{*} , if
\begin{align} \max \lbrace m^{+}, r^{+}\rbrace < p^{-} \ \text{and} \ 0 < E(0) < E_{1}, \end{align} | (4.1) |
where
\begin{equation} E_{1} = \left( \frac{1}{2}-\frac{1}{p^{-}+1}\right) \gamma _{1}^{2}, \ \ \ \ \gamma _{1} = \left( d_*\left( p^{-}+1\right) \right) ^{\frac{1}{1-p^{-}}}, \ \end{equation} | (4.2) |
\begin{equation*} d_* = \left(\sqrt{2^{(p^{-}+1)}} a+2b\right) c_*^{p^{-}+1} \end{equation*} |
and c_{*} is a positive constant, which comes from the Sobolev embedding.
Remark 4.1. The following well-known inequalities are needed in the proof of the lemmas.
(1) For \ A, B\geq 0\ {and\ }d \geq 1 , we have
\begin{equation} \left( A+B\right) ^{d}\leq 2^{d-1}\left( A^{d}+B^{d}\right). \end{equation} | (4.3) |
(2) For z\geq 0, \ 0 < \delta\leq 1\ {and\ } a > 0 , we have
\begin{equation} z^{\delta }\leq z+1\leq \left( 1+\frac{1}{a}\right) \left( z+a \right). \end{equation} | (4.4) |
(3) For X, \ Y\geq 0{, \ }\ \delta > 0\ { and } \ \frac{1}{\lambda }+\frac{1}{\beta } = 1, Young's inequality gives
\begin{equation} XY\leq \frac{\delta ^{\lambda }}{\lambda }X^{\lambda }+\frac{\delta ^{-\beta }}{\beta }Y^{\beta }. \end{equation} | (4.5) |
(4) The embedding Lemma 2.2, Hölder's and Young's inequalities and (4.3) imply that
\begin{equation} \left\Vert u+v\right\Vert _{_{p\left( .\right) +1}}\leq \sqrt{2}c_* \left[ \left( \left\Vert \Delta u\right\Vert _{_{2}}^{^{2}}+\left\Vert \nabla v\right\Vert _{2}^{2}\right) \right] ^{1/2} \end{equation} | (4.6) |
and
\begin{equation} \begin{aligned} \left\Vert uv\right\Vert _{_{\frac{p\left( .\right) +1}{2}}} \leq c_*^{2} \left( \left\Vert \Delta u\right\Vert _{2}^{2}+\left\Vert \nabla v\right\Vert _{2}^{2}\right) . \end{aligned} \end{equation} | (4.7) |
Lemma 4.1. For any solution \left(u, v\right) of the system (1.2), with initial energy
\begin{equation} E\left( 0\right) < E_{1} \end{equation} | (4.8) |
and
\begin{equation} \gamma _{1} < \left(\|\Delta u_0\|_2^2+\|\nabla v_0\|_2^2\right) ^{1/2}\leq \frac{1}{\sqrt{2}c_*}\mathit{\text{, }} \end{equation} | (4.9) |
there exists \gamma _{2} > \gamma _{1} such that
\begin{equation} \gamma _{2}\leq \left( \|\Delta u\|_2^2+\|\nabla v\|_2^2\right) ^{1/2}, \ \forall t \in \left[ 0, T\right) \mathit{\text{.}} \end{equation} | (4.10) |
Proof. Let \gamma = \left(\|\Delta u\|_2^2+\|\nabla v\|_2^2\right) ^{1/2} , then using (3.39), we have
\begin{equation} E\left( t\right) \geq \frac{1}{2}\gamma^{2}-\int_{\Omega }F\left( x, u, v\right) dx. \end{equation} | (4.11) |
The use of Lemma 2.1, (4.6) and (4.7) leads to
\begin{equation} \begin{aligned} \int_{\Omega }F\left( x, u, v\right)dx& = a\int_{\Omega }\left\vert u+v\right\vert ^{p\left( x\right) +1}dx+2b\int_{\Omega }\left\vert uv\right\vert ^{\frac{ p\left( x\right) +1}{2}}dx\\ & \leq a\max \left\{ \left\Vert u+v\right\Vert _{_{p\left( .\right) +1}}^{^{p^{-}+1}}, \left\Vert u+v\right\Vert _{_{p\left( .\right) +1}}^{^{p^{+}+1}}\right\} \\ & \quad + 2b\max \left\{ \left\Vert uv\right\Vert _{_{\frac{p\left( .\right) +1}{2}}}^{\frac{p^{-}+1}{2}}, \left\Vert uv\right\Vert _{_{\frac{p\left( .\right) +1}{2}}}^{\frac{p^{+}+1}{2}}\right\}\\ &\leq a\max \left\{ \left( \sqrt{2} c_*\gamma\right) ^{p^{-}+1}, \left(\sqrt{2} c_*\gamma\right) ^{p^{+}+1}\ \right\} \\ & \quad + 2b\max \left\{ \left( c_*\gamma\right) ^{p^{-}+1} , \left( c_*\gamma\right) ^{p^{+}+1}\right\}. \end{aligned} \end{equation} | (4.12) |
Combining (4.11) and (4.12), we obtain
\begin{equation} \begin{aligned} E(t)\ge &\frac{1}{2}\gamma ^{2}-a\max \left\{ \left( \sqrt{2} c_*\gamma\right) ^{p^{-}+1}, \left(\sqrt{2} c_*\gamma\right) ^{p^{+}+1}\right\} \\ &-2b\max \left\{ \left( c_*\gamma\right) ^{p^{-}+1} , \left( c_*\gamma\right) ^{p^{+}+1}\right\}. \end{aligned} \end{equation} | (4.13) |
For \gamma \ in \ \left[0, \frac{1}{\sqrt{2}c_*} \right] , one can easily check that
c_*^2\gamma^2\leq2 c_*^2\gamma^2\leq 1. |
Consequently, we have
\begin{equation*} \left( \sqrt{2} c_*\gamma\right) ^{p^{-}+1}\geq \left( \sqrt{2} c_*\gamma\right) ^{p^{+}+1}\ \text{and }\ \left( c_*\gamma\right) ^{p^{-}+1}\geq \left( \sqrt{2} c_*\gamma\right) ^{p^{+}+1}. \end{equation*} |
Thus, (4.13) reduces to
\begin{equation*} E\left( t\right) \geq \frac{1}{2}\gamma ^{2}-\left( \sqrt{2^{(p^{-}+1)}} a+2b\right) c_*^{p^{-}+1}\gamma ^{p^{-}+1}. \end{equation*} |
If we set
\begin{equation*} h\left( \gamma\right) = \frac{1}{2}\gamma ^{2}-k\gamma ^{^{p^{-}+1}}, \text{where}\; k = \left( \sqrt{2^{(p^{-}+1)}} a+2b\right) c_*^{p^{-}+1}, \end{equation*} |
then
\begin{equation} E\left( t\right) \geq h\left( \gamma\right), \ \text{for all}\ \gamma \in \left[ 0, \frac{1}{\sqrt{2}c_*} \right]. \end{equation} | (4.14) |
It is clear that h is strictly increasing on \ \left[0, \gamma _{1}\right) \ and strictly decreasing on \left[\gamma _{1}, +\infty\right) . Since E\left(0\right) < E_{1} \ \text{and} \ E_{1} = h\left(\gamma _{1}\right), then, we can find \gamma _{2} > \gamma _{1}\ such that \ h\left(\gamma _{2}\right) = E\left(0\right) . But,
\begin{equation*} \alpha _{0} = \left( \|\Delta u_0\|_2^2+\|\nabla v_0\|_2^2\right) ^{1/2}, \end{equation*} |
therefore, by (4.14), we get
\begin{equation*} h\left( \gamma _{2}\right) = E\left( 0\right) \geq h\left( \gamma _{0}\right). \end{equation*} |
This implies that \ \gamma _{0}\geq \gamma _{2} . Hence, \gamma _{2}\in \left(\gamma _{1}, \frac{1}{\sqrt{2}c_*}\right]. To prove (4.10), we assume that there is a t_0 \in\left[0, T\right) such that
\begin{equation*} \left(\|\Delta u(., t_0)\|_2^2+\|\nabla v(., t_0)\|_2^2\right) ^{1/2} < \gamma _{2}. \end{equation*} |
Since \ \left(\|\Delta u\|_2^2+\|\nabla v\|_2^2\right) ^{1/2} is continuous and \gamma_{2} > \gamma _{1} , t_0 can be selected so that
\begin{equation*} \left[ \|\Delta u(., t_0)\|_2^2+\|\nabla v(., t_0)\|_2^2\right] ^{1/2} > \gamma _{1}. \end{equation*} |
Using (4.14) and the fact that h\ is decreasing on \left[\gamma _{1}, \frac{1}{\sqrt{2}c_*}\right] , we obtain
\begin{align*} E\left( t_0\right) &\geq h\left( \left(\|\Delta u(., t_0)\|_2^2+\|\nabla v(., t_0)\|_2^2\right) ^{1/2}\right) > h\left( \gamma _{2}\right) = E\left( 0\right), \end{align*} |
which contradicts the fact that E\left(t\right) \leq E\left(0\right) , for all t\in \left[0.T\right) . Thus, (4.10) is established.
Lemma 4.2. Let \mathcal{ H}\left(t\right) = E_{1}-E\left(t\right), \ \mathit{\text{for all}}\ t\in \left[0, \ T\right). Then, we have
\begin{equation} 0 < \mathcal{H}\left( 0\right) \leq \mathcal{H}\left( t\right) \leq \int_{\Omega }F\left( x, u, v\right) dx, \ \mathit{\text{for all}}\ t\in \left[ 0, \ T\right) \ \ \end{equation} | (4.15) |
and
\begin{equation} \int_{\Omega }F\left( x, u, v\right) dx\geq d_*\gamma _{2}^{^{p^{-}+1}}\mathit{\text{.}} \end{equation} | (4.16) |
Proof. Using (3.40), (4.8) and (4.11), we have
\begin{equation} 0 < E_{1}-E\left( 0\right) \ = H\left( 0\right) \leq H\left( t\right) \leq E_{1}-\frac{1}{2}\gamma ^{2}+\int_{\Omega }F\left( x, u, v\right) dx. \end{equation} | (4.17) |
From the fact that h(\gamma_1) = \frac{1}{2}\gamma_1 ^{2}-d_*\gamma_1 ^{^{p^{-}+1}} = E_1 , we have
E_1-\frac{1}{2}\gamma_1^2 = -d_*\gamma _{1}^{p^{-}+1}, |
then since \ \gamma \geq \gamma _{2} > \gamma _{1} , we obtain
\begin{align*} \mathcal{H}\left( t\right) &\leq -d_*\gamma _{1}^{p^{-}+1} +\int_{\Omega }F\left( x, u, v\right)dx \leq \int_{\Omega }F\left( x, u, v\right)dx . \end{align*} |
Thus, (4.15) is established. To establish (4.16), we use (4.15) to obtain
\begin{equation*} E\left( 0\right) \geq \frac{1}{2}\gamma ^{2}-\int_{\Omega }F\left( x, u, v\right) dx, \end{equation*} |
which implies,
\begin{equation*} \int_{\Omega }F\left( x, u, v\right) dx\geq \frac{1}{2}\gamma ^{2}-E\left( 0\right) . \end{equation*} |
But E\left(0\right) = h\left(\gamma _{2}\right) \ and \ \gamma\geq \gamma _{2} , so
\begin{equation*} \int_{\Omega }F\left( x, u, v\right) dx\ge\frac{1}{2}\gamma _{2}^{2}-h\left( \gamma _{2}\right) = d_*\gamma _{2}^{p^{-}+1}. \end{equation*} |
Lemma 4.3. There exist C_{3}, C_{4}, C_{5} > 0 such that any solution of (1.2) satisfies
\begin{equation} \left\Vert u\right\Vert _{_{p^{-}+1}}^{^{p^{-}+1}}+\left\Vert v\right\Vert _{_{p^{-}+1}}^{^{p^{-}+1}}\leq C_{3}\left( \zeta \left( u\right) +\zeta \left( v\right) \right), \end{equation} | (4.18) |
\begin{equation} \int_{\Omega }\left\vert u\right\vert ^{m\left( x\right) }dx\leq C_{4} \left[ \left( \zeta \left( u\right) +\zeta \left( v\right) \right) ^{\frac{ m^{+}}{_{p^{-}+1}}}+\left( \zeta \left( u\right) +\zeta \left( v\right) \right) ^{\frac{m^{-}}{_{p^{-}+1}}}\right] \end{equation} | (4.19) |
and
\begin{equation} \int_{\Omega }\left\vert v\right\vert ^{r\left( x\right) }dx\leq C_{5}\left[ \left( \zeta \left( u\right) +\zeta \left( v\right) \right) ^{ \frac{r^{+}}{_{p^{-}+1}}}+\left( \zeta \left( u\right) +\zeta \left( v\right) \right) ^{\frac{r^{-}}{_{p^{-}+1}}}\right], \end{equation} | (4.20) |
where \zeta(u) and \zeta(v) are defined in Corollary 3.2.
Proof. We define the following partition of \Omega
\begin{equation*} \ \Omega _{+} = \left\{ x\in \Omega \ /\ \left\vert u\left( x, t\right) \right\vert \geq 1\right\} \text{ and }\Omega _{-} = \left\{ x\in \Omega \ /\ \left\vert u\left( x, t\right) \right\vert < 1\right\}. \end{equation*} |
The properties of p(.) and Hölder's inequality imply that, for some c_{1} > 0 ,
\begin{align*} \zeta\left( u\right) & = \int_{\Omega _{+}}\left\vert u\right\vert ^{^{p\left( x\right) +1}}dx\ +\int_{\Omega _{-}}\left\vert u\right\vert ^{^{p\left( x\right) +1}}dx \\ &\geq \int_{\Omega _{+}}\left\vert u\right\vert ^{p^{-}+1}dx\ +\int_{\Omega _{-}}\left\vert u\right\vert ^{p^{+}+1}dx \\ &\geq \int_{\Omega _{+}}\left\vert u\right\vert ^{p^{-}+1}dx\ +c_{1}\left( \int_{\Omega _{-}}\left\vert u\right\vert ^{p^{-}+1}dx\right) ^{\frac{p^{+}+1 }{p^{-}+1}}. \end{align*} |
Hence,
\begin{equation} \zeta \left( u\right) \geq \int_{\Omega _{+}}\left\vert u\right\vert ^{p^{-}+1}dx\ \text{and } \left( \frac{\zeta \left( u\right)}{c_{1}}\right)^{\frac{p^{-}+1}{p^{+}+1}} \geq \int_{\Omega _{-}} \left\vert u\right\vert ^{p^{-}+1}dx. \end{equation} | (4.21) |
Use (4.21) to obtain, for some c_{2} > 0.
\begin{align*} \left\Vert u\right\Vert _{_{p^{-}+1}}^{^{p^{-}+1}} &\leq \zeta \left( u\right) +c_{2}\left( \zeta \left( u\right) \right) ^{\frac{p^{-}+1}{ p^{+}+1}} \\ &\leq \zeta \left( u\right) +\zeta \left( v\right) +c_{2}\left( \zeta \left( u\right) +\zeta \left( v\right) \right) ^{\frac{p^{-}+1}{p^{+}+1}} \\ & = \left( \zeta \left( u\right) +\zeta\left( v\right) \right) \left[ 1+ c_{2}\left( \zeta \left( u\right) +\zeta \left( v\right) \right) ^{ \frac{p^{-}-\ p^{+}}{p^{+}+1}}\right] . \end{align*} |
Recalling (3.38) and (4.15), we deduce that
\begin{equation} 0 < \mathcal{H}\left( 0\right) \leq \mathcal{H}\left( t\right) \leq C_{2}\left( \zeta \left( u\right) +\zeta \left( v\right) \right). \end{equation} | (4.22) |
Therefore,
\begin{equation*} \left\Vert u\right\Vert _{_{p^{-}+1}}^{^{p^{-}+1}}\leq \left( \zeta \left( u\right) +\zeta \left( v\right) \right) \left[ 1+c_{2}\left( \mathcal{H}\left( 0\right) /C_{2}\right) ^{\frac{p^{-}-\ p^{+}}{p^{+}+1}}\right]\leq c\left( \zeta \left( u\right) +\zeta \left( v\right) \right). \end{equation*} |
Similarly, we arrive at
\begin{equation*} \left\Vert v\right\Vert _{_{p^{-}+1}}^{^{p^{-}+1}}\leq c\left( \zeta \left( u\right) +\zeta \left( v\right) \right). \end{equation*} |
Therefore, (4.18) is established. To establish (4.19), we recall that p^{-}\geq max \ \left\{ m^{+}, r^{+}\right\} , to conclude that
\begin{align*} \int_{\Omega }\left\vert u\right\vert ^{m\left( x\right) }dx &\leq \int_{\Omega _{+}}\left\vert u\right\vert ^{m^{+}}dx\ +\int_{\Omega _{-}}\left\vert u\right\vert ^{m^{-}}dx \\ &\leq c\left( \int_{\Omega_{+}}\left\vert u\right\vert ^{p^{-}+1}dx\right) ^{\frac{m^{+}}{_{p^{-}+1}}}\ +c\left( \int_{\Omega _{-}}\left\vert u\right\vert ^{p^{-}+1}dx\right) ^{ \frac{m^{-}}{_{p^{-}+1}}} \\ &\leq c\left( \left\Vert u\right\Vert _{_{p^{-}+1}}^{^{m^{+}}}+\left\Vert u\right\Vert _{_{p^{-}+1}}^{^{m^{-}}}\right), \ c > 0. \end{align*} |
Using similar calculations as above, we obtain (4.19) and (4.20).
Lemma 4.4. Let \mathcal{G}\left(t\right) = \mathcal{H}^{1-\sigma }\left(t\right) +\varepsilon \int_{\Omega }\left(uu_{t}+vv_{t}\right) dx, t > 0, where \varepsilon > 0 to be fixed later. Then, there exists \rho > 0 , such that
\begin{equation} \mathcal{G}^{\prime }\left( t\right) \geq \varepsilon \rho \left( \mathcal{H}\left( t\right) +\left\Vert u_{t}\right\Vert _{2}^{2}+\left\Vert v_{t}\right\Vert _{2}^{2}+\zeta \left( u\right) +\zeta \left( v\right) \right) \end{equation} | (4.23) |
and hence,
\begin{equation*} \mathcal{G}\left( t\right) \geq \mathcal{G}\left( 0\right) > 0, \ \mathit{\text{ for}}\ t > 0, \label{Q4.43} \end{equation*} |
where
\begin{equation} 0 < \sigma \leq \min \left\{ \frac{p^{-}-m^{+}+1}{\left( p^{-}+1\right) \left( m^{+}-1\right) }\mathit{\text{, }}\ \frac{p^{-}-r^{+}+1}{\left( p^{-}+1\right) \left( r^{+}-1\right) }\mathit{\text{, }}\ \frac{ p^{-}-1}{2\left( p^{-}+1\right) }\right\}. \end{equation} | (4.24) |
Proof. Differentiate \mathcal{G} and use (1.2) to have
\begin{align} \mathcal{G}^{\prime }\left( t\right)& = \left( 1-\sigma \right) \mathcal{H}^{-\sigma }\left( t\right)\mathcal{H}^{\prime }\left( t\right) +\varepsilon \left( \left\Vert u_{t}\right\Vert_{2} ^{2}+\left\Vert v_{t}\right\Vert _{2}^{2}\right) \\ &+\varepsilon \int_{\Omega }\left( uf_{1}\left( x, u, v\right) + vf_{2}\left( x, u, v\right)\right)dx - \varepsilon \left( \|\Delta u\|_2^2+\|\nabla v\|_2^2\right)\\ &- \varepsilon \int_{\Omega }\left( \left\vert u_{t}\right\vert ^{m\left( x\right) -2} u_{t}u+\left\vert v_{t}\right\vert ^{r\left( x\right) -2} v_{t}v\right)dx. \end{align} | (4.25) |
By the definition of \mathcal{H}\ and E , we get
\begin{equation} \begin{aligned} & \|\Delta u\|_2^2+\|\nabla v\|_2^2 = 2\int_{\Omega }F\left( x, u, v\right) dx-\|u_t\|_2^2-\|v_t\|_2^2+2E_{1}\ -2\mathcal{H}\left( t\right). \end{aligned} \end{equation} | (4.26) |
Combining (3.36), (4.25) and (4.26), we obtain
\begin{align} \mathcal{G}^{\prime }\left( t\right) &\geq \left( 1-\sigma \right) \mathcal{H}^{-\sigma }\left( t\right) \mathcal{H}^{\prime }\left( t\right) +2\varepsilon \left( \left\Vert u_{t}\right\Vert _{2}^{2}+\left\Vert v_{t}\right\Vert _{2}^{2}\right)+2\varepsilon \mathcal{H}\left( t\right) \\ &-2\varepsilon E_{1}+ \varepsilon \left( p^{-}-1\right) \int_{\Omega }F\left( x, u, v\right) dx \\ &-\varepsilon \int_{\Omega }\left( \left\vert u \right\vert \left\vert u_{t}\right\vert ^{m\left( x\right) -1}+ \left\vert v \right\vert \left\vert v_{t}\right\vert ^{r\left( x\right) -1}\right)dx. \end{align} | (4.27) |
A combination of (4.16) and (4.27) leads to
\begin{align} \mathcal{G}^{\prime }\left( t\right) &\geq \left( 1-\sigma \right) \mathcal{H}^{-\sigma }\left( t\right) \mathcal{H}^{\prime }\left( t\right) +2\varepsilon \left( \left\Vert u_{t}\right\Vert _{2}^{2}+\left\Vert v_{t}\right\Vert _{2}^{2}\right) \end{align} | (4.28) |
\begin{align} & \quad +\varepsilon \left(p^{-}-1-2\left( d_*\gamma _{2}^{p^{-}+1}\right) ^{-1}E_{1}\right)\int_{\Omega }F\left( x, u, v\right)dx \\ & \quad + 2\varepsilon \mathcal{H}\left( t\right)-\varepsilon \int_{\Omega }\left( \left\vert u \right\vert \left\vert u_{t}\right\vert ^{m\left( x\right) -1} +\left\vert v \right\vert \left\vert v_{t}\right\vert ^{r\left( x\right) -1} \right)dx, \end{align} | (4.29) |
where p^{-}-1-2\left(d_*\alpha _{2}^{p^{-}+1}\right) ^{-1}E_{1} > 0 , since \ \gamma _{2} > \gamma _{1} .
Now, the last two terms of (4.29) can be estimated by applying (4.5) with X = \left\vert u\right\vert, \ Y = \left\vert u_{t}\right\vert ^{m\left(x\right) -1}, \ \lambda = m\left(x\right), \ \beta = \frac{m\left(x\right) }{m\left(x\right) -1}, as follows:
\begin{equation} \begin{aligned} \int_{\Omega } \left\vert u \right\vert \left\vert u_{t}\right\vert ^{m\left( x\right) -1}dx&\leq \int_{\Omega }\frac{\delta^{m\left( x\right) }}{m\left( x\right) }\left\vert u\right\vert ^{m\left( x\right) }dx\ \\ &+\int_{\Omega } \frac{m\left( x\right) -1}{m\left( x\right) }\delta^{-m\left( x\right) /\left( m\left( x\right) -1\right) }\left\vert u_{t}\right\vert ^{m\left( x\right) }dx. \end{aligned} \end{equation} | (4.30) |
Let \ \tilde{k}\ be a positive constant to be selected later and take \delta = \left[\tilde{k}\mathcal{H}^{-\sigma }\left(t\right) \right] ^{\frac{1-m\left(x\right) }{m\left(x\right) }} to obtain
\begin{equation} \begin{aligned} \int_{\Omega }\left\vert u \right\vert \left\vert u_{t}\right\vert ^{m\left( x\right) -1}dx&\leq \frac{\tilde{k}^{1-m^{-}}}{m^{-}}\int_{\Omega }\left[ \mathcal{H}\left( t\right) \right] ^{\sigma \left( m\left( x\right) -1\right) }\left\vert u\right\vert ^{m\left( x\right) }dx\ \\ &+\frac{m^{+}-1}{m^{-}}\tilde{k}\mathcal{H}^{-\sigma }\left( t\right) \int_{\Omega }\left\vert u_{t}\right\vert ^{m\left( x\right) }dx. \end{aligned} \end{equation} | (4.31) |
The properties of m(x) and \mathcal{H}(t) give
\begin{align*} \int_{\Omega }\left[ \mathcal{H}\left( t\right) \right] ^{\sigma \left( m\left( x\right) -1\right) }\left\vert u\right\vert ^{m\left( x\right) }dx & = \int_{\Omega }\left[ \frac{\mathcal{H}\left( t\right) }{\mathcal{H}\left( 0\right) }\right] ^{\sigma \left( m\left( x\right) -1\right) }\left[ \mathcal{H}\left( 0\right) \right] ^{\sigma \left( m\left( x\right) -1\right) }\left\vert u\right\vert ^{m\left( x\right) }dx \\ &\leq \tilde{c_{2}}\left[ \mathcal{H}\left( t\right) \right] ^{\sigma \left( m^{+}-1\right) }\int_{\Omega }\left[ \mathcal{H}\left( 0\right) \right] ^{\sigma \left( m\left( x\right) -1\right) }\left\vert u\right\vert ^{m\left( x\right) }dx, \end{align*} |
where \tilde{c_{2}} = 1/\left[\mathcal{H}\left(0\right) \right] ^{\sigma \left(m^{+}-1\right)}. But \left[\mathcal{H}\left(0\right) \right] ^{\sigma \left(m\left(x\right) -1\right) }\leq c_{3}, \text{ for all }x\in \Omega, where c_{3} > 0 . So, for some c_{4} > 0, we get
\begin{equation} \int_{\Omega }\left[ \mathcal{H}\left( t\right) \right] ^{^{\sigma \left( m\left( x\right) -1\right) }}\left\vert u\right\vert ^{m\left( x\right) }dx\leq c_{4}\left[ \mathcal{H}\left( t\right) \right] ^{\sigma \left( m^{+}-1\right) }\int_{\Omega }\left\vert u\right\vert ^{m\left( x\right) }dx. \end{equation} | (4.32) |
Combining (4.31) and (4.32) to obtain
\begin{equation} \begin{aligned} \int_{\Omega }\left\vert u \right\vert \left\vert u_{t}\right\vert ^{m\left( x\right) -1}dx&\leq \frac{c_4\tilde{k}^{1-m^{-}}}{m^{-}} \left[ \mathcal{H}\left( t\right) \right] ^{\sigma \left( m^{+}-1\right) }\int_{\Omega }\left\vert u\right\vert ^{m\left( x\right) }dx\ \\ & \quad +\frac{m^{+}-1}{m^{-}}\tilde{k}\mathcal{H}^{-\sigma }\left( t\right) \int_{\Omega }\left\vert u_{t}\right\vert ^{m\left( x\right) }dx. \end{aligned} \end{equation} | (4.33) |
Applying Similar calculations, we arrive at
\begin{equation} \begin{aligned} \int_{\Omega}\left\vert v_{t}\right\vert ^{r\left( x\right) -1} vdx&\leq \frac{c_5\tilde{k}^{1-r^{-}}}{r^{-}} \left[ \mathcal{H}\left( t\right) \right] ^{\sigma \left( r^{+}-1\right) }\int_{\Omega }\left\vert v\right\vert ^{r\left( x\right) }dx\ \\ & \quad +\frac{r^{+}-1}{r^{-}}\tilde{k}\mathcal{H}^{-\sigma }\left( t\right) \int_{\Omega }\left\vert v_{t}\right\vert ^{r\left( x\right) }dx. \end{aligned} \end{equation} | (4.34) |
Adding (4.33) and (4.34), we have
\begin{equation} \begin{aligned} \int_{\Omega }\left( \left\vert u \right\vert \left\vert u_{t}\right\vert ^{m\left( x\right) -1} +\left\vert v \right\vert \left\vert v_{t}\right\vert ^{r\left( x\right) -1} \right)dx\le & \frac{c_4\tilde{k}^{1-m^{-}}}{m^{-}} \left[ \mathcal{H}\left( t\right) \right] ^{\sigma \left( m^{+}-1\right) }\int_{\Omega }\left\vert u\right\vert ^{m\left( x\right) }dx\\ &+\frac{c_5\tilde{k}^{1-r^{-}}}{r^{-}} \left[ \mathcal{H}\left( t\right) \right] ^{\sigma \left( r^{+}-1\right) }\int_{\Omega }\left\vert v\right\vert ^{r\left( x\right) }dx\\ &+\tilde{\alpha}\mathcal{H}^{-\sigma }\left( t\right)\left(\int_{\Omega }\left\vert u_{t}\right\vert ^{m\left( x\right) }dx+ \int_{\Omega }\left\vert v_{t}\right\vert ^{r\left( x\right) }dx\right), \end{aligned} \end{equation} | (4.35) |
where \tilde{\alpha} = \max{\{\frac{m^{+}-1}{m^{-}}\tilde{k}, \frac{r^{+}-1}{r^{-}}\tilde{k}\}}. Using (3.43), we have
\begin{equation*} \mathcal{H}^{\prime }\left( t\right) = \int_{\Omega }\left\vert u_{t}\right\vert ^{m\left( x\right) }dx+\int_{\Omega }\left\vert v_{t}\right\vert ^{r\left( x\right) }dx. \end{equation*} |
Hence, (4.35) becomes
\begin{equation} \begin{aligned} \int_{\Omega }\left( \left\vert u \right\vert \left\vert u_{t}\right\vert ^{m\left( x\right) -1} +\left\vert v \right\vert \left\vert v_{t}\right\vert ^{r\left( x\right) -1} \right)dx\le & \frac{c_4\tilde{k}^{1-m^{-}}}{m^{-}} \left[ \mathcal{H}\left( t\right) \right] ^{\sigma \left( m^{+}-1\right) }\int_{\Omega }\left\vert u\right\vert ^{m\left( x\right) }dx\\ &+\frac{c_5\tilde{k}^{1-r^{-}}}{r^{-}} \left[ \mathcal{H}\left( t\right) \right] ^{\sigma \left( r^{+}-1\right) }\int_{\Omega }\left\vert v\right\vert ^{r\left( x\right) }dx\\ &+\tilde{\alpha}\mathcal{H}^{-\sigma }\left( t\right)\mathcal{H}^{\prime }\left( t\right). \end{aligned} \end{equation} | (4.36) |
Using (3.38) and (4.15), we have
\left[ \mathcal{H}\left( t\right) \right] ^{\sigma \left( m^{+}-1\right) }\le c\left( \zeta \left( u\right) +\zeta \left( v\right) \right) ^{^{\sigma \left( m^{+}-1\right) }}. |
Using the last inequality and (4.19), it can be concluded that
\begin{align} \left[ \mathcal{H}\left( t\right) \right] ^{\sigma \left( m^{+}-1\right) }\int_{\Omega }\left\vert u\right\vert ^{m\left( x\right) }dx &\leq c_{6}\left( \zeta \left( u\right) +\zeta \left( v\right) \right) ^{^{\sigma \left( m^{+}-1\right) +\frac{m^{+}}{p^{-}+1}}} \\ &+ c_{6}\left( \zeta \left( u\right) +\zeta \left( v\right) \right) ^{^{\sigma \left( m^{+}-1\right) +\frac{m^{-}}{p^{-}+1}}}, \end{align} | (4.37) |
Applying (4.4) with z = \zeta(u) +\zeta(v), \ a = \mathcal{H}(0), \ \delta = \sigma \left(m^{+}-1\right) +\frac{m^{+}}{p^{-}+1}\ and then with \ \delta = \sigma \left(m^{+}-1\right) +\frac{m^{-}}{p^{-}+1} , respectively, we get
\begin{align} \left( \zeta(u) +\zeta(v) \right)^{\sigma \left( m^{+}-1\right) +\frac{m^{+}}{p^{-}+1}} &\leq \left[ 1+\frac{1}{ \mathcal{H}( 0)}\right] \left( \zeta(u) +\zeta(v)+ \mathcal{H}(0) \right) \\ &\leq \alpha\left( \zeta(u) +\zeta(v) + \mathcal{H}(t) \right) \end{align} | (4.38) |
and
\begin{equation} \ \left( \zeta\left( u\right) +\zeta \left( v\right) \right) ^{\sigma \left( m^{+}-1\right) +\frac{m^{-}}{p^{-}+1}}\leq \alpha \left( \zeta( u) +\zeta( v) + \mathcal{H}( t)\right) \end{equation} | (4.39) |
where \alpha = 1+\frac{1}{ \mathcal{H}(0) } .
A combination of (4.37)–(4.39) implies that, for some c_{7} > 0,
\begin{equation} \left[\mathcal{H}(t) \right] ^{^{\sigma \left( m^{+}-1\right) }}\int_{\Omega }\left\vert u\right\vert ^{m( x) }dx\leq c_{7}\left( \zeta( u) +\zeta(v) +\mathcal{H}(t) \right). \end{equation} | (4.40) |
Similar calculations give, for some c_{8} > 0,
\begin{equation} \left[ \mathcal{H}\left( t\right) \right] ^{^{\sigma \left( r^{+}-1\right) }}\int_{\Omega }\left\vert v\right\vert ^{r(x) }dx\leq c_{8}\left( \zeta(u) +\zeta(v) + \mathcal{H}( t) \right). \end{equation} | (4.41) |
Using (4.35), (4.40) and (4.41), we obtain, for c_{9}, c_{10} > 0 ,
\begin{equation} \begin{aligned} \int_{\Omega }\left( \left\vert u \right\vert \left\vert u_{t}\right\vert ^{m\left( x\right) -1} +\left\vert v \right\vert \left\vert v_{t}\right\vert ^{r\left( x\right) -1} \right)dx&\leq \frac{\tilde{k}^{1-m^{-}}}{m^{-}}c_{9} \left( \zeta( u) +\zeta( v) + \mathcal{H}(t) \right)\\ & \quad + \frac{\tilde{k}^{1-r^{-}}}{r^{-}}c_{10}\left( \zeta( u) +\zeta( v) + \mathcal{H}(t) \right) \\ & \quad +\frac{r^{+}-1}{ r^{-}}\tilde{k} \mathcal{H}^{-\sigma }( t) \mathcal{H}^{\prime }(t). \end{aligned} \end{equation} | (4.42) |
Inserting (4.42) into (4.29), we have
\begin{align*} \mathcal{G}^{\prime }\left( t\right) &\geq \left( 1-\sigma -\varepsilon \tilde{R}\right) \mathcal{H}^{-\sigma }\left( t\right) \mathcal{H}^{\prime }\left( t\right) +2\varepsilon \left( \left\Vert u_{t}\right\Vert _{2}^{2}+\left\Vert v_{t}\right\Vert _{2}^{2}\right) \notag \\ &+\varepsilon \left( 2-\frac{\tilde{k}^{1-m^{-}}}{m^{-}} c_{9}-\frac{\tilde{k}^{1-r^{-}}}{ r^{-}} c_{10}\right) \mathcal{H}\left( t\right) \notag \\ &+\varepsilon \left( c_{11}-\frac{\tilde{k}^{1-m^{-}}}{m^{-}}c_{9}-\frac{ \tilde{k}^{1-r^{-}}}{r^{-}} c_{10}\right) \left( \zeta \left( u\right) +\zeta \left( v\right) \right). \end{align*} |
where c_{11} > 0 and \tilde{R} = \tilde{k}\left(\frac{m^{+}-1}{m^{-}}+\frac{r^{+}-1}{r^{-}} \right) . Now, we select \tilde{k} large enough so that
\begin{align*} \mathcal{G}^{\prime }\left( t\right) & \geq \left( 1-\sigma -\varepsilon \tilde{R} \right) \mathcal{H}^{-\sigma }\left( t\right) \mathcal{H}^{\prime }\left( t\right) \\ & +\varepsilon c_{12}\left( \left\Vert u_{t}\right\Vert _{2}^{2}+\left\Vert v_{t}\right\Vert _{2}^{2}+ \mathcal{H}\left( t\right) +\zeta \left( u\right) +\zeta \left( v\right) \right), \end{align*} |
where c_{12} > 0 . Once \tilde{k} is fixed, we select \varepsilon small enough so that
\begin{equation*} 1-\sigma -\varepsilon \tilde{R} \geq 0\ \text{and}\ \mathcal{G}\left( 0\right) = \mathcal{H}^{1-\sigma }\left( 0\right) +\varepsilon \int_{\Omega }\left( u_{0}u_{1}+v_{0}v_{1}\right) dx > 0. \end{equation*} |
Using the fact that \mathcal{H} is a non-decreasing function, therefore (4.23) is established.
Theorem 4.1. Under the assumptions (4.1) and (4.9), any solution of the system (1.2) blows-up in a finite time.
Proof. Using (4.3) and the definition of \mathcal{G} , we have
\begin{equation} \begin{aligned} \mathcal{G}^{^{1/\left( 1-\sigma \right) }}\left( t\right) &\leq\left( \mathcal{H}^{^{1-\sigma }}\left( t\right) + \varepsilon \int_{\Omega } \left\vert uu_{t}+ vv_{t} \right\vert dx\right) ^{1/\left( 1-\sigma \right) } \\ &\leq 2^{^{\sigma /\left( 1-\sigma \right) }}\left( \mathcal{H}\left( t\right) +\left( \varepsilon \int_{\Omega }\left( \left\vert uu_{t}\right\vert+\left\vert vv_{t} \right\vert\right) dx \right) ^{1/\left( 1-\sigma \right) }\right) \\ &\leq c_{13}\left( \mathcal{H}\left( t\right)+ \left( \int_{\Omega }\left( \left\vert u \right\vert \left\vert u_{t} \right\vert + \left\vert v \right\vert \left\vert v_{t} \right\vert \right)dx\right) ^{1/\left( 1-\sigma \right) }\right) , \end{aligned} \end{equation} | (4.43) |
where c_{13} = 2^{^{\sigma /\left(1-\sigma \right) }}\max \left\{ 1, \varepsilon ^{1/\left(1-\sigma \right) }\right\} .
The embedding Lemma 2.2, Lemma 4.2, Hölder's and Young's inequalities give
\begin{equation} \begin{aligned} &\left( \int_{\Omega }\left( \left\vert u \right\vert \left\vert u_{t}\right\vert + \left\vert v \right\vert \left\vert v_{t} \right\vert \right)dx \right) ^{1/\left( 1-\sigma \right)}\\ &\leq 2^{^{\sigma /\left( 1-\sigma \right) }} \left( \int_{\Omega }\left\vert u \right\vert\left\vert u_{t}\right\vert dx\right) ^{1/\left( 1-\sigma \right) }+ 2^{^{\sigma /\left( 1-\sigma \right) }}\ \ \left( \int_{\Omega }\left\vert v \right\vert \left\vert v_{t} \right\vert dx \right)^{1/\left( 1-\sigma \right)}\\ &\le2^{^{\sigma /\left( 1-\sigma \right) }}\left(\left\Vert u\right\Vert _{2}^{1/\left( 1-\sigma \right) }\left\Vert u_{t}\right\Vert _{2}^{1/\left( 1-\sigma \right)}+\left\Vert v\right\Vert _{2}^{1/\left( 1-\sigma \right) }\left\Vert v_{t}\right\Vert _{2}^{1/\left( 1-\sigma \right)} \right) \\ &\leq c_{14}\left(\left\Vert u\right\Vert _{p^{-}+1}^{1/\left( 1-\sigma \right) }\left\Vert u_{t}\right\Vert _{2}^{1/\left( 1-\sigma \right) }+\left\Vert v\right\Vert _{p^{-}+1}^{1/\left( 1-\sigma \right) }\left\Vert v_{t}\right\Vert _{2}^{1/\left( 1-\sigma \right) }\right) \\ &\leq c_{15}\left( \left\Vert u\right\Vert _{p^{-}+1}^{^{2/\left( 1-2\sigma \right) }}+\left\Vert u_{t}\right\Vert _{2}^{^{2}}+\left\Vert v\right\Vert _{p^{-}+1}^{^{2/\left( 1-2\sigma \right) }}+\left\Vert v_{t}\right\Vert _{2}^{^{2}}\right)\\ &\le c_{15}\left( \left( \zeta \left( u\right)+\zeta \left( v\right)\right)^{\tau} + \left\Vert u_{t}\right\Vert_{2}^{2} +\left\Vert v_{t}\right\Vert_{2}^{2}\right), \end{aligned} \end{equation} | (4.44) |
where \tau = 2/ \left(p^{-}+1\right)\left(1-2\sigma\right).
Using (4.15), (3.38) and since \tau \leq 1 , we get, for some c_{18} > 0,
\begin{equation*} \left( \int_{\Omega }\left( \left\vert u \right\vert \left\vert u_{t} \right\vert + \left\vert v \right\vert \left\vert v_{t} \right\vert \right)dx\right) ^{1/\left( 1-\sigma \right) }\leq c_{16} \left( \zeta \left( u\right) +\zeta \left( v\right) +\left\Vert u_{t}\right\Vert _{2}^{^{2}}+\left\Vert v_{t}\right\Vert _{2}^{^{2}}+\mathcal{H}\left( t\right) \right). \end{equation*} |
Inserting the last estimate in (4.43), we obtain
\begin{equation} \mathcal{G}^{^{1/\left( 1-\sigma \right) }}\left( t\right) \leq c_{17}\left( \zeta \left( u\right) +\zeta \left( v\right) +\mathcal{H}\left( t\right) +\left\Vert u_{t}\right\Vert _{2}^{^{2}}+\left\Vert v_{t}\right\Vert _{2}^{^{2}}\right). \end{equation} | (4.45) |
Combining (4.23) and (4.45), we deduce that
\begin{equation*} \mathcal{G}^{\prime }\left( t\right) \geq \tilde{c} \mathcal{G}^{^{1/\left( 1-\sigma \right) }}\left( t\right), \ \text{for all }\ t > 0. \end{equation*} |
where \tilde{c} = \frac{\varepsilon \rho }{c_{16}} . A simple integration over (0, t) yields
\mathcal{G}^{ \sigma / \left( 1-\sigma \right)} \left( t\right) \geq \frac{1}{\mathcal{G}^{\frac{-\sigma}{1-\sigma}}(0)-\frac{ \sigma \tilde{c}t}{1-\sigma}}, |
which implies that \mathcal{G}(t) \longrightarrow +\infty, as t\longrightarrow T^{*}, where T^{*} \leq \frac{1-\sigma}{\sigma \tilde{c} \left[\mathcal{G}^{ \frac{\sigma}{ \left(1-\sigma\right) }} \left(0\right) \right] }. Consequently, the solution of Problem (1.2) blows-up in a finite time.
In this section, we establish the existence of global solutions for initial data in a certain stable set. Then, we show that the decay estimates of the solution energy are exponential or polynomial, depending on the max\left\lbrace m^{+}, r^{+}\right\rbrace.
To state and prove our first result, we introduce the two functionals defined for all t\in (0, T) by
\begin{equation} I\left( t\right) = I\left( u(t)\right) = \| \Delta u\| _2^2+\| \nabla v\| _2^2-\left( p^{+}+1\right)\int_{\Omega }F\left( x, u, v\right)dx, \end{equation} | (5.1) |
\begin{equation} J\left( t\right) = J\left(u(t) \right) = \frac{1}{2} \left( \| \Delta u\| _2^2+\| \nabla v\| _2^2\right) -\int_{\Omega }F\left( x, u, v\right)dx \end{equation} | (5.2) |
and give the following Lemma.
Lemma 5.1. Under the assumptions (H.1) and (H.2) , we suppose that
I(0) > 0 \ and \ \beta < 1, |
where
\begin{align*} \beta & = C_{2}(p^{+}+1)max\left\lbrace c_{*}^{p^{-}+1}\left( \dfrac{2\left( p^{+}+1\right) }{p^{+}-1}E\left( 0\right) \right)^\frac {p^{-}-1}{2}, c_{*}^{p^{+}+1}\left( \dfrac{2\left( p^{+}+1\right) }{p^{+}-1}E\left( 0\right)\right)^\frac {p^{+}-1}{2} \right\rbrace. \end{align*} |
Then,
\begin{equation} I\left( t\right) > 0, \ \mathit{\text{for all}}\ t\in \left( 0, T\right). \end{equation} | (5.3) |
Proof. From the continuity of I and the fact that I(0) > 0, there exists t_{k} in \left] 0, T\right) such that
\begin{equation} I\left( t\right)\geq 0, \ \forall t\in \left( 0, t_{k}\right). \end{equation} | (5.4) |
We have to show that this inequality is strict.
Recalling (5.1) and (5.2), we have
\begin{align*} J\left( t\right) = \dfrac{p^{+}-1}{2\left( p^{+}+1 \right)} \left( \| \Delta u\| _2^2+\| \nabla v\| _2^2 \right) +\dfrac{1}{p^{+}+1} I\left( t\right), \label{Q4.05} \end{align*} |
Combining with (5.4), this gives
\begin{equation} J\left( t\right) \geq \dfrac{ p^{+}-1 }{2\left( p^{+}+1 \right)}\left( \left\Vert \Delta u \right\Vert _{2}^{2}+\left\Vert \nabla v \right\Vert _{2}^{2}\right), \forall t\in \left( 0, t_{k}\right). \end{equation} | (5.5) |
From the definition of the energy, we have
\begin{equation} E\left( t\right) = J\left( t\right)+\frac{1}{2}\left( \left\Vert u_{t}\right\Vert _{2}^{2}+\left\Vert v_{t}\right\Vert _{2}^{2}\right), \end{equation} | (5.6) |
for all t\in \left(0, T\right). Consequently,
\begin{align*} \left\Vert \Delta u\right\Vert _{2}^{2}+\left\Vert \nabla v\right\Vert _{2}^{2} \leq \dfrac{2\left( p^{+}+1 \right)}{\left( p^{+}-1\right)}E\left( t\right). \end{align*} |
Thus, the decreasing property of E leads to
\begin{equation} \max\left\lbrace \left\Vert \Delta u\right\Vert _{2}^{2}, \left\Vert \nabla v \right\Vert _{2}^{2} \right\rbrace \leq \dfrac{2\left( p^{+}+1 \right)}{\left( p^{+}-1\right)}E\left( 0\right), \forall t\in \left( 0, t_{k}\right). \end{equation} | (5.7) |
On the other hand, from Lemma 2.1 and the Sobolev embedding H_0^2 (\Omega) \hookrightarrow L^{{p(\cdot) +1}}(\Omega), we have
\begin{align*} \int_{\Omega } \left\vert u \right\vert ^ {p\left( x\right)+1} dx &\leq max \lbrace c_{*}^{p^{-}+1}\left\Vert \Delta u \right\Vert ^ {p^{-}+1}_{2}, c_{*}^{p^{+}+1}\left\Vert \Delta u \right\Vert ^{p^{+}+1}_{2}\rbrace\\ &\leq max \ \lbrace c_{*}^{p^{-}+1}\left\Vert \Delta u \right\Vert ^{p^{-}-1}_{2}, c_{*}^{p^{+}+1}\left\Vert \Delta u \right\Vert ^{p^{+}-1}_{2}\rbrace \left\Vert \Delta u \right\Vert^{2}_{2}. \end{align*} |
Combining with (5.7), this yields, for all t\in \left(0, t_{k}\right),
\begin{align*} & \int_{\Omega } \left\vert u \right\vert ^{p\left( x\right)+1} dx \\ & \leq max \left\lbrace c_{*}^{{p^{-}+1}} \left(\dfrac{2\left( p^{+}+1 \right)}{\left(p^{+}-1\right)}E\left(0\right)\right)^\frac {p^{-}-1}{2}, c_{*}^{{p^{+}+1}} \left(\dfrac{2\left( p^{+}+1 \right)}{\left(p^{+}-1\right)}E\left(0\right)\right)^\frac {p^{+}-1}{2} \right\rbrace \left\Vert \Delta u \right\Vert^{2}_{2}. \end{align*} |
Therefore,
\begin{equation} \int_{\Omega } \left\vert u \right\vert ^ {p\left( x\right)+1} dx \leq \dfrac{\beta}{C_{2}\left( p^{+}+1\right)}\left\Vert \Delta u \right\Vert^{2}_{2}. \end{equation} | (5.8) |
Similarly, we have
\begin{equation} \int_{\Omega } \left\vert v \right\vert ^ {p\left( x\right)+1} dx \leq \dfrac{\beta}{C_{2}\left( p^{+}+1\right)}\left\Vert \nabla v \right\Vert^{2}_{2}. \end{equation} | (5.9) |
The addition of (5.8) and (5.9) gives
\begin{equation} \int_{\Omega } \left( \left\vert u\right\vert ^{^{p\left( x\right) +1}}+\left\vert v\right\vert ^{^{p\left( x\right) +1}}\right)dx\leq \dfrac{\beta}{C_{2}\left( p^{+}+1\right)}\left( \left\Vert \Delta u \right\Vert _{2}^{2}+\left\Vert \nabla v \right\Vert _{2}^{2}\right). \end{equation} | (5.10) |
Combining (5.10) with (3.41), we infer that
\begin{align} \int_{\Omega } F\left( x, u, v\right)dx & \leq \dfrac{\beta}{p^{+}+1}\left( \left\Vert \Delta u \right\Vert _{2}^{2}+\left\Vert \nabla v \right\Vert _{2}^{2}\right) \\ & < \dfrac{1}{p^{+}+1}\left( \left\Vert \Delta u \right\Vert _{2}^{2}+\left\Vert \nabla v \right\Vert _{2}^{2}\right), \end{align} | (5.11) |
for all t\in \left(0, t_{k}\right). From the definition of I, this leads to
\begin{equation*} I\left( t\right) > 0. \ \forall t\in \left(0, t_{k}\right). \end{equation*} |
By repeating the above procedure and using the decreasing property of E, we can extend t_{k} to T and obtain (5.3).
Theorem 5.1. Suppose that all assumptions of Lemma 5.1 are fulfilling. Then, the local solution \left(u, v\right) of the system (1.2) exists globally.
Proof. Substituting (5.5) into (5.6) and thanks to (5.3), it yields
\begin{align*} E\left( t\right) & \geq \dfrac{p^{+}-1}{2\left( p^{+}+1 \right)} \left( \left\Vert \Delta u\right\Vert _{2}^{2}+\left\Vert \nabla v \right\Vert _{2}^{2}\right)+\frac{1}{2}\left( \left\Vert u_{t}\right\Vert _{2}^{2}+\left\Vert v_{t}\right\Vert _{2}^{2}\right), \end{align*} |
for all t\in \left(0, T\right). Then, we have
\begin{align} \left\Vert \Delta u \right\Vert _{2}^{2} + \left\Vert \nabla v \right\Vert _{2}^{2}+ \left\Vert u_{t}\right\Vert _{2}^{2}+\left\Vert v_{t}\right\Vert _{2}^{2} & \leq C_{3}E\left( t\right) \\ & \leq C_{3} E(0), \end{align} | (5.12) |
for C_{3} = \max \lbrace 2, \frac{2(p^{+}+1)}{p^{+}-1} \rbrace. This means that the norm in (5.12) is bounded independently of t . Therefore, the solution \left(u, v \right) exists globally.
To prove the decay result, we need the following Lemma.
Lemma 5.2. Suppose that the assumptions of Lemma 5.1 hold. Then, there exists a positive constant C_{4} , such that the global solution \left(u, v\right) satisfies
\begin{equation} \int_{\Omega } \left( \left\vert u \left( t\right) \right\vert ^{m( x)} +\left\vert v( t) \right\vert ^{r( x)} \right) dx \leq C_{4}E( t) \ \mathit{\text{for all }}\ t\geq 0. \end{equation} | (5.13) |
Proof. The result is immediate by replacing p with m and r in (5.8) and (5.9), respectively, and by recalling (5.12).
Theorem 5.2. Under the assumptions of Lemma 5.1, the solution of the system (1.2) satisfies the following decay estimates, for all t\geq 0,
\begin{equation} E\left( t\right) \leq \left\{ \begin{array}{ll} \frac{k }{\left( 1+t\right) ^{2 / \left( \lambda^{+}-2 \right)}}, & \ if \ \alpha > 2, \\ ke^{-\omega t}, & \ if \ \alpha = 2, \end{array}\right. \end{equation} | (5.14) |
where \alpha = max \ \lbrace m^{+}, r^{+}\rbrace and k, w > 0 are two positive constants.
Proof. Multiplying (1.2) _1 by u\left(t\right) E^{\eta}\left(t\right) and (1.2) _2 by v\left(t\right) E^{\eta}\left(t\right) and then, integrating each result over \Omega\times\left(s, T\right) , for s \in (0, T) and \eta \geq 0 to be specified later, we arrive at
\begin{align*} \int_{s }^{T}& \int_{\Omega }E^{\eta}\left( t\right)\left[u\left( t\right)u_{tt}(t)+u(t)\Delta^{2}u(t)+u(t) \left\vert u_{t}\right\vert ^{m\left( x\right) -2}u_{t}(t)\right]dxdt\\ & = \int_{s }^{T}\int_{\Omega }E^{\eta}\left( t\right)u\left( t\right)f_{1}\left( x, u, v\right)dxdt \end{align*} |
and
\begin{align*} \int_{s }^{T}& \int_{\Omega }E^{\eta}\left( t\right)\left[v\left( t\right)v_{tt}\left( t\right)-v(t)\Delta v(t) +v\left( t\right)\left\vert v_{t}\left( t\right)\right\vert ^{r\left( x\right) -2}v_{t}(t)\right]dxdt\\ & = \int_{s }^{T}\int_{\Omega }E^{\eta}\left( t\right)v\left( t\right)f_{2}\left( x, u, v\right)dxdt. \end{align*} |
Green's formula and the boundary conditions lead to
\begin{align} \int_{s }^{T}& \int_{\Omega }E^{\eta}\left( t\right)\left[ \left( u\left( t\right)u_{t}\left( t\right)\right)_{t} -\left\vert u_{t}\left( t\right)\right\vert ^{2}+\left\vert \Delta u\left( t\right)\right\vert^{2} + u\left( t\right)u_{t}\left( t\right)\left\vert u_{t}\left( t\right)\right\vert ^{m\left( x\right) -2}\right]dxdt \\ & = \int_{s }^{T}\int_{\Omega }E^{ \eta } \left( t\right)u\left( t\right)f_{1}\left( x, u, v\right)dxdt, \end{align} | (5.15) |
and
\begin{align} \int_{s }^{T}& \int_{\Omega }E^{\eta}\left( t\right)\left[\left( v\left( t\right)v_{t}\left( t\right)\right)_{t} -\left\vert v_{t}\left( t\right)\right\vert ^{2}+\left\vert\nabla v(t)\right\vert^{2} + v\left( t\right)v_{t}\left( t\right)\left\vert v_{t}\left( t\right)\right\vert ^{r\left( x\right) -2}\right]dxdt \\ & = \int_{s }^{T}\int_{\Omega }E^{\eta}\left( t\right)v\left( t\right)f_{2}\left( x, u, v\right)dxdt. \end{align} | (5.16) |
Adding and subtracting the following two terms
\begin{align*} \left\vert \begin{array}{ll} \int_{s }^{T} \int_{\Omega }E^{\eta}\left( t\right)\left[ \beta \left\vert\Delta u(t)\right\vert^{2} +\left( 1+\beta\right) \left\vert u_{t}\left( t\right)\right\vert ^{2}\right] dxdt\\ \int_{s }^{T} \int_{\Omega }E^{\eta}\left( t\right)\left[ \beta \left\vert\nabla v(t)\right\vert^{2}+\left( 1+\beta\right) \left\vert v_{t}\left( t\right)\right\vert ^{2}\right] dxdt, \end{array}\right. \end{align*} |
to (5.15) and (5.16), respectively, and recalling (5.11), we arrive at
\begin{align} &\left( 1-\beta \right)\int_{s }^{T} E^{\eta}\left( t\right)\int_{\Omega } \left( \left\vert\Delta u(t)\right\vert^{2}+\left\vert\nabla v(t)\right\vert^{2}+\left\vert u_{t}\left( t\right)\right\vert ^{2}+\left\vert v_{t}\left( t\right)\right\vert ^{2}\right) dxdt \\ & + \int_{s }^{T}E^{\eta}\left( t\right)\int_{\Omega }\left[ \left( u\left( t\right)u_{t}\left( t\right)+ v\left( t\right)v_{t}\left( t\right)\right)_{t}-\left( 2-\beta\right) \left(\left\vert u_{t}\left( t\right)\right\vert ^{2}+\left\vert v_{t}\left( t\right)\right\vert ^{2}\right) \right]dxdt \\ & + \int_{s }^{T}E^{\eta}\left( t\right)\int_{\Omega }\left( u\left( t\right)u_{t}\left( t\right)\left\vert u_{t}\left( t\right)\right\vert ^{m\left( x\right)-2}+ v\left( t\right)v_{t}\left( t\right)\left\vert v_{t}\left( t\right)\right\vert ^{r\left( x\right) -2} \right)dxdt \\ & = -\int_{s }^{T}E^{\eta}\left( t\right)\int_{\Omega }\left[ \beta\left(\left\vert\Delta u(t)\right\vert^{2}+\left\vert\nabla v(t)\right\vert^{2}\right)-\left( p\left( x\right) +1\right)F\left( x, u, v\right)\right]dxdt \leq 0. \end{align} | (5.17) |
Now, by exploiting the formula:
\begin{align*} E^{\eta}\left( t\right)\int_{\Omega }\left( u\left( t\right)u_{t}\left( t\right)+v\left( t\right)v_{t}\left( t\right)\right)_{t}dx = &\frac{d}{dt}\left( E^{\eta}\left( t\right)\int_{\Omega }\left( u\left( t\right)u_{t}\left( t\right)+v\left( t\right)v_{t}\left( t\right)\right)dx\right)\\ & -\eta E^{\eta-1}\left( t\right)E^{'}\left( t\right)\int_{\Omega }\left( u\left( t\right)u_{t}\left( t\right)+v\left( t\right)v_{t}\left( t\right)\right)dx, \end{align*} |
estimate (5.17) yields
\begin{align} 2\left( 1-\beta \right)& \int_{s }^{T}E^{\eta +1}\left( t\right)dt \leq \eta \int_{s }^{T}E^{\eta-1}\left( t\right)E^{'}\left( t\right)\int_{\Omega }\left( u\left( t\right)u_{t}\left( t\right)+v\left( t\right)v_{t}\left( t\right)\right)dxdt \\ & -\int_{s }^{T}\frac{d}{dt}\left( E^{\eta}\left( t\right)\int_{\Omega }\left( u\left( t\right)u_{t}\left( t\right)+v\left( t\right)v_{t}\left( t\right)\right)dx\right)dt \\ & - \int_{s }^{T}E^{\eta}\left( t\right)\int_{\Omega }\left( u\left( t\right)u_{t}\left( t\right)\left\vert u_{t}\left( t\right)\right\vert^{m\left( x\right) -2}+v\left( t\right)v_{t}\left( t\right)\left\vert v_{t}\left( t\right)\right\vert ^{r\left( x\right) -2}\right)dxdt \\ & + \left( 2-\beta\right)\int_{s }^{T}E^{\eta }\left( t\right)\int_{\Omega }\left( \left\vert u_{t}\left( t\right)\right\vert ^{2}+\left\vert v_{t}\left( t\right)\right\vert ^{2}\right) dxdt \\ & = I_{1}+I_{2}+I_{3}+I_{4}. \end{align} | (5.18) |
Next, we handle the terms I_{i}, i = \overline{1, 4} and denote by C a positive generic constant.
● First, applying Young's and Poincaré's inequalities, we obtain
\begin{align*} I_{1}& = \eta \int_{s }^{T} E^{\eta -1}\left( t\right)E^{'}\left(t\right)\int_{\Omega } \left( u \left( t\right)u_{t}\left( t\right)+v\left( t\right)v_{t}\left( t\right)\right)dxdt\\ & \leq \frac{\eta }{2}\int_{s }^{T}E^{\eta-1}\left( t\right)\left(-E^{'}\left( t\right)\right)\left[ \left\Vert u\left( t\right)\right\Vert ^{2}_{2}+\left\Vert u_{t}\left( t\right)\right\Vert ^{2}_{2}+ \left\Vert v\left( t\right)\right\Vert ^{2}_{2}+\left\Vert v_{t}\left( t\right)\right\Vert ^{2}_{2}\right] dt \\ & \leq C\int_{s }^{T}E^{\eta -1}\left( t\right) \left( -E^{'}\left( t\right)\right) \left[ \left\Vert \Delta u\left( t\right)\right\Vert ^{2}_{2}+\left\Vert \nabla v\left( t\right)\right\Vert ^{2}_{2}+\left\Vert u_{t}\left( t\right)\right\Vert ^{2}_{2}+\left\Vert v_{t}\left( t\right)\right\Vert ^{2}_{2}\right] dt, \end{align*} |
By (5.12), this gives
\begin{align} I_{1} & \leq C \int_{s }^{T}E^{\eta}\left( t\right)\left( -E^{'}\left( t\right)\right) dt \\ & \leq CE^{\eta+1}\left( s\right)-CE^{\eta+1}\left( T\right) \leq CE^{\eta}\left( 0\right)E\left( s\right)\leq CE\left( s \right). \end{align} | (5.19) |
● Concerning the second term, we have
\begin{align*} I_{2}& = -\int_{s }^{T} \frac{d}{dt}\left( E^{\eta}\left( t\right)\int_{\Omega }\left( u\left( t\right)u_{t}\left( t\right)+v\left( t\right)v_{t}\left( t\right)\right)dx\right)dt \nonumber \\ & = E^{\eta }\left( s\right) \left( \int_{\Omega } \left( u\left( x, s\right)u_{t}\left( x, s\right)+v\left( x, s\right)v_{t}\left( x, s\right)\right) dx\right) \nonumber \\ &-E^{\eta}\left(T\right) \left( \int_{\Omega } \left( u \left( x, T\right)u_{t}\left( x, T\right)+v\left( x, T\right)v_{t}\left( x, T \right)\right) dx \right) \end{align*} |
Again, by (5.12) and the inequalities of Young and Poincaré, we get
\begin{align*} \left\vert \int_{\Omega } u\left( x, s\right)u_{t}\left( x, s\right) dx \right\vert \leq C\left( \left\Vert \Delta u\left( s\right)\right\Vert ^{2}_{2}+\left\Vert u_{t}\left( s\right)\right\Vert ^{2}_{2}\right) \leq CE\left( s\right), \nonumber \\ \left\vert \int_{\Omega } u\left( x, T\right)u_{t}\left( x, T\right) dx \right\vert \leq C\left( \left\Vert \Delta u\left( T\right)\right\Vert ^{2}_{2}+\left\Vert u_{t}\left( T\right)\right\Vert ^{2}_{2}\right) \leq CE\left( T\right) \end{align*} |
and likewise
\begin{align*} \left\vert \int_{\Omega } v\left( x, s\right)v_{t}\left( x, s\right) dx \right\vert \leq C\left( \left\Vert \nabla v\left( s\right)\right\Vert ^{2}_{2}+\left\Vert v_{t}\left( s\right)\right\Vert ^{2}_{2}\right) \leq CE\left( s\right)\nonumber \\ \left\vert \int_{\Omega } v\left( x, T\right)v_{t}\left( x, T\right) dx \right\vert \leq C\left( \left\Vert \nabla v\left( T\right)\right\Vert ^{2}_{2}+\left\Vert v_{t}\left( T\right)\right\Vert ^{2}_{2}\right) \leq CE\left( T\right). \end{align*} |
Therefore,
\begin{align} I_{2} \leq C E^{\eta+1}\left( s \right) \leq CE^{\eta}\left( 0\right)E\left( s\right)\leq CE\left( s\right). \end{align} | (5.20) |
● For the third term, we apply Young's inequality (as in (4.30)) to obtain, for some \varepsilon > 0,
\begin{align*} I_{3} = & - \int_{s }^{T}E^{\eta}\left( t\right)\int_{\Omega }\left( u\left( t\right)u_{t}\left( t\right)\left\vert u_{t}\left( t\right)\right\vert^{m\left( x\right) -2}+v\left( t\right)v_{t}\left( t\right)\left\vert v_{t}\left( t\right)\right\vert ^{r\left( x\right) -2}\right)dxdt \nonumber \\ & \leq \int_{s }^{T} E^{\eta}\left( t\right)\left( \frac{\varepsilon}{2} \int_{\Omega } \left\vert u\left( t\right)\right\vert ^{m\left( x\right)}dx+ \frac{1}{\varepsilon} \int_{\Omega } \left\vert u_{t}\left( t\right)\right\vert ^{m\left( x\right)}dx\right)dt \\ &+ \int_{s }^{T} E^{\eta}\left( t\right)\left( \frac{\varepsilon}{2} \int_{\Omega } \left\vert v\left( t\right)\right\vert ^{r\left( x\right)}dx+ \frac{1}{\varepsilon} \int_{\Omega } \left\vert v_{t}\left( t\right)\right\vert ^{r\left( x\right)}dx\right) dt. \end{align*} |
Invoking Lemma 5.2 and recalling (3.40), yields
\begin{align} I_{3} &\leq \frac{\varepsilon}{2} \int_{s }^{T} E^{\eta }\left( t\right)\int_{\Omega } \left( \left\vert u\left( t\right)\right\vert ^{m\left( x\right)}+\left\vert v\left( t\right)\right\vert ^{r\left( x\right)}\right) dxdt+ \frac{1}{\varepsilon}\int_{s }^{T} E^{\eta }\left( t\right)\left( -E^{'}\left( t\right)\right) dt \\ & \leq \varepsilon C \int_{s }^{T} E^{\eta +1}\left( t\right)dt+C_{\varepsilon}E\left(s\right). \end{align} | (5.21) |
● Now, we handle I_{4}, as follows:
\begin{align*} I_{4}& = (2-\beta)\int_{s }^{T}E^{\eta}\left( t\right) \int_{\Omega } \left( \left \vert u_{t}\left( t\right)\right\vert ^{2}+\left\vert v_{t}\left( t \right) \right\vert ^{2} \right) dxdt \nonumber \\ & = (2-\beta)\left[ \int_{s }^{T}E^{\eta}\left( t\right) \int_{\Omega } \left \vert u_{t}\left( t\right)\right\vert ^{2}dxdt + \int_{s }^{T}E^{\eta}\left( t\right) \int_{\Omega } \left \vert v_{t}\left( t\right)\right\vert ^{2}dxdt\right] \nonumber \\ & = (2-\beta)(J_{1}+J_{2}). \end{align*} |
We claim that
\begin{align} J_{1}, J_{2} \leq \varepsilon C \int_{s }^{T}E^{\eta+1}\left( t\right)dt+C_{\varepsilon}E\left(s\right). \end{align} | (5.22) |
Since 2 \leq \tilde{\alpha} \leq m(.) \leq \alpha on \Omega, we obtain
\begin{align*} J_{1}& = \int_{s }^{T}E^{\eta}\left( t\right) \int_{\Omega} \left\vert u_{t} \left( t\right) \right\vert ^{2}dx dt\\ & = \int_{s }^{T}E^{\eta}\left( t\right)\left[ \int_{\Omega_{-} } \left\vert u_{t}\left( t\right)\right\vert ^{2}dx+\int_{\Omega_{+} } \left\vert u_{t}\left( t\right)\right\vert ^{2}dx\right] dt \nonumber \\ &\leq C \int_{s }^{T}E^{\eta}\left( t\right)\left[ \left( \int_{\Omega_{-} } \left\vert u_{t}\left( t\right)\right\vert ^{\alpha}dx\right)^{2/ \alpha }+\left( \int_{\Omega_{+} } \left\vert u_{t}\left( t\right)\right\vert ^{\tilde{\alpha}}dx\right) ^{2/ \tilde{\alpha}}\right] dt\\ &\leq C \int_{s }^{T}E^{\eta}\left( t\right)\left[ \left( \int_{\Omega_{-}} \left\vert u_{t}\left( t\right)\right\vert ^{m(x)}dx\right)^{2/ \alpha}+\left( \int_{\Omega _{+}} \left\vert u_{t}\left( t\right)\right\vert ^{m(x)}dx\right) ^{2/ \tilde{\alpha}}\right] dt, \end{align*} |
where
\tilde{\alpha} = \ min\left\lbrace m^{-}, r^{-}\right\rbrace, \ \alpha = \ max\left\lbrace m^{+}, r^{+}\right\rbrace, |
\Omega_+ = \{x\in \Omega:\vert u(x, t)\vert \ge 1\} \text{ and }\Omega_- = \{x\in \Omega: \vert u(x, t)\vert < 1\}. |
Therefore,
\begin{align} J_{1} & \leq C \int_{s }^{T}E^{\eta}\left( t\right)\left( -E'\left( t\right)\right)^{2 / \alpha} dt + C \int_{s }^{T}E^{\eta}\left( t\right)\left( -E'\left( t\right)\right) ^{2/ \tilde{\alpha}}dt \\ & = C(J_{\alpha} + J_{ \tilde{\alpha}}). \end{align} | (5.23) |
Three cases are possible:
(1) if \alpha = \tilde{\alpha} = 2 \ (m(x) = r(x) = 2, on \Omega ), then
\begin{align*} J_{1} &\leq C\int_{s }^{T} E^{\eta}\left( t\right)\left( -E^{'}\left( t\right)\right) dt \\ &\leq CE\left(s\right)\leq \varepsilon C\int_{s }^{T}E^{\eta+1}\left( t\right)dt+CE\left(s\right). \end{align*} |
(2) if \alpha > 2 and \tilde{\alpha} = 2 , we exploit Young's inequality with
\delta = \left( \eta+1\right) / \eta \ \text{and }\ \delta' = \eta+1 |
to find
\begin{align*} J_{\alpha}& = \int_{s }^{T}E^{\eta}\left( t\right)\left( -E'\left( t\right)\right)^ {2 / \alpha} dt \nonumber \\ & \leq \varepsilon C\int_{s }^{T}E^{\eta+1}\left( t\right)dt+ C_{\varepsilon}\int_{s }^{T} \left( -E'\left( t\right)\right) ^{2 \left(\eta +1 \right) / \alpha}dt. \end{align*} |
So, for \eta = \frac{\alpha}{2}-1 , we get
\begin{align} J_{\alpha} &\leq \varepsilon C \int_{s }^{T}E^{\eta+1}\left( t\right)dt+C_{\varepsilon}\int_{s }^{T}\left( -E'\left( t\right)\right) dt \\ &\leq \varepsilon C \int_{s }^{T}E^{\eta+1}\left( t\right)dt+C_{\varepsilon}E\left( s\right). \end{align} | (5.24) |
Also, in this case, we have
\begin{align} J_{\tilde{\alpha}} = \int_{s }^{T}E^{\eta}\left( t\right)\left( -E'\left( t\right)\right)dt\leq CE(s). \end{align} | (5.25) |
By inserting (5.24) and (5.25) into (5.23), we infer that J_{1} (and similarly J_{ 2} ) satisfies (5.22).
(3) if \alpha > \tilde{\alpha} > 2 , we apply Young's inequality with
\delta = \tilde{\alpha}/ \left( \tilde{\alpha}-2 \right) \ \text{and }\ \delta' = \tilde{\alpha}/2 |
to obtain
\begin{align*} J_{\tilde{\alpha}}& = \int_{s }^{T}E^{\eta}\left( t\right)\left( -E'\left( t\right)\right) ^{2 / \tilde{\alpha}} dt\\ & \leq \varepsilon C \int_{s }^{T}E\left( t\right) ^{\eta \tilde{\alpha} /\left( \tilde{\alpha}-2\right)}dt+C_{\varepsilon}E\left(s\right). \end{align*} |
But \eta \tilde{\alpha}/ \left(\tilde{\alpha}-2\right) = \eta+1+\left(\alpha-\tilde{\alpha}\right) /\left(\tilde{\alpha}-2\right), then
\begin{align} J_{\tilde{\alpha}} &\leq \varepsilon C \left( E\left(s\right) \right) ^{\left( \alpha-\tilde{\alpha}\right) /\left( \alpha-2\right)}\int_{s }^{T}E^{\eta+1}\left( t\right)dt+C_{\varepsilon}E\left( s\right) \\ &\leq \varepsilon C \int_{s }^{T}E^{\eta+1}\left( t\right)dt+C_{\varepsilon}E\left(s\right). \end{align} | (5.26) |
The addition of (5.24) and (5.26) leads to (5.22).
We conclude that the claim is true for any \alpha \geq \tilde{\alpha} \geq 2. Therefore,
\begin{align} I_{4} \leq \varepsilon C \int_{s }^{T}E^{\eta+1}\left( t\right)dt+C_{\varepsilon}E\left(s\right). \end{align} | (5.27) |
Now, substituting (4.22)–(5.21) and (5.27) into (5.18), we get
\begin{align*} 2\left( 1-\beta \right)\int_{s }^{T}E^{\eta+1}\left( t\right)dt\leq \varepsilon C \int_{s }^{T}E^{\eta+1}\left( t\right)dt+C_{\varepsilon}E\left(s\right), \end{align*} |
with \eta = \frac{\alpha}{2}-1. So,
\begin{align*} 2\left( 1-\beta \right)\int_{s }^{T}E^{\frac{\alpha}{2}}\left( t\right)dt \leq \varepsilon C \int_{s }^{T}E^{\frac{\alpha}{2}}\left( t\right)dt+C_{\varepsilon}E\left(s\right). \end{align*} |
Choosing \varepsilon small enough, we obtain
\begin{align*} \int_{s }^{T}E^{\frac{\alpha}{2}}\left( t\right)dt\leq CE\left(s\right). \end{align*} |
Letting T\longrightarrow \infty, it yields
\begin{align*} \int_{s }^{\infty}E^{\frac{\alpha}{2}}\left( t\right)dt\leq CE\left(s\right), \forall s > 0. \end{align*} |
Applying Komornik's lemma [23], we get the desired decay estimates.
We considered a coupled system of Laplacian and bi-Laplacian equations with nonlinear damping and source terms of variable-exponents nonlinearities. We gave a detailed proof of the local existence using Faedo-Galerkin method and Banach-fixed-point theorem. We also showed that the solutions with positive-initial energy blow-up in a finite time. Furthermore, we proved a global existence theorem, using the Stable-set method and established a decay estimate of the solution energy, by Komornik's integral approach.
The authors would like to acknowledge the support provided by King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia. The support provided by the Interdisciplinary Research Center for Construction & Building Materials (IRC-CBM) at King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia, for funding this work through Project No. INCB2205, is also greatly acknowledged.
The authors declare that there is no conflict of interest.
[1] | S. Timoshenko, S. Woinowsky-Krieger, Theory of plates and shells, New York: McGraw-hill, 1959. |
[2] |
P. Shankar, The eddy structure in stokes flow in a cavity, J. Fluid mech., 250 (1993), 371–383. https://doi.org/10.1017/S0022112093001491 doi: 10.1017/S0022112093001491
![]() |
[3] |
R. Srinivasan, Accurate solutions for steady plane flow in the driven cavity. i. stokes flow, Z. angew. Math. Phys., 46 (1995), 524–545. https://doi.org/10.1007/BF00917442 doi: 10.1007/BF00917442
![]() |
[4] |
V. Meleshko, Steady stokes flow in a rectangular cavity, P. Roy. Soc. A-Math. Phy., 452 (1996), 1999–2022. https://doi.org/10.1098/rspa.1996.0106 doi: 10.1098/rspa.1996.0106
![]() |
[5] |
P. Shankar, M. Deshpande, Fluid mechanics in the driven cavity, Annu. Rev. Fluid Mech., 32 (2000), 93–136. https://doi.org/10.1146/annurev.fluid.32.1.93 doi: 10.1146/annurev.fluid.32.1.93
![]() |
[6] |
N. E. Sevant, M. I. Bloor, M. J. Wilson, Aerodynamic design of a flying wing using response surface methodology, J. Aircraft, 37 (2000), 562–569. https://doi.org/10.2514/2.2665 doi: 10.2514/2.2665
![]() |
[7] |
M. I. Bloor, M. J. Wilson, Method for efficient shape parametrization of fluid membranes and vesicles, Phys. Rev. E, 61 (2000), 4218–4229. https://doi.org/10.1103/PhysRevE.61.4218 doi: 10.1103/PhysRevE.61.4218
![]() |
[8] | V. Meleshko, Biharmonic problem in a rectangle, In: In fascination of fluid dynamics, Springer, 1998,217–249. https://doi.org/10.1007/978-94-011-4986-0_14 |
[9] |
V. Meleshko, Selected topics in the history of the two-dimensional biharmonic problem, Appl. Mech. Rev., 56 (2003), 33–85. https://doi.org/10.1115/1.1521166 doi: 10.1115/1.1521166
![]() |
[10] |
V. Meleshko, Bending of an elastic rectangular clamped plate: Exact versus 'engineering'solutions, J. Elasticity, 48 (1997), 1–50. https://doi.org/10.1023/A:1007472709175 doi: 10.1023/A:1007472709175
![]() |
[11] |
V. Meleshko, A. Gomilko, Infinite systems for a biharmonic problem in a rectangle, P. Roy. Soc. A Math. Phy., 453 (1997), 2139–2160. https://doi.org/10.1098/rspa.1997.0115 doi: 10.1098/rspa.1997.0115
![]() |
[12] |
S. Antontsev, S. Shmarev, Blow-up of solutions to parabolic equations with nonstandard growth conditions, J. Comput. Appl. Math., 234 (2010), 2633–2645. https://doi.org/10.1016/j.cam.2010.01.026 doi: 10.1016/j.cam.2010.01.026
![]() |
[13] | S. Antontsev, S. Shmarev, Evolution pdes with nonstandard growth conditions, In: Atlantis studies in differential equations, 2015. https://doi.org/10.2991/978-94-6239-112-3 |
[14] |
B. Guo, W. Gao, Blow-up of solutions to quasilinear hyperbolic equations with p(x, t)-Laplacian and positive initial energy, C. R. Mecanique, 342 (2014), 513–519. https://doi.org/10.1016/j.crme.2014.06.001 doi: 10.1016/j.crme.2014.06.001
![]() |
[15] | S. A. Messaoudi, O. Bouhoufani, I. Hamchi, M. Alahyane, Existence and blow up in a system of wave equations with nonstandard nonlinearities, Electron. J. Differ. Eq., 2021 (2021), 1–33. |
[16] |
S. A. Messaoudi, A. A. Talahmeh, M. M. Al-Gharabli, M. Alahyane, On the existence and stability of a nonlinear wave system with variable exponents, Asymptotic Anal., 128 (2022), 211–238. https://doi.org/10.3233/ASY-211704 doi: 10.3233/ASY-211704
![]() |
[17] |
S. H. Park, J. R. Kang, Blow-up of solutions for a viscoelastic wave equation with variable exponents, Math. Method. Appl. Sci., 42 (2019), 2083–2097. https://doi.org/10.1002/mma.5501 doi: 10.1002/mma.5501
![]() |
[18] |
O. Bouhoufani, I. Hamchi, Coupled system of nonlinear hyperbolic equations with variable-exponents: Global existence and stability, Mediterr. J. Math., 17 (2020), 166. https://doi.org/10.1007/s00009-020-01589-1 doi: 10.1007/s00009-020-01589-1
![]() |
[19] | L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Springer, 2011. |
[20] | D. V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces: Foundations and harmonic analysis, Springer Science & Business Media, 2013. |
[21] |
K. Agre, M. A. Rammaha, Systems of nonlinear wave equations with damping and source terms, Differ. Integral Equ., 19 (2006), 1235–1270. https://doi.org/10.57262/die/1356050301 doi: 10.57262/die/1356050301
![]() |
[22] |
C. O. Alves, M. M. Cavalcanti, V. N. D. Cavalcanti, M. A. Rammaha, D. Toundykov, On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms, Discrete Cont. Dyn. S, 2 (2009), 583–608. https://doi.org/10.3934/dcdss.2009.2.583 doi: 10.3934/dcdss.2009.2.583
![]() |
[23] | V. Komornik, Decay estimates for the wave equation with internal damping, In: Control and estimation of distributed parameter systems: Nonlinear phenomena, 1994. https://doi.org/10.1007/978-3-0348-8530-0_14 |
1. | Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Nasser-Eddine Tatar, On a nonlinear system of plate equations with variable exponent nonlinearity and logarithmic source terms: Existence and stability results, 2023, 8, 2473-6988, 19971, 10.3934/math.20231018 | |
2. | Muhammad I. Mustafa, Viscoelastic Wave Equation with Variable-Exponent Nonlinear Boundary Feedback, 2024, 30, 1079-2724, 10.1007/s10883-024-09714-z | |
3. | Muhammad I. Mustafa, On the interaction between the viscoelasticity and the boundary variable-exponent nonlinearity in plate systems, 2024, 103, 0003-6811, 2923, 10.1080/00036811.2024.2327436 | |
4. | Adel M. Al-Mahdi, Long-time behavior for a nonlinear Timoshenko system: Thermal damping versus weak damping of variable-exponents type, 2023, 8, 2473-6988, 29577, 10.3934/math.20231515 | |
5. | Oulia Bouhoufani, Well-posedness and decay in a system of hyperbolic and biharmonic-wave equations with variable exponents and weak dampings, 2023, 12, 2193-5343, 513, 10.1007/s40065-023-00431-2 | |
6. | Mohammad Kafini, Mohammad M. Al-Gharabli, Adel M. Al-Mahdi, Existence and stability results of nonlinear swelling equations with logarithmic source terms, 2024, 9, 2473-6988, 12825, 10.3934/math.2024627 | |
7. | Mohammad Kafini, Mohammad M. Al-Gharabli, Adel M. Al-Mahdi, Existence and Blow-up Study of a Quasilinear Wave Equation with Damping and Source Terms of Variable Exponents-type Acting on the Boundary, 2024, 30, 1079-2724, 10.1007/s10883-024-09695-z |