Multiple attribute decision-making (MADM) techniques constitute a practical approach for solving complex problems involving multiple and often conflicting criteria. Decision-making trial and evaluation laboratory (DEMATEL) is a popular MADM technique with both admirers and critics. This study presents a comprehensive review of DEMATEL through bibliometric analysis using the Scopus database. This article examined 3,521 papers published in journals, conferences or books between 1981 and 2023. We examined a few parameters for commenting on the performance of the technique. Among them are research outputs, the network of DEMATEL users, implementation subject areas, research zones, financing opportunities and publication hosts and their impact trends. We conclude from the findings of this study that the DEMATEL is capable of dealing with modern problem-solving in future environments. Although the growth of new MADMs is obvious, based on the gathered data, we forecast that more than 776 documents will be published in 2025 using DEMATEL for problem-solving. This expanding tendency will continue in the future. As distinct MADMs have diverse constraints, foundations, computing complexity and standpoints, which result in different performances, outmoded low-performance MADM techniques must be reported by researchers to continue this paper's objective to minimize ambiguity among decision-makers and practitioners. To facilitate such a comparison in the future, a quantitative performance coefficient was also developed here.
Citation: Shahryar Sorooshian, Seyedh Mahboobeh Jamali, Nader Ale Ebrahim. Performance of the decision-making trial and evaluation laboratory[J]. AIMS Mathematics, 2023, 8(3): 7490-7514. doi: 10.3934/math.2023376
Multiple attribute decision-making (MADM) techniques constitute a practical approach for solving complex problems involving multiple and often conflicting criteria. Decision-making trial and evaluation laboratory (DEMATEL) is a popular MADM technique with both admirers and critics. This study presents a comprehensive review of DEMATEL through bibliometric analysis using the Scopus database. This article examined 3,521 papers published in journals, conferences or books between 1981 and 2023. We examined a few parameters for commenting on the performance of the technique. Among them are research outputs, the network of DEMATEL users, implementation subject areas, research zones, financing opportunities and publication hosts and their impact trends. We conclude from the findings of this study that the DEMATEL is capable of dealing with modern problem-solving in future environments. Although the growth of new MADMs is obvious, based on the gathered data, we forecast that more than 776 documents will be published in 2025 using DEMATEL for problem-solving. This expanding tendency will continue in the future. As distinct MADMs have diverse constraints, foundations, computing complexity and standpoints, which result in different performances, outmoded low-performance MADM techniques must be reported by researchers to continue this paper's objective to minimize ambiguity among decision-makers and practitioners. To facilitate such a comparison in the future, a quantitative performance coefficient was also developed here.
[1] | T. Almulhim, Development of a hybrid fuzzy multi-criteria decision making model for selection of group health insurance plans, The University of Manchester, 2014. |
[2] | R. H. Ansah, S. Sorooshian, S. B. Mustafa, Analytic hierarchy process decision making algorithm, Global J. Pure Appl. Math., 11 (2015), 2403–2410. |
