Research article

Iterative manner involving sunny nonexpansive retractions for nonlinear operators from the perspective of convex programming as applicable to differential problems, image restoration and signal recovery

  • Received: 28 August 2022 Revised: 09 December 2022 Accepted: 04 January 2023 Published: 11 January 2023
  • MSC : 46T99, 47H09, 47H10, 47J25, 49M37, 54H25

  • In this paper, using sunny nonexpansive retractions which are different from the metric projection in Banach spaces, we develop the $ CR $-iteration algorithm in view of two quasi-nonexpansive nonself mappings and also give the convergence analysis for the proposed method in the setting of uniformly convex Banach spaces. Furthermore, our results can be applied for the purpose of finding common zeros of accretive operators, convexly constrained least square problems and convex minimization problems. Regarding application, some numerical experiments involving real-world problems are provided, with focus on differential problems, image restoration problems and signal recovery problems.

    Citation: Damrongsak Yambangwai, Chonjaroen Chairatsiripong, Tanakit Thianwan. Iterative manner involving sunny nonexpansive retractions for nonlinear operators from the perspective of convex programming as applicable to differential problems, image restoration and signal recovery[J]. AIMS Mathematics, 2023, 8(3): 7163-7195. doi: 10.3934/math.2023361

    Related Papers:

  • In this paper, using sunny nonexpansive retractions which are different from the metric projection in Banach spaces, we develop the $ CR $-iteration algorithm in view of two quasi-nonexpansive nonself mappings and also give the convergence analysis for the proposed method in the setting of uniformly convex Banach spaces. Furthermore, our results can be applied for the purpose of finding common zeros of accretive operators, convexly constrained least square problems and convex minimization problems. Regarding application, some numerical experiments involving real-world problems are provided, with focus on differential problems, image restoration problems and signal recovery problems.



    加载中


    [1] K. Kankam, N. Pholasa, P. Cholamjiak, On convergence and complexity of the modified forward-backward method involving new linesearches for convex minimization, Math. Meth. Appl. Sci. 42 (2019), 1352–1362. https://doi.org/10.1002/mma.5420 doi: 10.1002/mma.5420
    [2] E. J. Candès, M. B. Wakin, An introduction to compressive sampling, IEEE Signal Process. Mag., 25 (2008), 21–30.
    [3] S. Suantai, S. Kesornprom, P. Cholamjiak, A new hybrid CQ algorithm for the split feasibility problem in Hilbert spaces and its applications to compressed sensing, Mathematics, 7 (2019), 789. https://doi.org/10.3390/math7090789 doi: 10.3390/math7090789
    [4] D. Kitkuan, P. Kumam, A. Padcharoen, W. Kumam, P. Thounthong, Algorithms for zeros of two accretive operators for solving convex minimization problems and its application to image restoration problems, J. Comput. Appl. Math., 354 (2019), 471–495. https://doi.org/10.1016/j.cam.2018.04.057 doi: 10.1016/j.cam.2018.04.057
    [5] A. Padcharoen, P. Kumam, Y. J. Cho, Split common fixed point problems for demicontractive operators, Numer. Algorithms, 82 (2019), 297–320. https://doi.org/10.1007/s11075-018-0605-0 doi: 10.1007/s11075-018-0605-0
    [6] P. Cholamjiak, Y. Shehu, Inertial forward-backward splitting method in Banach spaces with application to compressed sensing, Appl. Math., 64 (2019), 409–435.
    [7] W. Jirakitpuwapat, P. Kumam, Y. J. Cho, K. Sitthithakerngkiet, A general algorithm for the split common fixed point problem with its applications to signal processing, Mathematics, 7 (2019), 226. https://doi.org/10.3390/math7030226 doi: 10.3390/math7030226
    [8] V. Berinde, Iterative approximation of fixed points: Lecture notes in mathematics, 2 Eds., Springer: Berlin, Germany, 2007.
    [9] E. Picard, Memoire sur la theorie des equations aux d'erives partielles et la methode des approximations successives, J. Math Pures Appl., 231 (1890), 145–210.
    [10] W. R Mann, Mean value methods in iteration, Proc. Am. Math. Soc., 4 (1953), 506–510. https://doi.org/10.1090/S0002-9939-1953-0054846-3 doi: 10.1090/S0002-9939-1953-0054846-3
    [11] S. Ishikawa, Fixed points by a new iteration method, Proc. Am. Math. Soc., 44 (1974), 147–150. https://doi.org/10.1090/S0002-9939-1974-0336469-5 doi: 10.1090/S0002-9939-1974-0336469-5
    [12] R. P. Agarwal, D. O'Regan, D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8 (2007), 61–79.
    [13] R. Chugh, V. Kumar, S. Kumar, Strong convergence of a new three step iterative scheme in Banach spaces, Amer. J. Compu. Math., 2 (2012), 345–357. https://doi.org/10.4236/ajcm.2012.24048 doi: 10.4236/ajcm.2012.24048
    [14] M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217–229. https://doi.org/10.1006/jmaa.2000.7042 doi: 10.1006/jmaa.2000.7042
    [15] K. Ullah, M. Arshad, On different results for new three step iteration process in Banach spaces, SpringerPlus, 5 (2016), 1616. https://doi.org/10.1186/s40064-016-3056-x doi: 10.1186/s40064-016-3056-x
    [16] V. K. Sahu, H. K. Pathak, R. Tiwari, Convergence theorems for new iteration scheme and comparison results, Aligarh Bull. Math., 35 (2016), 19–42.
    [17] B. S. Thakur, D. Thakur, M. Postolache, New iteration scheme for approximating fixed point of nonexpansive mappings, Filomat, 30 (2016), 2711–2720. https://doi.org/10.2298/FIL1610711T doi: 10.2298/FIL1610711T
    [18] W. Phuengrattana, S. Suantai, On the rate of convergence of Mann, Ishikawa, Noor and SPiterations for continuous functions on an arbitrary interval, J. Comput. Appl. Math., 235 (2011), 3006–3014.
    [19] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20 (2004), 103–120. https://doi.org/10.1088/0266-5611/20/1/006 doi: 10.1088/0266-5611/20/1/006
    [20] P. L. Combettes, V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model Simul., 4 (2005), 1168–1200. https://doi.org/10.1137/050626090 doi: 10.1137/050626090
    [21] Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol., 51 (2006), 2353–2365. https://doi.org/10.1088/0031-9155/51/10/001 doi: 10.1088/0031-9155/51/10/001
    [22] Y. Censor, T. Elfving, N. Kopf, T. Bortfeld, The multiple set split feasibility problem and its applications, Inverse Probl., 21 (2005), 2071–2084.
    [23] A. Ben-Tal, A. Nemirovski, Lectures on modern convex optimization, analysis, algorithms, and engineering applications, MPS/SIAM Ser. Optim., SIAM: Philadelphia, PA, USA, 2001.
    [24] J. Bioucas-Dias, M. Figueiredo, A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration, IEEE Trans. Image Process., 16 (2007), 2992–3004. https://doi.org/10.1109/TIP.2007.909319 doi: 10.1109/TIP.2007.909319
    [25] S. S. Chen, D. L. Donoho, M. A. Saunders, Atomic decomposition by basis pursuit, SIAM J. Sci. Comput., 20 (1998), 33–61. https://doi.org/10.1137/S1064827596304010 doi: 10.1137/S1064827596304010
    [26] D. L. Donoho, I. M. Johnstone, Adapting to unknown smoothness via wavelet shrinkage, J. Am. Statist. Assoc., 90 (1995), 1200–1224. https://doi.org/10.1080/01621459.1995.10476626 doi: 10.1080/01621459.1995.10476626
    [27] M. A. T. Figueiredo, R. D. Nowak, S. J. Wright, Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems, IEEE J. Sel. Top. Signal Process., 1 (2007), 586–597. https://doi.org/10.1109/JSTSP.2007.910281 doi: 10.1109/JSTSP.2007.910281
    [28] S. S. Chang, C. F. Wen, J. C. Yao, Zero point problem of accretive operators in Banach spaces, Bull. Malays. Math. Sci. Soc., 42 (2019), 105–118. https://doi.org/10.1007/s40840-017-0470-3 doi: 10.1007/s40840-017-0470-3
    [29] F. E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Am. Math. Soc., 73 (1967), 875–882. https://doi.org/10.1090/S0002-9904-1967-11823-8 doi: 10.1090/S0002-9904-1967-11823-8
    [30] F. E. Browder, Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull. Am. Math. Soc., 7 (1968), 660–665. https://doi.org/10.1090/S0002-9904-1968-11983-4 doi: 10.1090/S0002-9904-1968-11983-4
    [31] I. Cioranescu, Geometry of Banach spaces, duality mapping and nonlinear problems, Kluwer: Amsterdam, Netherlands, 1990.
    [32] W. Takahashi, Nonlinear functional analysis. Fixed point theory and its applications, Yokohama Publishers: Yokohama, Japan, 2000.
    [33] K. Goebel, S. Reich, Uniform convexity, hyperbolic geometry and non-expansive mappings, Marcel Dekker lnc.: New York, USA, 1984.
    [34] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Am. Math. Soc., 73 (1967), 591–597. https://doi.org/10.1090/S0002-9904-1967-11761-0 doi: 10.1090/S0002-9904-1967-11761-0
    [35] R. T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pac. J. Math., 33 (1970), 209–216. https://doi.org/10.2140/pjm.1970.33.209 doi: 10.2140/pjm.1970.33.209
    [36] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16 (1991), 1127–1138. https://doi.org/10.1016/0362-546X(91)90200-K doi: 10.1016/0362-546X(91)90200-K
    [37] D. R. Sahu, A. Pitea, M. Verma, A new iteration technique for nonlinear operators as concerns convex programming and feasibility problems, Numer. Algorithms, 83 (2020), 421–449. https://doi.org/10.1007/s11075-019-00688-9 doi: 10.1007/s11075-019-00688-9
    [38] D. Yambangwai, N. Moshkin, Deferred correction technique to construct high-order schemes for the heat equation with dirichlet and neumann boundary conditions, Eng. Lett., 21 (2013), 61–67.
    [39] D. Yambangwai, W. Cholamjiak, T. Thianwan, H. Dutta, On a new weight tridiagonal iterative method and its applications, Soft Comput., 25 (2021), 725–740.
    [40] S. M. Grzegorski, On optimal parameter not only for the SOR method, Appl. Comput. Math., 8 (2019), 82–87. https://doi.org/10.11648/j.acm.20190805.11 doi: 10.11648/j.acm.20190805.11
    [41] I. Daubechies, M. Defrise, C. D. Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Commun. Pure Appl. Math., 57 (2004), 1413–1457. https://doi.org/10.1002/cpa.20042 doi: 10.1002/cpa.20042
    [42] A. Elgabli, A. Elghariani, A. O. Al-Abbasi, M. Bell, Two-stage LASSO ADMM signal detection algorithm for large scale MIMO, 2017 51st Asilomar Conference on Signals, Systems, and Computers, 2017, 1660–1664.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1075) PDF downloads(42) Cited by(2)

Article outline

Figures and Tables

Figures(20)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog