Research article

Common fixed point results in $ \mathcal{F} $-metric spaces with application to nonlinear neutral differential equation

  • Received: 12 October 2022 Revised: 21 November 2022 Accepted: 22 November 2022 Published: 08 December 2022
  • MSC : 46S40, 47H10, 54H25

  • The aim of this article is to obtain common fixed point results for generalized contractions involving control functions of two variables in the context of $ \mathcal{F} $-metric spaces. We also furnish an example to show the originality of our main result. Some results in the context of $ \mathcal{F} $-metric space equipped with a directed graph $ G $ are also established. As an application, we discuss the existence of solution to nonlinear neutral differential equation.

    Citation: Hanadi Zahed, Ahmed Al-Rawashdeh, Jamshaid Ahmad. Common fixed point results in $ \mathcal{F} $-metric spaces with application to nonlinear neutral differential equation[J]. AIMS Mathematics, 2023, 8(2): 4786-4805. doi: 10.3934/math.2023237

    Related Papers:

  • The aim of this article is to obtain common fixed point results for generalized contractions involving control functions of two variables in the context of $ \mathcal{F} $-metric spaces. We also furnish an example to show the originality of our main result. Some results in the context of $ \mathcal{F} $-metric space equipped with a directed graph $ G $ are also established. As an application, we discuss the existence of solution to nonlinear neutral differential equation.



    加载中


    [1] M. Maurice Fréchet, Sur quelques points du calcul fonctionnel, Rend. Circ. Matem. Palermo, 22 (1906), 1–72. http://dx.doi.org/10.1007/BF03018603 doi: 10.1007/BF03018603
    [2] I. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26–37.
    [3] S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostra., 1 (1993), 5–11.
    [4] M. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal.-Theor., 73 (2010), 3123–3129. http://dx.doi.org/10.1016/j.na.2010.06.084 doi: 10.1016/j.na.2010.06.084
    [5] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 (2000), 31–37. http://dx.doi.org/10.5486/pmd.2000.2133 doi: 10.5486/pmd.2000.2133
    [6] M. Jleli, B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl., 20 (2018), 128. http://dx.doi.org/10.1007/s11784-018-0606-6 doi: 10.1007/s11784-018-0606-6
    [7] A. Al-Mazrooei, J. Ahmad, Fixed point theorems for rational contractions in $F$-metric spaces, J. Math. Anal., 10 (2019), 79–86.
    [8] L. Alnaser, D. Lateef, H. Fouad, J. Ahmad, Relation theoretic contraction results in $F$-metric spaces, J. Nonlinear Sci. Appl., 12 (2019), 337–344. http://dx.doi.org/10.22436/jnsa.012.05.06 doi: 10.22436/jnsa.012.05.06
    [9] M. Alansari, S. Mohammed, A. Azam, Fuzzy fixed point results in $F$-metric spaces with applications, J. Funct. Space., 2020 (2020), 5142815. http://dx.doi.org/10.1155/2020/5142815 doi: 10.1155/2020/5142815
    [10] L. Alnaser, J. Ahmad, D. Lateef, H. Fouad, New fixed point theorems with applications to non-linear neutral differential equations, Symmetry, 11 (2019), 602. http://dx.doi.org/10.3390/sym11050602 doi: 10.3390/sym11050602
    [11] S. Al-Mezel, J. Ahmad, G. Marino, Fixed point theorems for generalized ($\alpha \beta $-$\psi $)-contractions in $F$-metric spaces with applications, Mathematics, 8 (2020), 584. http://dx.doi.org/10.3390/math8040584 doi: 10.3390/math8040584
    [12] O. Alqahtani, E. Karapınar, P. Shahi, Common fixed point results in function weighted metric spaces, J. Inequal. Appl., 2019 (2019), 164. http://dx.doi.org/10.1186/s13660-019-2123-6 doi: 10.1186/s13660-019-2123-6
    [13] D. Lateef, J. Ahmad, Dass and Gupta's fixed point theorem in $F$-metric spaces, J. Nonlinear Sci. Appl., 12 (2019), 405–411.
    [14] A. Hussain, T. Kanwal, Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results, T. A. Razmadze Math. In., 172 (2018), 481–490. http://dx.doi.org/10.1016/j.trmi.2018.08.006 doi: 10.1016/j.trmi.2018.08.006
    [15] A. Hussain, F. Jarad, E. Karapinar, A study of symmetric contractions with an application to generalized fractional differential equations, Adv. Differ. Equ., 2021 (2021), 300. http://dx.doi.org/10.1186/s13662-021-03456-z doi: 10.1186/s13662-021-03456-z
    [16] A. Hussain, Fractional convex type contraction with solution of fractional differential equation, AIMS Mathematics, 5 (2020), 5364–5380. http://dx.doi.org/10.3934/math.2020344 doi: 10.3934/math.2020344
    [17] A. Hussain, Solution of fractional differential equations utilizing symmetric contraction, J. Math., 2021 (2021), 5510971. http://dx.doi.org/10.1155/2021/5510971 doi: 10.1155/2021/5510971
    [18] Z. Mitrovic, H. Aydi, N. Hussain, A. Mukheimer, Reich, Jungck, and Berinde common fixed point results on $F$-metric spaces and an application, Mathematics, 7 (2019), 387. http://dx.doi.org/10.3390/math7050387 doi: 10.3390/math7050387
    [19] M. Mudhesh, N. Mlaiki, M. Arshad, A. Hussain, E. Ameer, R. George, et al., Novel results of $\alpha _{\ast }$-$\psi $-$\Lambda $-contraction multivalued mappings in $F$-metric spaces with an application, J. Inequal. Appl., 2022 (2022), 113. http://dx.doi.org/10.1186/s13660-022-02842-9 doi: 10.1186/s13660-022-02842-9
    [20] A. Shoaib, Q. Mahmood, A. Shahzad, M. Noorani, S. Radenović, Fixed point results for rational contraction in function weighted dislocated quasi-metric spaces with an application, Adv. Differ. Equ., 2021 (2021), 310. http://dx.doi.org/10.1186/s13662-021-03458-x doi: 10.1186/s13662-021-03458-x
    [21] W. Hu, Q. Zhu, Existence, uniqueness and stability of mild solutions to a stochastic nonlocal delayed reaction-diffusion equation, Neural Process. Lett., 53 (2021), 3375–3394. http://dx.doi.org/10.1007/s11063-021-10559-x doi: 10.1007/s11063-021-10559-x
    [22] X. Yang, Q. Zhu, Existence, uniqueness, and stability of stochastic neutral functional differential equations of Sobolev-type, J. Math. Phys., 56 (2015), 122701. http://dx.doi.org/10.1063/1.4936647 doi: 10.1063/1.4936647
    [23] A. Djoudi, R. Khemis, Fixed point techniques and stability for natural nonlinear differential equations with unbounded delays, Georgian Math. J., 13 (2006) 25–34. http://dx.doi.org/10.1515/GMJ.2006.25 doi: 10.1515/GMJ.2006.25
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1141) PDF downloads(68) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog