The aim of this article is to obtain common fixed point results for generalized contractions involving control functions of two variables in the context of F-metric spaces. We also furnish an example to show the originality of our main result. Some results in the context of F-metric space equipped with a directed graph G are also established. As an application, we discuss the existence of solution to nonlinear neutral differential equation.
Citation: Hanadi Zahed, Ahmed Al-Rawashdeh, Jamshaid Ahmad. Common fixed point results in F-metric spaces with application to nonlinear neutral differential equation[J]. AIMS Mathematics, 2023, 8(2): 4786-4805. doi: 10.3934/math.2023237
[1] | Hanadi Zahed, Zhenhua Ma, Jamshaid Ahmad . On fixed point results in $ \mathcal{F} $-metric spaces with applications. AIMS Mathematics, 2023, 8(7): 16887-16905. doi: 10.3934/math.2023863 |
[2] | Aftab Hussain . Fractional convex type contraction with solution of fractional differential equation. AIMS Mathematics, 2020, 5(5): 5364-5380. doi: 10.3934/math.2020344 |
[3] | Amer Hassan Albargi, Jamshaid Ahmad . Fixed point results of fuzzy mappings with applications. AIMS Mathematics, 2023, 8(5): 11572-11588. doi: 10.3934/math.2023586 |
[4] | Abdullah Eqal Al-Mazrooei, Jamshaid Ahmad . Fixed point approach to solve nonlinear fractional differential equations in orthogonal $ \mathcal{F} $-metric spaces. AIMS Mathematics, 2023, 8(3): 5080-5098. doi: 10.3934/math.2023255 |
[5] | Nehad Abduallah Alhajaji, Afrah Ahmad Noman Abdou, Jamshaid Ahmad . Application of fixed point theory to synaptic delay differential equations in neural networks. AIMS Mathematics, 2024, 9(11): 30989-31009. doi: 10.3934/math.20241495 |
[6] | Fatima M. Azmi . New fixed point results in double controlled metric type spaces with applications. AIMS Mathematics, 2023, 8(1): 1592-1609. doi: 10.3934/math.2023080 |
[7] | Gunaseelan Mani, Rajagopalan Ramaswamy, Arul Joseph Gnanaprakasam, Vuk Stojiljković, Zaid. M. Fadail, Stojan Radenović . Application of fixed point results in the setting of $ \mathcal{F} $-contraction and simulation function in the setting of bipolar metric space. AIMS Mathematics, 2023, 8(2): 3269-3285. doi: 10.3934/math.2023168 |
[8] | Amer Hassan Albargi . Some new results in $ \mathcal{F} $-metric spaces with applications. AIMS Mathematics, 2023, 8(5): 10420-10434. doi: 10.3934/math.2023528 |
[9] | Shaoyuan Xu, Yan Han, Suzana Aleksić, Stojan Radenović . Fixed point results for nonlinear contractions of Perov type in abstract metric spaces with applications. AIMS Mathematics, 2022, 7(8): 14895-14921. doi: 10.3934/math.2022817 |
[10] | Monairah Alansari, Mohammed Shehu Shagari, Akbar Azam, Nawab Hussain . Admissible multivalued hybrid $\mathcal{Z}$-contractions with applications. AIMS Mathematics, 2021, 6(1): 420-441. doi: 10.3934/math.2021026 |
The aim of this article is to obtain common fixed point results for generalized contractions involving control functions of two variables in the context of F-metric spaces. We also furnish an example to show the originality of our main result. Some results in the context of F-metric space equipped with a directed graph G are also established. As an application, we discuss the existence of solution to nonlinear neutral differential equation.
The theory of fixed points is considered to be the most delightful and energetic field of investigations in the development of mathematical analysis. In this scope, the notion of metric space [1] is one of pillars of not only mathematics but also physical sciences. Due to its noteworthy and remarkable contribution in different fields, it has been extended, improved and generalized in various ways.
In recent years, many interesting generalizations (or extensions) of the metric space concept appeared. The famous extensions of the concept of metric spaces have been done by Bakhtin [2] which was formally defined by Czerwik [3] in 1993. Czerwik [3] gave the idea of b -metric space which broaden the notion of metric space by improving the triangle equality metric axiom by putting a constant s≥1 multiplied to the right-hand side, is one of the enormous applied extensions for metric spaces. Khamsi et al. [4] reintroduced this notion under the name metric-type and proved some fixed point results in this newly introduced space. In [5], Branciari gave the notion of rectangular metric space and generalized the classical metric space by replacing the triangle inequality with more general inequality that is called rectangular inequality. This inequality involves distance of four points. In 2018, Jleli et al. [6] gave a compulsive extension of a metric space, b -metric space and rectangular metric space which is known as F -metric space. Later on, Al-Mazrooei et al. [7] utilized F -metric space and investigated some fixed point theorems for rational contraction which involves non-negative constants. For more details, we refer the researchers [8,9,10,11,12,13,14,15,16,17,18,19,20]
In this research article, we improve rational contraction of Al-Mazrooei et al. [7] by adding one more rational expression in it and replacing non-negative constants with control functions of two variables. We prove some common fixed point results which are generalizations of fixed point results in the context of F-metric spaces. As outcomes of our main results, we derive common fixed point theorems for rational contractions involving control functions of one variable. In this way, we derive the leading results of Jleli et al. [6] and Ahmad et al. [7]. We also establish some results in F-metric space equipped with a directed graph G. As an application, we investigate the solution to nonlinear neutral differential equation.
Let us recall some related material to be used to establish our main results. Recall that Czerwik [3] gave the notion of b-metric space as follows:
Definition 1. (see [3]) Let Θ≠∅ and s≥1 be a constant. A function ς:Θ×Θ→ [0,∞) is called a b-metric if the following assertions hold:
(b1) ς(ϱ,ℏ)≥0 and ς(ϱ,ℏ)=0 if and only if ϱ=ℏ;
(b2) ς(ϱ,ℏ)=ς(ℏ,ϱ);
(b3) ς(ϱ,φ)≤s[ς(ϱ,ℏ)+ς(ℏ,φ)];
for all ϱ,ℏ,φ∈Θ.
The pair (Θ,ς) is then said to be a b-metric space.
Jleli et al. [6] gave a fascinating extension of metric space and b -metric space as follows. Let F be a set of functions f:(0,+∞)→R satisfying
(F1) f is non-decreasing,
(F2) for each {ϱȷ}⊆R+, limȷ→∞ϱȷ=0 if and only if limȷ→∞f(ϱȷ)=−∞.
Definition 2. (see [6]) Let Θ≠∅ and ς:Θ×Θ→[0,+∞). Assume that there exists (f,h)∈F×[0,+∞) such that
(D1) (ϱ,ℏ)∈Θ×Θ, ς(ϱ,ℏ)=0 if and only if ϱ=ℏ,
(D2) ς(ϱ,ℏ)=ς(ℏ,ϱ), for all (ϱ,ℏ)∈Θ×Θ,
(D3) for every (ϱ,ℏ)∈Θ×Θ, for every N∈N, N≥2, and for every (ϱi)Ni=1⊂Θ, with
(ϱ1,ϱN)=(ϱ,ℏ), |
we have
ς(ϱ,ℏ)>0 implies f(ς(ϱ,ℏ))≤f(N−1∑i=1ς(ϱi,ϱi+1))+h. |
Then (Θ,ς) is called a F-metric space.
Example 1. Let Θ=R and ς:Θ×Θ→[0,+∞) be defined by
ς(ϱ,ℏ)={(ϱ−ℏ)2 if(ϱ,ℏ)∈[0,2]×[0,2]|ϱ−ℏ| if(ϱ,ℏ)∉[0,2]×[0,2] |
with f(t)=ln(t) and h=ln(2), then (Θ,ς) is a F-metric space.
Definition 3. (see [6]) Let (Θ,ς) be F-metric space,
(i) a sequence {ϱȷ} in Θ is said to be F-convergent to ϱ∈Θ if {ϱȷ} is convergent to ϱ with respect to the F-metric ς;
(ii) a sequence {ϱȷ} is F-Cauchy, if
limȷ,m→∞ς(ϱȷ,ϱm)=0; |
(iii) if every F-Cauchy sequence in Θ is F -convergent to a point of Θ, then (Θ,ς) is said to be a F-complete.
Theorem 1. (see [6]) Let (Θ,ς) be a F-complete F-metric space and ℜ:Θ→Θ. Assume that there exists α∈[0,1) such that
ς(ℜ(ϱ),ℜ(ℏ))≤ας(ϱ,ℏ) |
for all ϱ,ℏ∈Θ, then ℜ has a unique fixed point ϱ∗∈Θ. Moreover, for any ϱ0∈Θ, the sequence {ϱȷ}⊂Θ defined by
ϱȷ+1=ℜ(ϱȷ), ȷ∈N, |
is F-convergent to ϱ∗.
Subsequently, Hussain et al. [14] defined α-ψ-contraction in the background of F-metric spaces and generalized the main result of Jleli et al. [6]. Later on, Ahmad et al. [7] defined a rational contraction in F-metric space and proved the following result as generalization of main theorem of Jleli et al. [6].