[3] | M. Aruldoss, T. M. Lakshmi, V. P. Venkatesan, A survey on multi criteria decision making methods and its applications, Am. J. Inf. Syst., 1 (2013), 31–43. https://doi.org/10.12691/ajis-1-1-5 doi: 10.12691/ajis-1-1-5 |
[4] | A. M. Graham, Using an AHP/ANP hybrid methodology for freight transport networks selection towards sustainable transportation, The University of Texas at Arlington, 2012. |
[5] | A. Mardani, A. Zavadskas, E. K. Khalifah, Z. Jusoh, K. M. Nor, Multiple criteria decision-making techniques in transportation systems: A systematic review of the state of the art literature, Transport, 31 (2016), 359–385. https://doi.org/10.3846/16484142.2015.1121517 doi: 10.3846/16484142.2015.1121517 |
[6] | E. K. Zavadskas, K. Govindan, J. Antucheviciene, Z. Turskis, Hybrid multiple criteria decision-making methods: a review of applications for sustainability issues, Ekonomska Istraživanja, 29 (2016), 857–887. https://doi.org/10.1080/1331677X.2016.1237302 doi: 10.1080/1331677X.2016.1237302 |
[7] | N. F. Aziz, S. Sorooshian, F. Mahmud, MCDM-AHP method in decision makings, ARPN J. Eng. Appl. Sci., 11 (2016), 7217–7220. |
[8] | A. Ghazi, F. H. Lotfi, G. Jahanshahloo, M. Sanei, Classifying the usage of multiple objective decision making techniques in data envelopment analysis, Data Envelopment Anal. Eff. Perform. Assess., 1 (2017). https://doi.org/10.4018/978-1-5225-0596-9.ch001 doi: 10.4018/978-1-5225-0596-9.ch001 |
[9] | A. A. Zavareh, Fuzzy dynamic hybrid MCDM method for supplier evaluation and selection, The University of Malaya Kuala Lumpur, 2014. |
[10] | J. Robinson, H. Amirtharaj, MADM Problems with correlation coefficient of trapezoidal fuzzy intuitionistic fuzzy sets, Adv. Decision Sci., 2014 (2014), 159126. https://doi.org/10.1155/2014/159126 doi: 10.1155/2014/159126 |
[11] | A. Mardani, A. Jusoh, K. Nor, Z. Khalifah, N. Zakwan, A. Valipour, Multiple criteria decision-making techniques and their applications-a review of the literature from 2000 to 2014, Econ. Res. Ekonomska Istraživanja, 28 (2015), 516–571. https://doi.org/10.1080/1331677X.2015.1075139 doi: 10.1080/1331677X.2015.1075139 |
[12] | Z. Wu, G. Abdul-Nour, Comparison of multi-criteria group decision-making methods for urban sewer network plan selection, Civil. Eng., 1 (2020), 26–48. https://doi.org/10.3390/civileng1010003 doi: 10.3390/civileng1010003 |
[13] | H. Zamani-Sabzi, J. P. King, C. C. Gard, S. Abudu, Statistical and analytical comparison of multi-criteria decision-making techniques under fuzzy environment, Oper. Res. Perspect., 3 (2016), 92–117. https://doi.org/10.1016/j.orp.2016.11.001 doi: 10.1016/j.orp.2016.11.001 |
[14] | T. Dasaklis, Emergency supply chain management for controlling infectious disease outbreaks, The University of Piraeus, Greece, 2015. |
[15] | B. A. H. Zahidy, Develop the constructionpreneurial business success checklist in the construction industry, The University of Malaysia Pahang, 2016. |
[16] | W. Yan, E. Shimizu, H. Nansmura, A knowledge-based computer system for zoning, Doboku Gakkai Ronbunshu, 15 (1991), 125–140. https://doi.org/10.1016/0198-9715(91)90003-V doi: 10.1016/0198-9715(91)90003-V |
[17] | S. L. Si, X. Y. You, H. C. Liu, J. Huang, Identifying key performance indicators for holistic hospital management with a modified DEMATEL approach, Int. J. Environ. Res. Public Health, 14 (2017), 934. https://doi.org/10.3390/ijerph14080934 doi: 10.3390/ijerph14080934 |
[18] | E. Falatoonitoosi, S. Ahmed, S. Sorooshian, Expanded DEMATEL for determining cause and effect group in bidirectional relations, Sci. World J., 2014 (2014), 103846. https://doi.org/10.1155/2014/1038464 doi: 10.1155/2014/1038464 |
[19] | S. Sorooshian, E. Falatoonitoosi, Green supply chain, Penerbit Universiti Malaysia Pahang, 2015. |
[20] | S. L. Si, X. Y. You, H. C. Liu, J. Huang, Identifying key performance indicators for holistic hospital management with a modified DEMATEL approach, Int. J. Enviro. Res. Public Health, 14 (2017), 934. https://doi.org/10.3390/ijerph14080934 doi: 10.3390/ijerph14080934 |
[21] | S. A. M. Ali, S. Sorooshian, C. J. Kie, Modelling for causal interrelationships by DEMATEL, Contemp. Eng. Sci., 9 (2016), 403–412. https://doi.org/10.12988/ces.2016.6214 doi: 10.12988/ces.2016.6214 |
[22] | M. D. Lytras, Knowledge management strategies and application, IGI Global, 2008. |
[23] | F. H. Chen, T. S. Hsu, G. H. Tzeng, A balanced scorecard approach to establish aperformance evaluation and relationship model for hotspring hotels based on a hybrid MCDM model combining DEMATEL and ANP, Int. J. Hosp. Manag., 30 (2011), 908–932. https://doi.org/10.1160/j.ijhm.2011.02.001 doi: 10.1160/j.ijhm.2011.02.001 |
[24] | H. Y. Wu, Construction the strategy map for banking institutions with key performance indicators of the balance score card, Eval. Program Plann., 35 (2012), 303–320. https://doi.org/10.1160/j.evalprogplan.2011.11.009 doi: 10.1160/j.evalprogplan.2011.11.009 |
[25] | G. Dedasht, R. M. Zin, M. S. Ferwati, M. M. Abdullahi, A. Keyvanfar, R. McCaffer, DEMATEL-ANP risk assessment in oil and gas construction projects, Sustainability, 9 (2017), 1420. https://doi.org/10.3390/su9081420 doi: 10.3390/su9081420 |
[26] | H. C. Liu, B. C. Shia, Y. C. Ou, H. W. Su, A generalized DEMATEL theory with a shrinkage coefficient for an indirect relation matrix, MATEC Web Conf., 119 (2017), 01020. https://doi.org/10.1051/matecconf/2017119001020 doi: 10.1051/matecconf/2017119001020 |
[27] | R. Khodabandelou, N. Ale Ebrahim, A. Amoozegar, G. Mehran, Revisiting three decades of educational research in iran: a bibliometric analysis, Iran. J. Comp. Educ., 2 (2019), 1–21. https://doi.org/10.22034/ijce.2019.187779.1002 doi: 10.22034/ijce.2019.187779.1002 |
[28] | K. Fellnhofer, Toward a taxonomy of entrepreneurship education research literature: A bibliometric mapping and visualization, Educ. Res. Rev., 27 (2019), 28–55. https://doi.org/10.1016/j.edurev.2018.10.002 doi: 10.1016/j.edurev.2018.10.002 |
[29] | G. Abramo, C. A. D'Angelo, E. Reale, Peer review versus bibliometrics: which method better predicts the scholarly impact of publications, Scientometrics, 121 (2019), 537–554. https://doi.org/10.1007/s11192-019-03184-y doi: 10.1007/s11192-019-03184-y |
[30] | S. Ale Ebrahim, J. Poshtan, S. M. Jamali, N. Ale Ebrahim, Quantitative and qualitative analysis of time-series classification using deep learning, IEEE Access, 8 (2020), 90202–90215. https://doi.org/10.1109/ACCESS.2020.2993538 doi: 10.1109/ACCESS.2020.2993538 |
[31] | A. Aghaei Chadegani, H. Salehi, M. M. Yunus, H. Farhadi, A comparison between two main academic literature collections: web of science and scopus databases, Asian Soc. Sci., 9 (2013), 18–26. https://doi.org/10.5539/ass.v9n5p18 doi: 10.5539/ass.v9n5p18 |
[32] | S. L. Si, X. Y. You, H. C. Liu, P. Zhang, DEMATEL technique: a systematic review of the state-of-the-art literature on methodologies and applications, Math. Prob. Eng., 2018 (2018), 3696457. https://doi.org/10.1155/2018/3696457 doi: 10.1155/2018/3696457 |
[33] | M. J. Page, J. E. McKenzie, P. M. Bossuy, I. Boutron, T. C. Hoffmann, C. D. Mulrow, The PRISMA 2020 statement: an updated guideline for reporting systematic reviews, BMJ, 372 (2021), 71. https://doi.org/10.1136/bmj.n71 doi: 10.1136/bmj.n71 |
[34] | N. J. Van Eck, L. Waltman, Software survey: VOSviewer, a computer program for bibliometric mapping, Scientometrics, 84 (2010), 523–538. https://doi.org/10.1007/s11192-009-0146-3 doi: 10.1007/s11192-009-0146-3 |
[35] | M. Aria, C. Cuccurullo, bibliometrix: an R-tool for comprehensive science mapping analysis, J. Inf., 11 (2017), 959–975. https://doi.org/10.1016/j.joi.2017.08.007 doi: 10.1016/j.joi.2017.08.007 |
[36] | T. Kawata, An attempt of multivariate data analysis and Dematel to develop the academic intelligent system, , Shikai Tenbo., 57 (1981), 1327–1333. |
[37] | J. Liu, J. Li, C. Fan, A bibliometric study of pool fire related publications, J. Loss Prev. Process Ind., 63 (2020), 104030. https://doi.org/10.1016/j.jlp.2019.104030 doi: 10.1016/j.jlp.2019.104030 |
[38] | S. Sorooshian, A. Azizi, Fuzzy bases, World Appl. Sci. J., 26 (2013), 1335–1339. https://doi.org/10.5829/idosi.wasj.2013.26.10.973 doi: 10.5829/idosi.wasj.2013.26.10.973 |
[39] | W. W. Wu, Choosing knowledge management strategies by using a combined ANP and DEMATEL approach, Expert Syst. Appl., 35 (2008), 828–835. https://doi.org/10.1016/j.eswa.2007.07.025 doi: 10.1016/j.eswa.2007.07.025 |
[40] | S. Ale Ebrahim, A. Ashtari, M. Z. Pedram, A. Sanati-Nezhad, N. Ale Ebrahim, Publication trends in exosomes nanoparticles for cancer detection, Int. J. Nanomed., 15 (2020), 4453–4470. https://doi.org/10.2147/IJN.S247210 doi: 10.2147/IJN.S247210 |
[41] | C. Cuccurullo, M. Aria, F. Sarto, Foundations and trends in performance management. A twenty-five years bibliometric analysis in business and public administration domains, Scientometrics, 108 (2016), 595–611. https://doi.org/10.1007/s11192-016-1948-8 doi: 10.1007/s11192-016-1948-8 |
[42] | A. Saberi, S. Kargaran, M. H. Shahri, Z. Ghorbani, S. M. Jamali, N. Ale Ebrahim, Patterns of publications in social media-based co-creation: a bibliometric analysis, VINE J. Inf. Knowl. Manag. Syst., 2022. https://doi.org/10.1108/VJIKMS-09-2021-0222 doi: 10.1108/VJIKMS-09-2021-0222 |
[43] | M. Kouhizadeh, S. Saberi, J. Sarkis, Blockchain technology and the sustainable supply chain: theoretically exploring adoption barriers, Int. J. Prod. Econ., 231 (2021), 107831. https://doi.org/10.1016/j.ijpe.2020.107831 doi: 10.1016/j.ijpe.2020.107831 |
[44] | S. S. Kamble, A. Gunasekaran, R. Sharma, Modeling the blockchain enabled traceability in agriculture supply chain, Int. J. Inf. Manag., 52 (2020), 101967. https://doi.org/10.1016/j.ijinfomgt.2019.05.023 doi: 10.1016/j.ijinfomgt.2019.05.023 |
[45] | A. Raj, G. Dwivedi, A. Sharma, A. B. Lopes de Sousa Jabbour, S. Rajak, Barriers to the adoption of industry 4.0 technologies in the manufacturing sector: an inter-country comparative perspective, Int. J. Prod. Econ., 224 (2020), 107546. https://doi.org/10.1016/j.ijpe.2019.107546 doi: 10.1016/j.ijpe.2019.107546 |
[46] | G. Büyüközkan, G. Çifçi, A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate green suppliers, Expert Syst. Appl., 39 (2012), 3000–3011. https://doi.org/10.1016/j.eswa.2011.08.162 doi: 10.1016/j.eswa.2011.08.162 |
[47] | G. H. Tzeng, C. H. Chiang, C. W. Li, Evaluating intertwined effects in e-learning programs: a novel hybrid MCDM model based on factor analysis and DEMATEL, Expert Syst. Appl., 32 (2007) 1028–1044. https://doi.org/10.1016/j.eswa.2006.02.004 doi: 10.1016/j.eswa.2006.02.004 |
[48] | M. Abdel-Basset, G. Manogaran, M. Mohamed, Internet of things (IoT) and its impact on supply chain: a framework for building smart, secure and efficient systems, Future Gener. Comput. Syst., 86 (2018), 614–628. https://doi.org/10.1016/j.future.2018.04.051 doi: 10.1016/j.future.2018.04.051 |
[49] | S. Rajput, S. P. Singh, Connecting circular economy and industry 4.0, Int. J. Inf. Manag., 49 (2019), 98–113. https://doi.org/10.1016/j.ijinfomgt.2019.03.002 doi: 10.1016/j.ijinfomgt.2019.03.002 |
[50] | D. Pamučar, G. Ćirović, The selection of transport and handling resources in logistics centers using multi-attributive border approximation area comparison (MABAC), Expert Syst. Appl., 42 (2015), 3016–3028. https://doi.org/10.1016/j.eswa.2014.11.057 doi: 10.1016/j.eswa.2014.11.057 |
[51] | E. B. Tirkolaee, A. Mardani, Z. Dashtian, M. Soltani, G. W. Weber, A novel hybrid method using fuzzy decision making and multi-objective programming for sustainable-reliable supplier selection in two-echelon supply chain design, J. Clean. Prod., 250 (2020), 119517. https://doi.org/10.1016/j.jclepro.2019.119517 doi: 10.1016/j.jclepro.2019.119517 |
[52] | W. W. Wu, Y. T. Lee, Developing global managers' competencies using the fuzzy DEMATEL method, Expert Syst. Appl., 32 (2007), 499–507. https://doi.org/10.1016/j.eswa.2005.12.005 doi: 10.1016/j.eswa.2005.12.005 |
[53] | S. Luthra, A. Kumar, E. K. Zavadskas, S. K. Mangla, J. A. Garza-Reyes, Industry 4.0 as an enabler of sustainability diffusion in supply chain: an analysis of influential strength of drivers in an emerging economy, Int. J. Prod. Res., 58 (2020), 1505–1521. https://doi.org/10.1080/00207543.2019.1660828 doi: 10.1080/00207543.2019.1660828 |
[54] | M. Abdel-Basset, G. Manogaran, A. Gamal, F. Smarandache, A hybrid approach of neutrosophic sets and DEMATEL method for developing supplier selection criteria, Des. Autom. Embedded Syst., 22 (2018), 257–278. https://doi.org/10.1007/s10617-018-9203-6 doi: 10.1007/s10617-018-9203-6 |
[55] | R. J. Lin, Using fuzzy DEMATEL to evaluate the green supply chain management practices, J. Clean. Prod., 40 (2013), 32–39. https://doi.org/10.1016/j.jclepro.2011.06.010 doi: 10.1016/j.jclepro.2011.06.010 |
[56] | S. Yadav, S. P. Singh, Blockchain critical success factors for sustainable supply chain, Resour. Conserv. Recycl., 152 (2020), 104505. https://doi.org/10.1016/j.resconrec.2019.104505 doi: 10.1016/j.resconrec.2019.104505 |
[57] | M. Yazdani, P. Chatterjee, E. K. Zavadskas, S. Hashemkhani Zolfani, Integrated QFD-MCDM framework for green supplier selection, J. Clean. Prod., 142 (2017), 3728–3740. https://doi.org/10.1016/j.jclepro.2016.10.095 doi: 10.1016/j.jclepro.2016.10.095 |
[58] | C. W. Hsu, T. C. Kuo, S. H. Chen, A. H. Hu, Using DEMATEL to develop a carbon management model of supplier selection in green supply chain management, J. Clean. Prod., 56 (2013), 164–172. https://doi.org/10.1016/j.jclepro.2011.09.012 doi: 10.1016/j.jclepro.2011.09.012 |
[59] | K. Govindan, H. Mina, A. Esmaeili, S. M. Gholami-Zanjani, An integrated hybrid approach for circular supplier selection and closed loop supply chain network design under uncertainty, J. Clean. Prod., 242 (2020), 118317. https://doi.org/10.1016/j.jclepro.2019.118317 doi: 10.1016/j.jclepro.2019.118317 |
[60] | K. Govindan, R. Khodaverdi, A. Vafadarnikjoo, Intuitionistic fuzzy based DEMATEL method for developing green practices and performances in a green supply chain, Expert Syst. Appl., 42 (2015), 7207–7220. https://doi.org/10.1016/j.eswa.2015.04.030 doi: 10.1016/j.eswa.2015.04.030 |
[61] | F. Altuntas, M. S. Gok, The effect of COVID-19 pandemic on domestic tourism: a DEMATEL method analysis on quarantine decisions, Int. J. Hosp. Manag., 92 (2021), 102719. https://doi.org/10.1016/j.ijhm.2020.102719 doi: 10.1016/j.ijhm.2020.102719 |
[62] | B. Chang, C. W. Chang, C. H. Wu, Fuzzy DEMATEL method for developing supplier selection criteria, Expert Syst. Appl., 38 (2011), 1850–1858. https://doi.org/10.1016/j.eswa.2010.07.114 doi: 10.1016/j.eswa.2010.07.114 |
[63] | V. S. Yadav, A. R. Singh, R. D. Raut, U. H. Govindarajan, Blockchain technology adoption barriers in the Indian agricultural supply chain: an integrated approach, Resour. Conserv. Recycl., 161 (2020), 104877. https://doi.org/10.1016/j.resconrec.2020.104877 doi: 10.1016/j.resconrec.2020.104877 |
[64] | X. Xia, K. Govindan, Q. Zhu, Analyzing internal barriers for automotive parts remanufacturers in China using grey-DEMATEL approach, J. Clean. Prod., 87 (2015), 811–825. https://doi.org/10.1016/j.jclepro.2014.09.044 doi: 10.1016/j.jclepro.2014.09.044 |
[65] | G. Kou, Ö. Olgu Akdeniz, H. Dinçer, S. Yüksel, Fintech investments in European banks: a hybrid IT2 fuzzy multidimensional decision-making approach, Financ. Innov., 7 (2021), 39. https://doi.org/10.1186/s40854-021-00256-y doi: 10.1186/s40854-021-00256-y |
[66] | A. Zhang, V. G. Venkatesh, Y. Liu, M. Wan, T. Qu, D. Huisingh, Barriers to smart waste management for a circular economy in China, J. Clean. Prod., 240 (2019), 118198. https://doi.org/10.1016/j.jclepro.2019.118198 doi: 10.1016/j.jclepro.2019.118198 |
[67] | R. Kumar, R. K. Singh, Y. K. Dwivedi, Application of industry 4.0 technologies in SMEs for ethical and sustainable operations: analysis of challenges, J. Clean. Prod., 275 (2020), 124063. https://doi.org/10.1016/j.jclepro.2020.124063 doi: 10.1016/j.jclepro.2020.124063 |
[68] | S. S. Kamble, A. Gunasekaran, H. Parekh, S. Joshi, Modeling the internet of things adoption barriers in food retail supply chains, J. Retail. Consum. Serv., 48 (2019), 154–168. https://doi.org/10.1016/j.jretconser.2019.02.020 doi: 10.1016/j.jretconser.2019.02.020 |
[69] | L. Gigović, D. Pamučar, D. Božanić, S. Ljubojević, Application of the GIS-DANP-MABAC multi-criteria model for selecting the location of wind farms: a case study of Vojvodina, Serbia, Renew. Energy, 103 (2017), 501–521. https://doi.org/10.1016/j.renene.2016.11.057 doi: 10.1016/j.renene.2016.11.057 |
[70] | M. Yazdi, F. Khan, R. Abbassi, R. Rusli, Improved DEMATEL methodology for effective safety management decision-making, Saf. Sci., 127 (2020), 104705. https://doi.org/10.1016/j.ssci.2020.104705 doi: 10.1016/j.ssci.2020.104705 |
[71] | J. I. Shieh, H. H. Wu, K. K. Huang, A DEMATEL method in identifying key success factors of hospital service quality, Knowl Based Syst., 23 (2010), 277–282. https://doi.org/10.1016/j.knosys.2010.01.013 doi: 10.1016/j.knosys.2010.01.013 |
[72] | S. K. Mangla, S. Luthra, N. Rich, D. Kumar, N. P. Rana, Y. K. Dwivedi, Enablers to implement sustainable initiatives in agri-food supply chains, Int. J. Prod. Econ., 203 (2018), 379–393. https://doi.org/10.1016/j.ijpe.2018.07.012 doi: 10.1016/j.ijpe.2018.07.012 |
[73] | V. Jafari-Sadeghi, H. A. Mahdiraji, S. Bresciani, A. C. Pellicelli, Context-specific micro-foundations and successful SME internationalisation in emerging markets: a mixed-method analysis of managerial resources and dynamic capabilities, J. Bus. Res., 134 (2021), 352–364. https://doi.org/10.1016/j.jbursres.2021.05.027 doi: 10.1016/j.jbursres.2021.05.027 |
[74] | G. Koca, S. Yıldırım, Bibliometric analysis of DEMATEL method, Decis. Making, 4 (2021), 85–103. https://doi.org/10.31181/dmame2104085g doi: 10.31181/dmame2104085g |
[75] | G. Ilieva, Group decision analysis with interval type-2 fuzzy numbers, Cybern. Inf. Technol., 17 (2017), 31–44. https://doi.org/10.1515/cait-2017-0003 doi: 10.1515/cait-2017-0003 |
[76] | Z. P. Lin, R. Wang, M. L. Tseng, Determination of a cause and effect decision making model for leisure farm's service quality in Taiwan, Wseas Trans. Bus. Econ., 6 (2009), 73–86. |