Theorem 2. (see [7]) Let (Θ,ς) be a F-complete F-metric space and ℜ:Θ→Θ. Assume that there exists α,β∈[0,1) such that
ς(ℜ(ϱ),ℜ(ℏ))≤ας(ϱ,ℏ)+βς(ϱ,ℜϱ)ς(ℏ,ℜℏ)1+ς(ϱ,ℏ) |
for all ϱ,ℏ∈Θ, then ℜ has a unique fixed point.
We start this section with the following proposition which is helpful in proving our main result.
Proposition 1. Let (Θ,ς) be a F-metric space and ℜ1,ℜ2:(Θ,ς)→(Θ,ς). Let ϱ0∈ Θ. Define the sequence {ϱȷ} by
ϱ2ȷ+1=ℜ1ϱ2ȷandϱ2ȷ+2=ℜ2ϱ2ȷ+1 | (3.1) |
for all ȷ=0,1,2,....
Assume that there exist α:Θ×Θ→[0,1) satisfying
α(ℜ2ℜ1ϱ,ℏ)≤α(ϱ,ℏ) and α(ϱ,ℜ1ℜ2ℏ)≤α(ϱ,ℏ) |
for all ϱ,ℏ∈Θ. Then
α(ϱ2ȷ,ℏ)≤α(ϱ0,ℏ) and α(ϱ,ϱ2ȷ+1)≤α(ϱ,ϱ1) |
for all ϱ,ℏ∈Θ and ȷ=0,1,2,....
Proof. Let ϱ,ℏ∈Θ and ȷ=0,1,2,... Then we have
α(ϱ2ȷ,ℏ)=α(ℜ2ℜ1ϱ2ȷ−2,ℏ)≤α(ϱ2ȷ−2,ℏ)= α(ℜ2ℜ1ϱ2ȷ−4,ℏ)≤α(ϱ2ȷ−4,ℏ)≤⋅⋅⋅≤α(ϱ0,ℏ). |
Similarly, we have
α(ϱ,ϱ2ȷ+1)=α(ϱ,ℜ1ℜ2ϱ2ȷ−1)≤α(ϱ,ϱ2ȷ−1)=α(ϱ,ℜ1ℜ2ϱ2ȷ−3)≤α(ϱ,ϱ2ȷ−3)≤⋅⋅⋅≤α(ϱ,ϱ1). |
Hence, the proof is completed.
Lemma 1. Let (Θ,ς) be a F-metric space and α,β:Θ×Θ→[0,1). If ℜ1,ℜ2:Θ →Θ satisfy
ς(ℜ1ϱ,ℜ2ℜ1ϱ)≤α(ϱ,ℜ1ϱ)ς(ϱ,ℜ1ϱ)+β(ϱ,ℜ1ϱ)ς(ϱ,ℜ1ϱ)ς(ℜ1ϱ,ℜ2ℜ1ϱ)1+ς(ϱ,ℜ1ϱ) |
and
ς(ℜ1ℜ2ℏ,ℜ2ℏ)≤α(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℏ)+β(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℜ1ℜ2ℏ)ς(ℏ,ℜ2ℏ)1+ς(ℜ2ℏ,ℏ) |
for all ϱ,ℏ∈ Θ, then
ς(ℜ1ϱ,ℜ2ℜ1ϱ)≤α(ϱ,ℜ1ϱ)ς(ϱ,ℜ1ϱ)+β(ϱ,ℜ1ϱ)ς(ℜ1ϱ,ℜ2ℜ1ϱ) |
and
ς(ℜ1ℜ2ℏ,ℜ2ℏ)≤α(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℏ)+β(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℜ1ℜ2ℏ). |
Proof. Using the hypothesis, we have
ς(ℜ1ϱ,ℜ2ℜ1ϱ)≤α(ϱ,ℜ1ϱ)ς(ϱ,ℜ1ϱ)+β(ϱ,ℜ1ϱ)ς(ϱ,ℜ1ϱ)ς(ℜ1ϱ,ℜ2ℜ1ϱ)1+ς(ϱ,ℜ1ϱ)≤α(ϱ,ℜ1ϱ)ς(ϱ,ℜ1ϱ)+β(ϱ,ℜ1ϱ)ς(ϱ,ℜ1ϱ)1+ς(ϱ,ℜ1ϱ)ς(ℜ1ϱ,ℜ2ℜ1ϱ)≤α(ϱ,ℜ1ϱ)ς(ϱ,ℜ1ϱ)+β(ϱ,ℜ1ϱ)ς(ℜ1ϱ,ℜ2ℜ1ϱ). |
Similarly, we have
ς(ℜ1ℜ2ℏ,ℜ2ℏ)≤α(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℏ)+β(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℜ1ℜ2ℏ)ς(ℏ,ℜ2ℏ)1+ς(ℜ2ℏ,ℏ)≤α(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℏ)+β(ℜ2ℏ,ℏ)ς(ℏ,ℜ2ℏ)1+ς(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℜ1ℜ2ℏ)≤α(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℏ)+β(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℜ1ℜ2ℏ). |
Theorem 3. Let (Θ,ς) be a F-complete F-metric space and ℜ1,ℜ2:Θ →Θ. If there exist mappings α,β,γ:Θ×Θ→[0,1) such that
(a) α(ℜ2ℜ1ϱ,ℏ)≤α(ϱ,ℏ) and α(ϱ,ℜ1ℜ2ℏ)≤α(ϱ,ℏ)
β(ℜ2ℜ1ϱ,ℏ)≤β(ϱ,ℏ) and β(ϱ,ℜ1ℜ2ℏ)≤β(ϱ,ℏ)
γ(ℜ2ℜ1ϱ,ℏ)≤γ(ϱ,ℏ) and γ(ϱ,ℜ1ℜ2ℏ)≤γ(ϱ,ℏ),
(b) α(ϱ,ℏ)+β(ϱ,ℏ)+γ(ϱ,ℏ)<1,
(c)
ς(ℜ1ϱ,ℜ2ℏ)≤α(ϱ,ℏ)ς(ϱ,ℏ)+β(ϱ,ℏ)ς(ϱ,ℜ1ϱ)ς(ℏ,ℜ2ℏ)1+ς(ϱ,ℏ)+γ(ϱ,ℏ)ς(ℏ,ℜ1ϱ)ς(ϱ,ℜ2ℏ)1+ς(ϱ,ℏ) , | (3.2) |
for all ϱ,ℏ∈ Θ, then ℜ1 and ℜ2 have a unique common fixed point.
Proof. Let ϱ,ℏ∈Θ. From (3.2), we have
ς(ℜ1ϱ,ℜ2ℜ1ϱ)≤α(ϱ,ℜ1ϱ)ς(ϱ,ℜ1ϱ)+β(ϱ,ℜ1ϱ)ς(ϱ,ℜ1ϱ)ς(ℜ1ϱ,ℜ2ℜ1ϱ)1+ς(ϱ,ℜ1ϱ)=α(ϱ,ℜ1ϱ)ς(ϱ,ℜ1ϱ)+β(ϱ,ℜ1ϱ)ς(ϱ,ℜ1ϱ)ς(ℜ1ϱ,ℜ2ℜ1ϱ)1+ς(ϱ,ℜ1ϱ). |
By Lemma 1, we get
ς(ℜ1ϱ,ℜ2ℜ1ϱ)≤α(ϱ,ℜ1ϱ)ς(ϱ,ℜ1ϱ)+β(ϱ,ℜ1ϱ)ς(ℜ1ϱ,ℜ2ℜ1ϱ). | (3.3) |
Similarly, we have
ς(ℜ1ℜ2ℏ,ℜ2ℏ)≤α(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℏ)+β(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℜ1ℜ2ℏ)ς(ℏ,ℜ2ℏ)1+ς(ℜ2ℏ,ℏ)+γ(ϱ,ℏ)ς(ℏ,ℜ1ℜ2ℏ)ς(ℜ2ℏ,ℜ2ℏ)1+ς(ℜ2ℏ,ℏ)=α(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℏ)+β(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℜ1ℜ2ℏ)ς(ℏ,ℜ2ℏ)1+ς(ℜ2ℏ,ℏ). |
By Lemma 1, we get
ς(ℜ1ℜ2ℏ,ℜ2ℏ)≤α(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℏ)+β(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℜ1ℜ2ℏ). | (3.4) |
Let ϱ0 ∈Θ and the sequence {ϱȷ} be defined by (3.1). From Proposition 1, (3.3), (3.4) and for all ȷ=0,1,2,...
ς(ϱ2ȷ+1,ϱ2ȷ)=ς(ℜ1ℜ2ϱ2ȷ−1,ℜ2ϱ2ȷ−1)≤α(ℜ2ϱ2ȷ−1,ϱ2ȷ−1)ς(ℜ2ϱ2ȷ−1,ϱ2ȷ−1)+β(ℜ2ϱ2ȷ−1,ϱ2ȷ−1)ς(ℜ2ϱ2ȷ−1,ℜ1ℜ2ϱ2ȷ−1)=α(ϱ2ȷ,ϱ2ȷ−1)ς(ϱ2ȷ,ϱ2ȷ−1)+β(ϱ2ȷ,ϱ2ȷ−1)ς(ϱ2ȷ,ϱ2ȷ+1)≤α(ϱ0,ϱ2ȷ−1)ς(ϱ2ȷ,ϱ2ȷ−1)+β(ϱ0,ϱ2ȷ−1)ς(ϱ2ȷ,ϱ2ȷ+1)≤α(ϱ0,ϱ1)ς(ϱ2ȷ,ϱ2ȷ−1)+β(ϱ0,ϱ1)ς(ϱ2ȷ,ϱ2ȷ+1) |
which implies that
ς(ϱ2ȷ+1,ϱ2ȷ)≤α(ϱ0,ϱ1)1−β(ϱ0,ϱ1)ς(ϱ2ȷ,ϱ2ȷ−1). | (3.5) |
Similarly, we have
ς(ϱ2ȷ+2,ϱ2ȷ+1)=ς(ℜ2ℜ1ϱ2ȷ,ℜ1ϱ2ȷ)≤α(ϱ2ȷ,ℜ1ϱ2ȷ)ς(ϱ2ȷ,ℜ1ϱ2ȷ)+β(ϱ2ȷ,ℜ1ϱ2ȷ)ς(ℜ1ϱ2ȷ,ℜ2ℜ1ϱ2ȷ)=α(ϱ2ȷ,ϱ2ȷ+1)ς(ϱ2ȷ,ϱ2ȷ+1)+β(ϱ2ȷ,ϱ2ȷ+1)ς(ϱ2ȷ+1,ϱ2ȷ+2)≤α(ϱ0,ϱ2ȷ+1)ς(ϱ2ȷ,ϱ2ȷ+1)+β(ϱ0,ϱ2ȷ+1)ς(ϱ2ȷ+1,ϱ2ȷ+2)≤α(ϱ0,ϱ1)ς(ϱ2ȷ,ϱ2ȷ+1)+β(ϱ0,ϱ1)ς(ϱ2ȷ+1,ϱ2ȷ+2), |
which implies that
ς(ϱ2ȷ+2,ϱ2ȷ+1)≤α(ϱ0,ϱ1)1−β(ϱ0,ϱ1)ς(ϱ2ȷ,ϱ2ȷ+1)=α(ϱ0,ϱ1)1−β(ϱ0,ϱ1)ς(ϱ2ȷ+1,ϱ2ȷ). | (3.6) |
Let λ= α(ϱ0,ϱ1)1−β(ϱ0,ϱ1)<1. Then from (3.5) and (3.6), we have
ς(ϱȷ+1,ϱȷ)≤λς(ϱȷ,ϱȷ−1) |
for all ȷ∈N. Inductively, we can construct a sequence {ϱȷ} in Θ such that
ς(ϱȷ+1,ϱȷ)≤λς(ϱȷ,ϱȷ−1)ς(ϱȷ+1,ϱȷ)≤λ2ς(ϱȷ−1,ϱȷ−2)⋅⋅⋅ς(ϱȷ+1,ϱȷ)≤λȷς(ϱ1,ϱ0)=λȷς(ϱ0,ϱ1) |
for all ȷ∈N. Let (f,h)∈F×[0,+∞) be such that (D3) is satisfied. Let ϵ>0 be fixed. By (F2), there exists δ>0 such that
0<t<δ⟹f(t)<f(δ)−h. | (3.7) |
Hence, by (3.7), (F1) and (F2), we have
f(m−1∑i=ȷς(ϱi,ϱi+1))≤f(m−1∑i=ȷλȷ(ς(ϱ0,ϱ1)))≤f(∑ȷ≥ȷ(ϵ)λȷς(ϱ0,ϱ1))<f(ϵ)−h | (3.8) |
for m>ȷ≥ȷ(ϵ). Using (D3) and (3.8), we obtain ς(ϱȷ,ϱm)>0, m>ȷ≥ȷ(ϵ) implies
f(ς(ϱȷ,ϱm))≤f(m−1∑i=ȷς(ϱi,ϱi+1))+h<f(ϵ), |
which yields by (F1) that ς(ϱȷ,ϱm)<ϵ, m>ȷ≥ȷ(ϵ). It shows that {ϱȷ} is F-Cauchy. As (Θ,ς) is F-complete, so there exists ϱ∗∈Θ such that {ϱȷ} is F -convergent to ϱ∗, i.e.,
limȷ→∞ς(ϱȷ,ϱ∗)=0. | (3.9) |
Now, we show that ϱ∗ is fixed point of ℜ1. We contrary suppose that ς(ϱ∗,ℜ1ϱ∗)>0. Then from (3.2), (F1) and (D3), we have
f(ς(ϱ∗,ℜ1ϱ∗))≤f(ς(ϱ∗,ℜ2ϱ2ȷ+1)+ς(ℜ2ϱ2ȷ+1,ℜ1ϱ∗))+h≤f(ς(ϱ∗,ℜ2ϱ2ȷ+1)+ς(ℜ1ϱ∗,ℜ2ϱ2ȷ+1))+h≤f(ς(ϱ∗,ϱ2ȷ+2)+(α(ϱ∗,ϱ2ȷ+1)ς(ϱ∗,ϱ2ȷ+1)+β(ϱ∗,ϱ2ȷ+1)ς(ϱ∗,ℜ1ϱ∗)ς(ϱ2ȷ+1,ℜ2ϱ2ȷ+1)1+ς(ϱ∗,ϱ2ȷ+1)+γ(ϱ∗,ϱ2ȷ+1)ς(ϱ2ȷ+1,ℜ1ϱ∗)ς(ϱ∗,ℜ2ϱ2ȷ+1)1+ς(ϱ∗,ϱ2ȷ+1)))+h≤f(ς(ϱ∗,ϱ2ȷ+2)+(α(ϱ∗,ϱ2ȷ+1)ς(ϱ∗,ϱ2ȷ+1)+β(ϱ∗,ϱ2ȷ+1)ς(ϱ∗,ℜ1ϱ∗)ς(ϱ2ȷ+1,ϱ2ȷ+2)1+ς(ϱ∗,ϱ2ȷ+1)+γ(ϱ∗,ϱ2ȷ+1)ς(ϱ2ȷ+1,ℜ1ϱ∗)ς(ϱ∗,ϱ2ȷ+2)1+ς(ϱ∗,ϱ2ȷ+1)))+h. |
Taking the limit as ȷ→∞ and using (F2) and (8), we have
limȷ→∞f(ς(ϱ∗,ℜ1ϱ∗))≤limȷ→∞f(ς(ϱ∗,ϱ2ȷ+2)+(α(ϱ∗,ϱ2ȷ+1)ς(ϱ∗,ϱ2ȷ+1)+β(ϱ∗,ϱ2ȷ+1)ς(ϱ∗,ℜ1ϱ∗)ς(ϱ2ȷ+1,ϱ2ȷ+2)1+ς(ϱ∗,ϱ2ȷ+1)+γ(ϱ∗,ϱ2ȷ+1)ς(ϱ2ȷ+1,ℜ1ϱ∗)ς(ϱ∗,ϱ2ȷ+2)1+ς(ϱ∗,ϱ2ȷ+1)))+h=−∞, |
which implies that ς(ϱ∗,ℜ1ϱ∗)=0, a contradiction. Thus ϱ∗=ℜ1ϱ∗. Now we prove that ϱ∗ is fixed point of ℜ2. Then from (3.2), (F1) and (D3), we have
f(ς(ϱ∗,ℜ2ϱ∗))≤f(ς(ϱ∗,ℜ1ϱ2ȷ)+ς(ℜ1ϱ2ȷ,ℜ2ϱ∗))+h≤f(ς(ϱ∗,ϱ2ȷ+1)+(α(ϱ2ȷ,ϱ∗)ς(ϱ2ȷ,ϱ∗)+β(ϱ2ȷ,ϱ∗)ς(ϱ2ȷ,ℜ1ϱ2ȷ)ς(ϱ∗,ℜ2ϱ∗)1+ς(ϱ2ȷ,ϱ∗)+γ(ϱ2ȷ,ϱ∗)ς(ϱ∗,ℜ1ϱ2ȷ)ς(ϱ2ȷ,ℜ2ϱ∗)1+ς(ϱ2ȷ,ϱ∗)))+h≤f(ς(ϱ∗,ϱ2ȷ+1)+(ς(ϱ∗,ϱ2ȷ+1)+α(ϱ2ȷ,ϱ∗)ς(ϱ2ȷ,ϱ∗)+β(ϱ2ȷ,ϱ∗)ς(ϱ2ȷ,ϱ2ȷ+1)ς(ϱ∗,ℜ2ϱ∗)1+ς(ϱ2ȷ,ϱ∗)+γ(ϱ2ȷ,ϱ∗)ς(ϱ∗,ϱ2ȷ+1)ς(ϱ2ȷ,ℜ2ϱ∗)1+ς(ϱ2ȷ,ϱ∗)))+h. |
Taking the limit as ȷ→∞ and using (F2) and (8), we have
limȷ→∞f(ς(ϱ∗,ℜ2ϱ∗))≤limȷ→∞f(ς(ϱ∗,ϱ2ȷ+1)+(ς(ϱ∗,ϱ2ȷ+1)+α(ϱ2ȷ,ϱ∗)ς(ϱ2ȷ,ϱ∗)+β(ϱ2ȷ,ϱ∗)ς(ϱ2ȷ,ϱ2ȷ+1)ς(ϱ∗,ℜ2ϱ∗)1+ς(ϱ2ȷ,ϱ∗)+γ(ϱ2ȷ,ϱ∗)ς(ϱ∗,ϱ2ȷ+1)ς(ϱ2ȷ,ℜ2ϱ∗)1+ς(ϱ2ȷ,ϱ∗)))+h=−∞, |
which implies that ς(ϱ∗,ℜ1ϱ∗)=0, a contradiction. Thus ϱ∗=ℜ2ϱ∗.Thus ϱ∗ is a common fixed point of ℜ1 and ℜ2. Now we prove that ϱ∗ is unique. We suppose that
ϱ/=ℜ1ϱ/=ℜ2ϱ/ |
but ϱ∗≠ϱ/. Now from (3.2), we have
ς(ϱ∗,ϱ/)=ς(ℜ1ϱ∗,ℜ2ϱ/)≤α(ϱ∗,ϱ/)ς(ϱ∗,ϱ/)+β(ϱ∗,ϱ/)ς(ϱ∗,ℜϱ∗)ς(ϱ/,ℜ2ϱ/)1+ς(ϱ∗,ϱ/)+γ(ϱ∗,ϱ/)ς(ϱ/,ℜ1ϱ∗)ς(ϱ∗,ℜ2ϱ/)1+ς(ϱ∗,ϱ/)=α(ϱ∗,ϱ/)ς(ϱ∗,ϱ/)+β(ϱ∗,ϱ/)ς(ϱ∗,ϱ∗)ς(ϱ/,ϱ/)1+ς(ϱ∗,ϱ/)+γ(ϱ∗,ϱ/)ς(ϱ/,ϱ∗)ς(ϱ∗,ϱ/)1+ς(ϱ∗,ϱ/). |
This implies that, we have
ς(ϱ∗,ϱ/)≤α(ϱ∗,ϱ/)ς(ϱ∗,ϱ/)+γ(ϱ∗,ϱ/)‖ς(ϱ∗,ϱ/)‖ς(ϱ∗,ϱ/)1+ς(ϱ∗,ϱ/)≤α(ϱ∗,ϱ/)ς(ϱ∗,ϱ/)+γ(ϱ∗,ϱ/)ς(ϱ∗,ϱ/)=(α(ϱ∗,ϱ/)+γ(ϱ∗,ϱ/))ς(ϱ∗,ϱ/). |
As α(ϱ∗,ϱ/)+γ(ϱ∗,ϱ/)<1, we have
ς(ϱ∗,ϱ/)=0. |
Thus ϱ∗=ϱ/. Hence, the proof is completed.
Now, let us introduce the following example.
Example 2. Let Θ={Sȷ=2ȷ+1:ȷ∈N} be endowed with the F-metric
ς(ϱ,ℏ)={0,ifϱ=ℏ,e|ϱ−ℏ|,ifϱ≠ℏ, |
for all ϱ,ℏ∈Θ and f(t)=lnt. Then (Θ,ς) is an F-complete F-metric space. Define the mapping ℜ1,ℜ2:Θ→Θ by
ℜ1(Sȷ)={S1, ifȷ=1,S2, ifȷ=2,Sȷ−2, ifȷ≥3, |
and
ℜ2(Sȷ)={S1, ifȷ=1,2,Sȷ−1, ifȷ≥3. |
Suppose that m≠ȷ, then
ς(ℜ1(Sȷ),ℜ2(Sm))=e|Sȷ−2−Sm−1|=e|2(ȷ−m)−2|<e−1⋅e|2(ȷ−m)|=ας(Sȷ,Sm)≤α(Sȷ,Sm)ς(Sȷ,Sm)+β(Sȷ,Sm)ς(Sȷ,ℜ1Sȷ)ς(Sm,ℜ2Sm)1+ς(Sȷ,Sm)+γ(Sȷ,Sm)ς(Sm,ℜ1Sȷ)ς(Sȷ,ℜ2Sm)1+ς(Sȷ,Sm). |
Thus all the assertions of Theorem 3 are satisfied with α:Θ×Θ→[0,1) defined by α(Sȷ,Sm)=e−1 and any β,γ:Θ×Θ→[0,1). Hence S1 is a unique common fixed point of ℜ1 and ℜ2.
Consequently, from Theorem 3, we have the following corollaries:
Corollary 1. Let (Θ,ς) be a F-complete F-metric space and ℜ1,ℜ2:Θ →Θ. If there exist mappings α,β:Θ×Θ→[0,1) such that
(a) α(ℜ2ℜ1ϱ,ℏ)≤α(ϱ,ℏ) and α(ϱ,ℜ1ℜ2ℏ)≤α(ϱ,ℏ),
β(ℜ2ℜ1ϱ,ℏ)≤β(ϱ,ℏ) and β(ϱ,ℜ1ℜ2ℏ)≤β(ϱ,ℏ);
(b) α(ϱ,ℏ)+β(ϱ,ℏ)<1;
(c)
ς(ℜ1ϱ,ℜ2ℏ)≤α(ϱ,ℏ)ς(ϱ,ℏ)+β(ϱ,ℏ)ς(ϱ,ℜ1ϱ)ς(ℏ,ℜ2ℏ)1+ς(ϱ,ℏ) |
for all ϱ,ℏ∈ Θ, then ℜ1 and ℜ2 have a unique common fixed point.
Proof. Setting γ:Θ×Θ→[0,1) by γ(ϱ,ℏ)=0 in Theorem 3.
Corollary 2. Let (Θ,ς) be a F-complete F-metric space and ℜ1,ℜ2:Θ→Θ. If there exist mappings α,γ:Θ×Θ→[0,1) such that
(a) α(ℜ2ℜ1ϱ,ℏ)≤α(ϱ,ℏ) and α(ϱ,ℜ1ℜ2ℏ)≤α(ϱ,ℏ),
γ(ℜ2ℜ1ϱ,ℏ)≤γ(ϱ,ℏ) and γ(ϱ,ℜ1ℜ2ℏ)≤γ(ϱ,ℏ);
(b) α(ϱ,ℏ)+γ(ϱ,ℏ)<1;
(c)
ς(ℜ1ϱ,ℜ2ℏ)≤α(ϱ,ℏ)ς(ϱ,ℏ)+γ(ϱ,ℏ)ς(ℏ,ℜ1ϱ)ς(ϱ,ℜ2ℏ)1+ς(ϱ,ℏ) , |
for all ϱ,ℏ∈ Θ, then ℜ1 and ℜ2 have a unique common fixed point.
Proof. Setting β:Θ×Θ→[0,1) by β(ϱ,ℏ)=0 in Theorem 3.
Corollary 3. Let (Θ,ς) be a F-complete F-metric space and ℜ1,ℜ2:Θ→Θ. If there exists a mapping α:Θ×Θ→[0,1) such that
(a) α(ℜ2ℜ1ϱ,ℏ)≤α(ϱ,ℏ) and α(ϱ,ℜ1ℜ2ℏ)≤α(ϱ,ℏ);
(b)
ς(ℜ1ϱ,ℜ2ℏ)≤α(ϱ,ℏ)ς(ϱ,ℏ), |
for all ϱ,ℏ∈ Θ, then ℜ1 and ℜ2 have a unique common fixed point.
Proof. Setting β,γ:Θ×Θ→[0,1) by β(ϱ,ℏ)=γ(ϱ,ℏ)=0 in Theorem 3.1.
Corollary 4. Let (Θ,ς) be a F -complete F-metric space and ℜ:Θ →Θ. If there exists mapping α:Θ×Θ→[0,1) such that
(a) α(ℜϱ,ℏ)≤α(ϱ,ℏ) and α(ϱ,ℜℏ)≤α(ϱ,ℏ);
(b)
ς(ℜϱ,ℜℏ)≤α(ϱ,ℏ)ς(ϱ,ℏ), |
for all ϱ,ℏ∈ Θ, then ℜ has a unique fixed point.
Corollary 5. Let (Θ,ς) be a F-complete F-metric space and ℜ:Θ →Θ. If there exist mappings α,β,γ:Θ×Θ→[0,1) such that
(a) α(ℜϱ,ℏ)≤α(ϱ,ℏ) and α(ϱ,ℜℏ)≤α(ϱ,ℏ),
β(ℜϱ,ℏ)≤β(ϱ,ℏ) and β(ϱ,ℜℏ)≤β(ϱ,ℏ),
γ(ℜϱ,ℏ)≤γ(ϱ,ℏ) and γ(ϱ,ℜℏ)≤γ(ϱ,ℏ);
(b) α(ϱ,ℏ)+β(ϱ,ℏ)+γ(ϱ,ℏ)<1;
(c)
ς(ℜϱ,ℜℏ)≤α(ϱ,ℏ)ς(ϱ,ℏ)+β(ϱ,ℏ)ς(ϱ,ℜϱ)ς(ℏ,ℜℏ)1+ς(ϱ,ℏ)+γ(ϱ,ℏ)ς(ℏ,ℜϱ)ς(ϱ,ℜℏ)1+ς(ϱ,ℏ) |
for all ϱ,ℏ∈ Θ, then ℜ has a unique fixed point.
Proof. Setting ℜ1=ℜ2=ℜ in Theorem 3.
Corollary 6. Let (Θ,ς) be a F-complete F-metric space and ℜ:Θ →Θ. If there exist mappings α,β,γ:Θ×Θ→[0,1) such that
(a) α(ℜϱ,ℏ)≤α(ϱ,ℏ) and α(ϱ,ℜℏ)≤α(ϱ,ℏ),
β(ℜϱ,ℏ)≤β(ϱ,ℏ) and β(ϱ,ℜℏ)≤β(ϱ,ℏ),
γ(ℜϱ,ℏ)≤γ(ϱ,ℏ) and γ(ϱ,ℜℏ)≤γ(ϱ,ℏ);
(b) α(ϱ,ℏ)+β(ϱ,ℏ)+γ(ϱ,ℏ)<1;
(c)
ς(ℜnϱ,ℜnℏ)≤α(ϱ,ℏ)ς(ϱ,ℏ)+β(ϱ,ℏ)ς(ϱ,ℜnϱ)ς(ℏ,ℜnℏ)1+ς(ϱ,ℏ)+γ(ϱ,ℏ)ς(ℏ,ℜnϱ)ς(ϱ,ℜnℏ)1+ς(ϱ,ℏ) | (3.10) |
for all ϱ,ℏ∈ Θ, then ℜ has a unique fixed point.
Proof. From the Corollary (5), we have ϱ∈Θ such that ℜnϱ=ϱ. Now from
ς(ℜϱ,ϱ)=ς(ℜℜnϱ,ℜnϱ)=ς(ℜnℜϱ,ℜnϱ)≤α(ℜϱ,ϱ)ς(ℜϱ,ϱ)+β(ℜϱ,ϱ)ς(ℜϱ,ℜnℜϱ)ς(ϱ,ℜnϱ)1+ς(ℜϱ,ϱ)+γ(ℜϱ,ϱ)ς(ϱ,ℜnℜϱ)ς(ℜϱ,ℜnϱ)1+ς(ℜϱ,ϱ) ≤α(ℜϱ,ϱ)ς(ℜϱ,ϱ)+β(ℜϱ,ϱ)ς(ℜϱ,ℜϱ)ς(ϱ,ϱ)1+ς(ℜϱ,ϱ)+γ(ℜϱ,ϱ)ς(ϱ,ℜϱ)ς(ℜϱ,ϱ)1+ς(ℜϱ,ϱ)=α(ℜϱ,ϱ)ς(ℜϱ,ϱ)+γ(ℜϱ,ϱ)ς(ϱ,ℜϱ)ς(ℜϱ,ϱ)1+ς(ℜϱ,ϱ), |
which implies that
ς(ℜϱ,ϱ)≤α(ℜϱ,ϱ)ς(ℜϱ,ϱ)+γ(ℜϱ,ϱ)ς(ϱ,ℜϱ)=(α(ℜϱ,ϱ)+γ(ℜϱ,ϱ))ς(ϱ,ℜϱ), |
which is possible only whenever ς(ℜϱ,ϱ)=0. Thus ℜϱ=ϱ.
Corollary 7. Let (Θ,ς) be a F-complete F-metric space and ℜ1,ℜ2:Θ →Θ. If there exist mappings α,β,γ:Θ→[0,1) such that
(a) α(ℜ2ℜ1ϱ)≤α(ϱ),
β(ℜ2ℜ1ϱ)≤β(ϱ),
γ(ℜ2ℜ1ϱ)≤γ(ϱ);
(b) α(ϱ)+β(ϱ)+γ(ϱ)<1;
(c)
ς(ℜ1ϱ,ℜ2ℏ)≤α(ϱ)ς(ϱ,ℏ)+β(ϱ)ς(ϱ,ℜ1ϱ)ς(ℏ,ℜ2ℏ)1+ς(ϱ,ℏ)+γ(ϱ)ς(ℏ,ℜ1ϱ)ς(ϱ,ℜ2ℏ)1+ς(ϱ,ℏ) , |
for all ϱ,ℏ∈ Θ, then ℜ1 and ℜ2 have a unique common fixed point.
Proof. Define α,β,γ:Θ×Θ→[0,1) by
α(ϱ,ℏ)=α(ϱ),β(ϱ,ℏ)=β(ϱ)andγ(ϱ,ℏ)=γ(ϱ) |
for all ϱ,ℏ∈Θ. Then for all ϱ,ℏ∈Θ, we have
(a) α(ℜ2ℜ1ϱ,ℏ)=α(ℜ2ℜ1ϱ)≤α(ϱ)=α(ϱ,ℏ) and α(ϱ,ℜ1ℜ2ℏ)=α(ϱ)=α(ϱ,ℏ),
β(ℜ2ℜ1ϱ,ℏ)=β(ℜ2ℜ1ϱ)≤β(ϱ)=β(ϱ,ℏ) and β(ϱ,ℜ1ℜ2ℏ)=β(ϱ)=β(ϱ,ℏ),
γ(ℜ2ℜ1ϱ,ℏ)=γ(ℜ2ℜ1ϱ)≤γ(ϱ)=γ(ϱ,ℏ) and γ(ϱ,ℜ1ℜ2ℏ)=γ(ϱ)=γ(ϱ,ℏ);
(b) α(ϱ,ℏ)+β(ϱ,ℏ)+γ(ϱ,ℏ)=α(ϱ)+β(ϱ)+γ(ϱ)<1;
(c)
ς(ℜ1ϱ,ℜ2ℏ)≤α(ϱ)ς(ϱ,ℏ)+β(ϱ)ς(ϱ,ℜ1ϱ)ς(ℏ,ℜ2ℏ)1+ς(ϱ,ℏ)+γ(ϱ)ς(ℏ,ℜ1ϱ)ς(ϱ,ℜ2ℏ)1+ς(ϱ,ℏ) =α(ϱ,ℏ)ς(ϱ,ℏ)+β(ϱ,ℏ)ς(ϱ,ℜ1ϱ)ς(ℏ,ℜ2ℏ)1+ς(ϱ,ℏ)+γ(ϱ,ℏ)ς(ℏ,ℜ1ϱ)ς(ϱ,ℜ2ℏ)1+ς(ϱ,ℏ); |
(d) λ=α(ϱ0,ϱ1)1−β(ϱ0,ϱ1)=α(ϱ0)1−β(ϱ0)<1.
By Theorem 3, ℜ1 and ℜ2 have a unique common fixed point.
Corollary 8. Let ℜ1,ℜ2:Θ →Θ. If there exist α,β, γ∈[0,1) with α+β+γ<1 such that
ς(ℜ1ϱ,ℜ2ℏ)≤ας(ϱ,ℏ)+βς(ϱ,ℜ1ϱ)ς(ℏ,ℜ2ℏ)1+ς(ϱ,ℏ)+γς(ℏ,ℜ1ϱ)ς(ϱ,ℜ2ℏ)1+ς(ϱ,ℏ) , |
for all ϱ,ℏ∈ Θ, then ℜ1 and ℜ2 have a unique common fixed point.
Proof. Taking α(⋅)=α, β(⋅)=β and γ(⋅)=γ in Corollary 7.
Corollary 9. Let (Θ,ς) be a F-complete F-metric space and ℜ1,ℜ2:Θ →Θ. If there exist α,β∈[0,1) with α+β<1 such that
ς(ℜ1ϱ,ℜ2ℏ)≤ας(ϱ,ℏ)+βς(ϱ,ℜ1ϱ)ς(ℏ,ℜ2ℏ)1+ς(ϱ,ℏ) |
for all ϱ,ℏ∈ Θ, then ℜ1 and ℜ2 have a unique common fixed point.
Proof. Taking γ=0 in Corollary 8.
Remark 1. If we set ℜ1=ℜ2=ℜ in the Corollary 9, the we get the main result of Al-Mazrooei et al. [7].
Corollary 10. Let (Θ,ς) be a F-complete F-metric space and ℜ1,ℜ2:Θ →Θ. If there exists α∈[0,1) such that
ς(ℜ1ϱ,ℜ2ℏ)≤ας(ϱ,ℏ) |
for all ϱ,ℏ∈ Θ, then ℜ1 and ℜ2 have a unique common fixed point.
Proof. Taking β=0 in Corollary 9.
Remark 2. If we set ℜ1=ℜ2=ℜ in the Corollary 10, the we get the main result of Samet et al. [6].
Let (Θ,ς) be an F-metric space and G be a directed graph. Let us represent by G−1 the graph generated from G by changing the direction of E(G). Hence,
E(G−1)={(ϱ,ℏ)∈Θ×Θ: (ℏ,ϱ)∈E(G)}. |
Definition 4. An element ϱ∈ Θ is said to be a common fixed point of the pair (ℜ1,ℜ2), if ℜ1(ϱ)=ℜ2(ϱ)=ϱ. We denote by CFix(ℜ1,ℜ2), the family of all common fixed points of the pair (ℜ1,ℜ2), that is,
CFix(ℜ1,ℜ2)={ϱ∈Θ:ℜ1(ϱ)=ℜ2(ϱ)=ϱ}. |
Definition 5. Let (Θ,ς) be an F-complete F-metric space equipped with a directed graph G and let ℜ1,ℜ2 :Θ→Θ. Then the pair (ℜ1,ℜ2) is called a G-orbital cyclic pair, if
(ϱ,ℜ1ϱ)∈E(G)⟹(ℜ1ϱ,ℜ2(ℜ1ϱ))∈E(G), |
(ϱ,ℜ2ϱ)∈E(G)⟹(ℜ2ϱ,ℜ1(ℜ2ϱ))∈E(G) |
for any ϱ∈ Θ. Let us consider the following sets
Θℜ1={ϱ∈Θ: (ϱ,ℜ1ϱ)∈E(G)},Θℜ2={ϱ∈Θ: (ϱ,ℜ2ϱ)∈E(G)}. |
Remark 3. If (ℜ1,ℜ2) is a G-orbital-cyclic pair, then Θℜ1≠∅⟺Θℜ2≠∅.
Proof. Let ϱ0∈Θℜ1. Then (ϱ0,ℜ1ϱ0)∈E(G)⟹(ℜ1ϱ0,ℜ2(ℜ1ϱ0))∈E(G). If we represent by ϱ1=ℜ1ϱ0, then we get that (ϱ1,ℜ2(ϱ1))∈E(G), thus Θℜ2≠∅. Now let us prove the following main theorem.
Theorem 4. Let (Θ,ς) be a F-complete F-metric space equipped with a directed graph G and ℜ1,ℜ2:Θ→Θ is G-orbital cyclic pair. Assume that there exists α∈[0,1) such that
(ⅰ) Θℜ1≠∅,
(ⅱ) ∀ ϱ∈Θℜ1 and ℏ∈Θℜ2
ς(ℜ1ϱ,ℜ2ℏ)≤αmax{ς(ϱ,ℏ),ς(ϱ,ℜ1ϱ)ς(ℏ,ℜ2ℏ)1+ς(ϱ,ℏ),ς(ϱ,ℜ2ℏ)ς(ℏ,ℜ1ϱ)1+ς(ϱ,ℏ)}, | (5.1) |
(iii) ℜ1 and ℜ2 are continuous, or ∀ (ϱȷ)ȷ∈N⊂Θ, with ϱȷ→ϱ as , and (ϱȷ,ϱȷ+1)∈E(G) for
, we have ϱ∈Θℜ1∩Θℜ2. In these conditions CFix(ℜ1,ℜ2)≠∅,
(iv) if (ϱ∗,ϱ/)∈CFix(ℜ1,ℜ2) implies ϱ∗∈Θℜ1 and ϱ/∈Θℜ2, then the pair (ℜ1,ℜ2) has a unique common fixed point.
Proof. Let ϱ0∈Θℜ1. Thus (ϱ0,ℜ1ϱ0)∈E(G). As the pair (ℜ1,ℜ2) is G-orbital cyclic, we get (ℜ1ϱ0,ℜ2ℜ1ϱ0)∈E(G). Construct ϱ1 by ϱ1=ℜ1ϱ0, we have (ϱ1,ℜ2ϱ1)∈E(G) and from here (ℜ2ϱ1,ℜ1ℜ2ϱ1)∈E(G). Denoting by ϱ2=ℜ2ϱ1, we have (ϱ2,ℜ1ϱ2)∈E(G). Pursuing along these lines, we generate a sequence (ϱȷ)ȷ∈N with ϱ2ȷ=ℜ2ϱ2ȷ−1 and ϱ2ȷ+1=ℜ1ϱ2ȷ, such that (ϱ2ȷ,ϱ2ȷ+1)∈E(G). We assume that ϱȷ≠ϱȷ+1. If, there exists ∈N, such that ϱȷ0=ϱȷ0+1, then in the view of the fact that Δ⊂E(G), (ϱȷ0,ϱȷ0+1)∈E(G) and thus ϱ∗=ϱȷ0 is a fixed point of ℜ1. Now to manifest that ϱ∗∈CFix(ℜ1,ℜ2), we shall discuss these two cases for
. If
is even, then
. Then, ϱ2ȷ=ϱ2ȷ+1=ℜ1ϱ2ȷ and thus, ϱ2ȷ is a fixed point of ℜ1. Assume that ϱ2ȷ=ϱ2ȷ+1=ℜ1ϱ2ȷ but ς(ℜ1ϱ2ȷ,ℜ2ϱ2ȷ+1)>0, and let ϱ=ϱ2ȷ∈Θℜ1 and ℏ=ϱ2ȷ+1∈Θℜ2. So
0<ς(ϱ2ȷ+1,ϱ2ȷ+2)=ς(ℜ1ϱ2ȷ,ℜ2ϱ2ȷ+1)≤αmax{ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,ℜ1ϱ2ȷ)ς(ϱ2ȷ+1,ℜ2ϱ2ȷ+1)1+ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,ℜ2ϱ2ȷ+1)ς(ϱ2ȷ+1,ℜ1ϱ2ȷ)1+ς(ϱ2ȷ,ϱ2ȷ+1)}=αmax{ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,ϱ2ȷ+1)ς(ϱ2ȷ+1,ϱ2ȷ+2)1+ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,ϱ2ȷ+2)ς(ϱ2ȷ+1,ϱ2ȷ+1)1+ς(ϱ2ȷ,ϱ2ȷ+1)}≤αmax{ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ+1,ϱ2ȷ+2)}=ας(ϱ2ȷ+1,ϱ2ȷ+2), | (5.2) |
that is contradiction because α<1. Hence ϱ2ȷ is a fixed point of ℜ2 too. Likewise if is odd number, then ∃ϱ∗∈Θ such that ℜ1ϱ∗∩ℜ2ϱ∗=ϱ∗. So we assume that ϱȷ≠ϱȷ+1 for all
∈N. Now we shall show that (ϱȷ)ȷ∈N is Cauchy sequence. We have these two possible cases to discuss:
Case 1. ϱ=ϱ2ȷ∈Θℜ1 and ℏ=ϱ2ȷ+1∈Θℜ2.
0<ς(ϱ2ȷ+1,ϱ2ȷ+2)=ς(ℜ1ϱ2ȷ,ℜ2ϱ2ȷ+1)≤αmax{ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,ℜ1ϱ2ȷ)ς(ϱ2ȷ+1,ℜ2ϱ2ȷ+1)1+ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,ℜ2ϱ2ȷ+1)ς(ϱ2ȷ+1,ℜ1ϱ2ȷ)1+ς(ϱ2ȷ,ϱ2ȷ+1)}=αmax{ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,ϱ2ȷ+1)ς(ϱ2ȷ+1,ϱ2ȷ+2)1+ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,ϱ2ȷ+2)ς(ϱ2ȷ+1,ϱ2ȷ+1)1+ς(ϱ2ȷ,ϱ2ȷ+1)}=αmax{ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ+1,ϱ2ȷ+2)}≤α[ς(ϱ2ȷ,ϱ2ȷ+1)+ς(ϱ2ȷ+1,ϱ2ȷ+2)] |
that is
(1−α)ς(ϱ2ȷ+1,ϱ2ȷ+2)≤ας(ϱ2ȷ,ϱ2ȷ+1) |
which implies
ς(ϱ2ȷ+1,ϱ2ȷ+2)≤α1−ας(ϱ2ȷ,ϱ2ȷ+1). | (5.3) |
Case 2. ϱ=ϱ2ȷ∈Θℜ1 and ℏ=ϱ2ȷ−1∈Θℜ2.
0<ς(ϱ2ȷ+1,ϱ2ȷ)=ς(ℜ1ϱ2ȷ,ℜ2ϱ2ȷ−1)≤αmax{ς(ϱ2ȷ,ϱ2ȷ−1),ς(ϱ2ȷ,ℜ1ϱ2ȷ)ς(ϱ2ȷ−1,ℜ2ϱ2ȷ−1)1+ς(ϱ2ȷ,ϱ2ȷ−1),ς(ϱ2ȷ,ℜ2ϱ2ȷ−1)ς(ϱ2ȷ−1,ℜ1ϱ2ȷ)1+ς(ϱ2ȷ,ϱ2ȷ−1)}=αmax{ς(ϱ2ȷ,ϱ2ȷ−1),ς(ϱ2ȷ,ϱ2ȷ+1)ς(ϱ2ȷ−1,ϱ2ȷ)1+ς(ϱ2ȷ,ϱ2ȷ−1),ς(ϱ2ȷ,ϱ2ȷ)ς(ϱ2ȷ−1,ϱ2ȷ+1)1+ς(ϱ2ȷ,ϱ2ȷ−1)}≤αmax{ς(ϱ2ȷ,ϱ2ȷ−1),ς(ϱ2ȷ,ϱ2ȷ+1)}=αmax{ς(ϱ2ȷ−1,ϱ2ȷ),ς(ϱ2ȷ,ϱ2ȷ+1)}≤α[ς(ϱ2ȷ−1,ϱ2ȷ)+ς(ϱ2ȷ,ϱ2ȷ+1)] |
that is
(1−α)ς(ϱ2ȷ+1,ϱ2ȷ)≤ας(ϱ2ȷ,ϱ2ȷ−1) |
which implies
ς(ϱ2ȷ,ϱ2ȷ+1)≤α1−ας(ϱ2ȷ−1,ϱ2ȷ). | (5.4) |
Since τ=α1−α, so we have
ς(ϱȷ,ϱȷ+1)≤τς(ϱȷ−1,ϱȷ). | (5.5) |
Thus, we have
ς(ϱȷ,ϱȷ+1)≤τς(ϱȷ−1,ϱȷ)≤τ2ς(ϱȷ−2,ϱȷ−1)≤⋅⋅⋅≤τȷς(ϱ0,ϱ1). | (5.6) |
Let (f,h)∈F×[0,+∞) be such that (D3) is satisfied. Let ϵ>0 be fixed. By (F2), ∃δ>0 such that
0<t<δ⟹f(t)<f(δ)−h. | (5.7) |
Hence, by (5.6), (F1) and (F2), we have
f(m−1∑i=ȷς(ϱi,ϱi+1))≤f(m−1∑i=ȷλȷ(ς(ϱ0,ϱ1)))≤f(∑ȷ≥n(ϵ)λȷς(ϱ0,ϱ1))<f(ϵ)−h | (5.8) |
for . By (D3) and (5.7), we get ς(ϱȷ,ϱm)>0,
implies
f(ς(ϱȷ,ϱm))≤f(m−1∑i=ȷς(ϱi,ϱi+1))+h<f(ϵ) |
which yields by (F1) that ς(ϱȷ,ϱm)<ϵ, . It shows that {ϱȷ} is F-Cauchy. As (Θ,ς) is F-complete, so ∃ϱ∗∈Θ such that {ϱȷ} is F-convergent to ϱ∗, i.e.,
limȷ→∞ς(ϱȷ,ϱ∗)=0. | (5.9) |
that is ϱȷ→ϱ∗ as . It is obvious that
limȷ→∞ϱ2ȷ=limȷ→∞ϱ2ȷ+1=ϱ∗. | (5.10) |
As ℜ1 and ℜ2 are continuous, so we have
ϱ∗=limȷ→∞ϱ2ȷ+1=limȷ→∞ℜ1(ϱ2ȷ)=ℜ1(ϱ∗)ϱ∗=limȷ→∞ϱ2ȷ+2=limȷ→∞ℜ2(ϱ2ȷ+1)=ℜ2(ϱ∗). | (5.11) |
Now letting ϱ=ϱ∗∈Θℜ1 and ℏ=ϱ2ȷ+2∈Θℜ2, we have We contrary suppose that ς(ϱ∗,ℜ1ϱ∗)>0. Then from (3.2), (F1) and (D3), we have
f(ς(ℜ1ϱ∗,ϱ∗))≤f(ς(ϱℜ1ϱ∗,ℜ2ϱ2ȷ+1)+ς(ℜ2ϱ2ȷ+1,ϱ∗))+h≤f(ς(ϱ∗,ℜ2ϱ2ȷ+1)+ς(ϱ2ȷ+2,ϱ∗))+h≤f(αmax{ς(ϱ∗,ϱ2ȷ+1),ς(ϱ∗,ℜ1ϱ∗)ς(ϱ2ȷ+1,ℜ2(ϱ2ȷ+1)1+ς(ϱ∗,ϱ2ȷ+1),ς(ϱ∗,ℜ2(ϱ2ȷ+1)ς(ϱ2ȷ+1,ℜ1ϱ∗)1+ς(ϱ∗,ϱ2ȷ+1)}+ς(ϱ2ȷ+2,ϱ∗))+h=f(αmax{ς(ϱ∗,ϱ2ȷ+1),ς(ϱ∗,ℜ1ϱ∗)ς(ϱ2ȷ+1,ϱ2ȷ+2)1+ς(ϱ∗,ϱ2ȷ+1),ς(ϱ∗,ϱ2ȷ+2)ς(ϱ2ȷ+1,ℜ1ϱ∗)1+ς(ϱ∗,ϱ2ȷ+1)}+ς(ϱ2ȷ+2,ϱ∗))+h. |
Taking and using (F2), (5.10) and (5.11), we get
limȷ→∞f(ς(ℜ1ϱ∗,ϱ∗))=−∞, |
which is a contradiction. Thus, we have ς(ϱ∗,ℜ1ϱ∗)=0. This yields that ϱ∗=ℜ1ϱ∗. Similarly, suppose that ϱ=ϱ2ȷ+1∈Θℜ1 and ℏ=ϱ∗∈Θℜ2, we have
f(ς(ϱ∗,ℜ2ϱ∗))≤f(ς(ϱ∗,ℜ1(ϱ2ȷ))+ς(ℜ1(ϱ2ȷ),ℜ2ϱ∗))+h≤f(ς(ϱ∗,ℜ1(ϱ2ȷ))+ς(ℜ1(ϱ2ȷ),ℜ2ϱ∗))+h≤f(ς(ϱ∗,ℜ1(ϱ2ȷ))+αmax{ς(ϱ2ȷ,ϱ∗),ς(ϱ2ȷ,ℜ1(ϱ2ȷ))ς(ϱ∗,ℜ2ϱ∗)1+ς(ϱ2ȷ,ϱ∗),ς(ϱ2ȷ,ℜ2ϱ∗)ς(ϱ∗,ℜ1(ϱ2ȷ))1+ς(ϱ2ȷ,ϱ∗)})+h. |
Taking the limit as and using (F2), (5.10) and (5.11), we have
limȷ→∞f(ς(ϱ∗,ℜ2ϱ∗))=−∞, |
which is a contradiction. Thus, we have ς(ϱ∗,ℜ2ϱ∗)=0. This yields that ϱ∗=ℜ2ϱ∗.
Corollary 11. Let (Θ,ς) be a F-complete F-metric space equipped with a directed graph G and ℜ:Θ→Θ is a G-orbital-cyclic. Suppose that there exists α∈[0,1) such that
(i) Θℜ≠∅,
(ii) ∀ ϱ,ℏ∈Θℜ, we have
ς(ℜϱ,ℜℏ)≤αmax{ς(ϱ,ℏ),ς(ϱ,ℜϱ)ς(ℏ,ℜℏ)1+ς(ϱ,ℏ),ς(ϱ,ℜℏ)ς(ℏ,ℜϱ)1+ς(ϱ,ℏ)}, |
(iii) ℜ is continuous, or ∀ (ϱȷ)ȷ∈N⊂Θ, with ϱȷ→ϱ as ȷ→∞, and (ϱȷ,ϱȷ+1)∈E(G) for ȷ∈N, we have ϱ∈Θℜ.
Then ℜ has a unique fixed point.
A representative stability result based on fixed point theory arguments follows a number of basic arguments adapted to the special structure of the equation under consideration. It leads to large number of results in the literature for different classes of equations, see [21,22]. In the present section, we investigate the existence of solution to differential equation
ϱ/(t)=−a(t)ϱ(t)+b(t)g(ϱ(t−r(t)))+c(t)ϱ/(t−r(t)). | (6.1) |
We state a lemma of Djoudi et al.[23] which will be used in proving of our theorem.
Lemma 2. (see [23]) Assume that r/(t)≠1 ∀t∈R. Then ϱ(t) is a solution of (6.1) if and only if
ϱ(t)=(ϱ(0)−c(0)1−r/(0)ϱ(−r(0)))e−∫t0a(s)ds+c(t)1−r/(t)ϱ(t−r(t))−∫t0(h(υ))ϱ(υ−r(υ)))−b(υ)g(ϱ(υ−r(υ))))e−∫tυa(s)dsdυ, | (6.2) |
where
h(υ)=r//(υ)c(υ)+(c/(υ)+c(υ)a(υ))(1−r/(υ))(1−r/(υ))2. | (6.3) |
Now suppose that ϑ:(−∞,0]→R is a bounded and continuous function, then ϱ(t)=ϱ(t,0,ϑ) is a solution of (6.1) if ϱ(t)=ϑ(t) for t≤0 and satisfies (6.1) for t≥0. Assume that C is the collection of ϱ:R→R which are continuous. Define ℵϑ by
ℵϑ={ϱ:R→Rsuchthatϑ(t)=ϱ(t)ift≤0,ϱ(t)→0ast→∞,ϱ∈C}. |
Then ℵϑ is a Banach space endowed with ‖⋅‖.
Lemma 3. (see [14]) The space (ℵϑ,∥⋅∥) with the F-metric d defined by
d(t,t∗)=||t−t∗||=supϱ∈I|t(ϱ)−t∗(ϱ)| |
for all t,t∗∈ℵϑ, is F-metric space.
Theorem 5. Let ℜ:ℵϑ→ℵϑ be a mapping defined by
(ℜϱ)(t)=(ϱ(0)−c(0)1−r/(0)ϱ(−r(0)))e−∫t0a(s)ds+c(t)1−r/(t)τ(t−r(t))−∫t0(h(υ)ϱ(υ−r(υ))−b(υ)g(ϱ(υ−r(υ))))e−∫tυa(s)dsdυ,t≥0 | (6.4) |
for all ϱ∈ℵϑ. Assume that there exists α:ℵϑ×ℵϑ→[0,1) such that
α(ϱ(t),ℏ(t))={|c(t)1−r/(t)|+∫t0(|h(υ)|+|b(υ)|)e−∫tυa(s)ds}<1. |
Then ℜ has a fixed point.
Proof. It follows from (6.3) that ℜ(ϱ),ℜ(ℏ)∈ ℵϑ. Now from (6.4), we have
|(ℜϱ)(t)−(ℜℏ)(t)|≤|c(t)1−r/(t)|‖ϱ−ℏ‖+∫t0|h(υ)(ϱ(υ−r(υ)))−ℏ(υ−r(υ))|e−∫tυa(s)ds+∫t0|(b(υ))g(ϱ(υ−r(υ)))−g(ℏ(υ−r(υ)))|e−∫tυa(s)ds≤{|c(t)1−r/(t)|+∫t0(|h(υ)|+|b(υ)|)e−∫tυa(s)ds}‖ϱ−ℏ‖≤α(ϱ,ℏ)‖ϱ−ℏ‖. |
Hence,
d(ℜϱ,ℜℏ)≤α(ϱ,ℏ)d(ϱ,ℏ). |
Thus all the assumptions of Corollary 4 are satisfied and ℜ has a unique fixed point in ℵϑ which solves (6.1).
1) Can the notion of F-metric space be extended to graphical F-metric space?
2) Can the results proved in this article be extended to multivalued mappings and fuzzy set valued mappings?
3) Can differential inclusions can be solved as applications of fixed point results for multivalued mappings in the context of F-metric space?
In this article, we have utilized the notion of F-metric spaces and obtained common fixed point results for generalized rational contractions involving control functions of two variables. We have derived common fixed points and fixed points of single valued mappings for contractions involving control functions of one variable and constants. We also have established some common fixed point theorems in F-metric spaces endowed with graph. We expect that the obtained theorems in this article will make new relations for those people who are employing in F-metric spaces.
The second author Ahmad Al-Rawashdeh is financially supported by the Grants: UPAR-2019, Fund No. 31S397, and the Post-Doc-2019, Fund No. 31S404.
The authors declare that they have no conflicts of interest.
[1] |
M. Maurice Fréchet, Sur quelques points du calcul fonctionnel, Rend. Circ. Matem. Palermo, 22 (1906), 1–72. http://dx.doi.org/10.1007/BF03018603 doi: 10.1007/BF03018603
![]() |
[2] | I. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26–37. |
[3] | S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostra., 1 (1993), 5–11. |
[4] |
M. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal.-Theor., 73 (2010), 3123–3129. http://dx.doi.org/10.1016/j.na.2010.06.084 doi: 10.1016/j.na.2010.06.084
![]() |
[5] |
A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 (2000), 31–37. http://dx.doi.org/10.5486/pmd.2000.2133 doi: 10.5486/pmd.2000.2133
![]() |
[6] |
M. Jleli, B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl., 20 (2018), 128. http://dx.doi.org/10.1007/s11784-018-0606-6 doi: 10.1007/s11784-018-0606-6
![]() |
[7] | A. Al-Mazrooei, J. Ahmad, Fixed point theorems for rational contractions in F-metric spaces, J. Math. Anal., 10 (2019), 79–86. |
[8] |
L. Alnaser, D. Lateef, H. Fouad, J. Ahmad, Relation theoretic contraction results in F-metric spaces, J. Nonlinear Sci. Appl., 12 (2019), 337–344. http://dx.doi.org/10.22436/jnsa.012.05.06 doi: 10.22436/jnsa.012.05.06
![]() |
[9] |
M. Alansari, S. Mohammed, A. Azam, Fuzzy fixed point results in F-metric spaces with applications, J. Funct. Space., 2020 (2020), 5142815. http://dx.doi.org/10.1155/2020/5142815 doi: 10.1155/2020/5142815
![]() |
[10] |
L. Alnaser, J. Ahmad, D. Lateef, H. Fouad, New fixed point theorems with applications to non-linear neutral differential equations, Symmetry, 11 (2019), 602. http://dx.doi.org/10.3390/sym11050602 doi: 10.3390/sym11050602
![]() |
[11] |
S. Al-Mezel, J. Ahmad, G. Marino, Fixed point theorems for generalized (αβ-ψ)-contractions in F-metric spaces with applications, Mathematics, 8 (2020), 584. http://dx.doi.org/10.3390/math8040584 doi: 10.3390/math8040584
![]() |
[12] |
O. Alqahtani, E. Karapınar, P. Shahi, Common fixed point results in function weighted metric spaces, J. Inequal. Appl., 2019 (2019), 164. http://dx.doi.org/10.1186/s13660-019-2123-6 doi: 10.1186/s13660-019-2123-6
![]() |
[13] | D. Lateef, J. Ahmad, Dass and Gupta's fixed point theorem in F-metric spaces, J. Nonlinear Sci. Appl., 12 (2019), 405–411. |
[14] |
A. Hussain, T. Kanwal, Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results, T. A. Razmadze Math. In., 172 (2018), 481–490. http://dx.doi.org/10.1016/j.trmi.2018.08.006 doi: 10.1016/j.trmi.2018.08.006
![]() |
[15] |
A. Hussain, F. Jarad, E. Karapinar, A study of symmetric contractions with an application to generalized fractional differential equations, Adv. Differ. Equ., 2021 (2021), 300. http://dx.doi.org/10.1186/s13662-021-03456-z doi: 10.1186/s13662-021-03456-z
![]() |
[16] |
A. Hussain, Fractional convex type contraction with solution of fractional differential equation, AIMS Mathematics, 5 (2020), 5364–5380. http://dx.doi.org/10.3934/math.2020344 doi: 10.3934/math.2020344
![]() |
[17] |
A. Hussain, Solution of fractional differential equations utilizing symmetric contraction, J. Math., 2021 (2021), 5510971. http://dx.doi.org/10.1155/2021/5510971 doi: 10.1155/2021/5510971
![]() |
[18] |
Z. Mitrovic, H. Aydi, N. Hussain, A. Mukheimer, Reich, Jungck, and Berinde common fixed point results on F-metric spaces and an application, Mathematics, 7 (2019), 387. http://dx.doi.org/10.3390/math7050387 doi: 10.3390/math7050387
![]() |
[19] |
M. Mudhesh, N. Mlaiki, M. Arshad, A. Hussain, E. Ameer, R. George, et al., Novel results of α∗-ψ-Λ-contraction multivalued mappings in F-metric spaces with an application, J. Inequal. Appl., 2022 (2022), 113. http://dx.doi.org/10.1186/s13660-022-02842-9 doi: 10.1186/s13660-022-02842-9
![]() |
[20] |
A. Shoaib, Q. Mahmood, A. Shahzad, M. Noorani, S. Radenović, Fixed point results for rational contraction in function weighted dislocated quasi-metric spaces with an application, Adv. Differ. Equ., 2021 (2021), 310. http://dx.doi.org/10.1186/s13662-021-03458-x doi: 10.1186/s13662-021-03458-x
![]() |
[21] |
W. Hu, Q. Zhu, Existence, uniqueness and stability of mild solutions to a stochastic nonlocal delayed reaction-diffusion equation, Neural Process. Lett., 53 (2021), 3375–3394. http://dx.doi.org/10.1007/s11063-021-10559-x doi: 10.1007/s11063-021-10559-x
![]() |
[22] |
X. Yang, Q. Zhu, Existence, uniqueness, and stability of stochastic neutral functional differential equations of Sobolev-type, J. Math. Phys., 56 (2015), 122701. http://dx.doi.org/10.1063/1.4936647 doi: 10.1063/1.4936647
![]() |
[23] |
A. Djoudi, R. Khemis, Fixed point techniques and stability for natural nonlinear differential equations with unbounded delays, Georgian Math. J., 13 (2006) 25–34. http://dx.doi.org/10.1515/GMJ.2006.25 doi: 10.1515/GMJ.2006.25
![]() |