Research article

W-shaped soliton solutions to the modified Zakharov-Kuznetsov equation of ion-acoustic waves in (3+1)-dimensions arise in a magnetized plasma

  • Received: 20 September 2022 Revised: 15 November 2022 Accepted: 26 November 2022 Published: 05 December 2022
  • MSC : 35D35, 37K40

  • This paper is presented to investigate the exact solutions to the modified Zakharov-Kuznetsov equation that have a critical role to play in mathematical physics. The tan(ϕ(ζ)/2)-expansion, (m+G(ζ)/G(ζ))-expansion and He exponential function methods are used to reveal various analytical solutions of the model. The equation regulates the treatment of weakly nonlinear ion-acoustic waves in a plasma consisting of cold ions and hot isothermal electrons throughout the existence of a uniform magnetic field. Solutions in forms of W-shaped, singular, periodic-bright and bright are constructed.

    Citation: Harivan R. Nabi, Hajar F. Ismael, Nehad Ali Shah, Wajaree Weera. W-shaped soliton solutions to the modified Zakharov-Kuznetsov equation of ion-acoustic waves in (3+1)-dimensions arise in a magnetized plasma[J]. AIMS Mathematics, 2023, 8(2): 4467-4486. doi: 10.3934/math.2023222

    Related Papers:

    [1] Zhenshu Wen, Lijuan Shi . Exact explicit nonlinear wave solutions to a modified cKdV equation. AIMS Mathematics, 2020, 5(5): 4917-4930. doi: 10.3934/math.2020314
    [2] Abdulghani R. Alharbi . Traveling-wave and numerical solutions to a Novikov-Veselov system via the modified mathematical methods. AIMS Mathematics, 2023, 8(1): 1230-1250. doi: 10.3934/math.2023062
    [3] Naher Mohammed A. Alsafri, Hamad Zogan . Probing the diversity of kink solitons in nonlinear generalised Zakharov-Kuznetsov-Benjamin-Bona-Mahony dynamical model. AIMS Mathematics, 2024, 9(12): 34886-34905. doi: 10.3934/math.20241661
    [4] M. Ali Akbar, Norhashidah Hj. Mohd. Ali, M. Tarikul Islam . Multiple closed form solutions to some fractional order nonlinear evolution equations in physics and plasma physics. AIMS Mathematics, 2019, 4(3): 397-411. doi: 10.3934/math.2019.3.397
    [5] Maysaa Al-Qurashi, Saima Rashid, Fahd Jarad, Madeeha Tahir, Abdullah M. Alsharif . New computations for the two-mode version of the fractional Zakharov-Kuznetsov model in plasma fluid by means of the Shehu decomposition method. AIMS Mathematics, 2022, 7(2): 2044-2060. doi: 10.3934/math.2022117
    [6] Yunmei Zhao, Yinghui He, Huizhang Yang . The two variable (φ/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations. AIMS Mathematics, 2020, 5(5): 4121-4135. doi: 10.3934/math.2020264
    [7] Naveed Iqbal, Muhammad Bilal Riaz, Meshari Alesemi, Taher S. Hassan, Ali M. Mahnashi, Ahmad Shafee . Reliable analysis for obtaining exact soliton solutions of (2+1)-dimensional Chaffee-Infante equation. AIMS Mathematics, 2024, 9(6): 16666-16686. doi: 10.3934/math.2024808
    [8] Hammad Alotaibi . Solitary waves of the generalized Zakharov equations via integration algorithms. AIMS Mathematics, 2024, 9(5): 12650-12677. doi: 10.3934/math.2024619
    [9] M. A. El-Shorbagy, Sonia Akram, Mati ur Rahman, Hossam A. Nabwey . Analysis of bifurcation, chaotic structures, lump and $ M-W $-shape soliton solutions to $ (2+1) $ complex modified Korteweg-de-Vries system. AIMS Mathematics, 2024, 9(6): 16116-16145. doi: 10.3934/math.2024780
    [10] M. Hafiz Uddin, M. Ali Akbar, Md. Ashrafuzzaman Khan, Md. Abdul Haque . New exact solitary wave solutions to the space-time fractional differential equations with conformable derivative. AIMS Mathematics, 2019, 4(2): 199-214. doi: 10.3934/math.2019.2.199
  • This paper is presented to investigate the exact solutions to the modified Zakharov-Kuznetsov equation that have a critical role to play in mathematical physics. The tan(ϕ(ζ)/2)-expansion, (m+G(ζ)/G(ζ))-expansion and He exponential function methods are used to reveal various analytical solutions of the model. The equation regulates the treatment of weakly nonlinear ion-acoustic waves in a plasma consisting of cold ions and hot isothermal electrons throughout the existence of a uniform magnetic field. Solutions in forms of W-shaped, singular, periodic-bright and bright are constructed.



    Nonlinear partial differential equations (NLPDEs) depict a wide range of phenomena not only in physics but also in other fields in science such as chemistry, biology, and engineering. Physical phenomena involving nonlinear waves play an important role in research on NLPDEs. In previous decades, several strong numerical and analytical methods have been introduced for formulating explicit solutions for several NLPDEs in physics and mathematics, for instance, shooting techniques with 4th-order Runge-Kutta method [1,2,3,4], the homotopy analysis scheme [5], the modified Rusanov scheme [6], the homotopy perturbation scheme [7,8], the finite forward difference scheme [9,10], the Adomian decomposition method [11,12], the extension exponential rational function method [13], the modified exponential function method [14], the sine-Gordon expansion method [15,16], the (m+G/G) expansion method [17,18], the sinh-Gordon expansion method [19,20,21], the extended auxiliary equation mapping method [22,23], the Bernoulli sub-equation function method [24,25], the improved Bernoulli sub-equation function method [26,27,28], the modified Jacobi elliptic function expansion method [29], the modified auxiliary expansion method [30], the Hirota bilinear method [31], the improved tan(ϕ(ξ)/2)-expansion method [32], the improved generalized Riccati equation mapping method [33,34], the F-expansion method [35,36,37], and the Riccati equation rational expansion method [38].

    Munro and Parkes introduced the new Zakharov-Kuznetsov (ZK) in 1999 [39], they viewed the most realistic state if particles are non-isothermal. With the correctly modified form of the electron number density proposed by Schamel, it has been said that the reductive disturbance procedure tends to result in the modified ZK equation. Several reports have been presented to find the analytical solutions to the nonlinear modified ZK equation, such as, the extended tanh method [40], the Hirota method [41], the sine-cosine method [42], the extended direct algebraic method [43], fractional sub-equation technique [44], and the homogeneous balance technique [45].

    One form of the envelope that is particularly interesting is the W-shaped soliton, which was first described in optical fiber mediums with higher-order effects [46], and afterward achieved in a variety of higher-order NLSEs [47,48,49]. More specifically, there are two valleys on the sides of one hump of this pulse shape. A soliton of this kind is relatively rare in nonlinear science compared to the fundamental bright and dark soliton.

    According to our understanding, the features of nonlinearly W-shaped soliton pulses propagating in magnetized plasmas have not been previously studied. Three novel forms of W-shaped soliton solutions are presented in this research, apart from the one previously reported in magnetized plasmas applications. In this research paper, we utilize the tan(ϕ(ζ)/2)-expansion [50], (m+G(ζ)/G(ζ))-expansion [17] and He exponential function [51] methods to formulate novel solutions to the modified ZK equation. Assume the following nonlinear modified ZK equation in three dimensions [52]:

    16(ϕtcϕx)+30ϕ12ϕx+3ϕx3+x(2y2+2z2)ϕ=0, (1.1)

    where the constant c>0.

    This is how the paper is arranged. The instructions of the methods that use to solve the modified ZK equation of ion-acoustic waves in a magnetized plasma will be presented in Section 2. Last section presents some exact solutions to the nonlinear differential equation that governs the amplitude dynamics of fields based on the traveling wave method. These solutions include W-shaped soliton solutions. In Section 4, we present the results and discuss the gained solutions. Section 5 of the paper offers a conclusion.

    Suppose a NPDE follows the following form:

    P(ϕ,ϕx,ϕt,ϕtx,)=0, (2.1)

    where ϕ=(x,y,z,t) and it can be transformed into an ODE

    O(u,ku,wu,kwu,)=0. (2.2)

    By using the wave transformation ϕ=u(ζ) and ζ=kx+ly+ρzwt. Consider the following as an expression for the traveling wave solution of Eq (2.2)

    u(ζ)=W(ψ)=mk=0ak(tan(ψ(ζ))2)k,0km (2.3)

    where the constants ak0 to be evaluated later and satisfies the ODE

    ψ(ζ)=Asin(ψ(ζ))+Bcos(ψ(ζ))+C. (2.4)

    Where ξ=A2+B2C2, here are a class of solutions to Eq (2.4):

    Family 1: In case ξ<0 and BC0, the solution is

    ψ(ζ)=2tan1(ABCξBCtan(ξ2ζ)).

    Family 2: In case ξ>0 and BC0, the solution become

    ψ(ζ)=2tan1(ABC+ξBCtanh(ξ2ζ)).

    Family 3: In case ξ>0, B0 and C=0, the solution is

    ψ(ζ)=2tan1(ABC+B2A2Btanh(B2A22ζ)).

    Family 4: In case ξ<0, C0 and B=0, the solution become

    ψ(ζ)=2tan1(AC+C2A2Ctan(C2A22ζ)).

    Family 5: In case ξ>0, BC0 and A=0, the solution is

    ψ(ζ)=2tan1(B+CBCtanh(B2C22ζ)).

    Family 6: In case A=0 and C=0, the solution is

    ψ(ζ)=tan1(e2Bζ1e2Bζ+1,2eBζe2Bζ+1).

    Family 7: In case B=C=0, the solution is

    ψ(ζ)=tan1(2eAζe2Aζ+1,e2Aζ1e2Aζ+1).

    Family 8: In case A2+B2=C2, the solution is

    ψ(ζ)=2tan1(Aζ+2(BC)ζ).

    Family 9: In case A=B=C=kA, the solution is

    ψ(ζ)=2tan1(ekAζ1).

    Family 10: In case A=C=kA and B=kA, the solution is

    ψ(ζ)=2tan1(ekAζ1+ekAζ).

    Family 11: In case C=A, the solution is

    ψ(ζ)=2tan1((A+B)eBζ1(AB)eBζ1).

    Family 12: In case A=C, the solution is

    ψ(ζ)=2tan1((B+A)eBζ+1(BA)eBζ1).

    Family 13: In case C=A, the solution is

    ψ(ζ)=2tan1(BA+eBζBA+eBζ).

    Family 14: In case B=C, the solution is

    ψ(ζ)=2tan1(AeAζ1CeAζ).

    Family 15: In case B=0 and A=C, the solution is

    ψ(ζ)=2tan1(Cζ+2Cζ).

    Family 16: In case A=0 while B=C, the solution is

    ψ(ζ)=2tan1(Cζ).

    Family 17: In case A=0 while B=C, the solution is

    ψ(ζ)=2tan1(1Cζ).

    Family 18: In case A=B=0, the solution is

    ψ(ζ)=Cζ+ε.

    Family 19: In case B=C, the solution is

    ψ(ζ)=2tan1(eAζCA).

    Here the constants A,B and C will be determined later. The value of m will found by using the balance principle. Inserting Eq (2.3) into Eq (2.2) and collecting the coefficients of tan(ϕ/2)m,(m=1,2,3,...), then the zeroing out of each coefficient, one can obtain a set of equations that are over-determined for A,B,C,am,(m=1,2,..,k) and w. Mathematica Package has been used to perform symbolic computations.

    Consider the following as an expression for the traveling wave solution of Eq (2.2)

    u(ζ)=jn=ianenζhm=gbmemζ, (2.5)

    where an and bm are unidentified constants, while i,j,g and h are positive integers that need to be found later. We match the highest order linear term in Eq (2.6) with the highest order nonlinear term to reach the values of i and g. Collecting the coefficients of exponential function with the same power then the zeroing out of each coefficient, we can obtain a set of equations that are over-determined for an,bn(n=0,1,2,...), k,l,ρ and w. Mathematica Package has been used to perform symbolic computations.

    Let's assume that the following equation satisfies Eq (2.2):

    u(ζ)=ni=nai(m+φ)i=an(m+φ)n+...+a1(m+φ)1+a0+a1(m+φ)++an(m+φ)n, (2.6)

    where ai,i=0,±1,...,±n, are scalars and the constant m0. We determine the value of "n" while keeping in mind the rules of balance. In this research paper, we let

    φ=GG, (2.7)

    where G(ζ) verify G+(λ+2mμ)G+μG=0. Putting Eq. (2.7) into Eq. (2.2) with using Eq (2.8) and zeroing out all terms that have the same power of the (m+φ)n, the system of algebraic equations for ω,an,n=0,1,...,n, λ and μ will be obtained. Solving the system, one can evaluate an,n=0,1,...,n, k,l,ρ and w. Using these numbers and put a general solution of the LODE Eq (2.8) into equation Eq (2.7), we can find the precise solution of Eq (1.1).

    Consider the following traveling wave solution

    ϕ=u(ζ),and ζ=kx+ly+ρzwt. (3.1)

    Where k,l,ρ are wave numbers and w is a frequency. By using Eq (3.1) into Eq (1.1), we get

    16(wkc)u+30u12u+(k3+kl2+kρ2)u+e1=0. (3.2)

    Integrate Eq (3.2) with the constant of integration is e1, we have

    16(wkc)u+20u32+(k3+kl2+kρ2)u+e1=0. (3.3)

    By taking u12=v, Eq (3.3) can be rewrite as

    16(wkc)v2+20v3+2(k3+kl2+kρ2)(v2+vv)+e1=0. (3.4)

    Taking the balance between the nonlinear term vv and the highest order derivative v3 in Eq (3.4), gives m = 2. Therefore Eq (2.3) becomes

    v(ζ)=a0+a1tan(ψ(ζ))2+a2tan2(ϕ(ζ))4. (3.5)

    A system of equations is derived by inserting Eq (3.5) into Eq (3.4). Solution of this system provides the following class of solutions:

    Case 1. In case a0=(2A2B2+C2)e11/3234((A2+B2C2)3k)1/3, a1=3A(BC)e11/334((A2+B2C2)3k)1/3, a2=3(BC)2e11/3234((A2+B2C2)3k)1/3, c=3(A2+B2C2)e11/3234((A2+B2C2)3k)1/3ωk, the outcomes solutions are:

    Solution 1: When A2B2+C2>0 and (A2+B2C2)3k0 then according to family 1, we gain periodic-singular solution as seen in Figure 1.

    ϕ(x,y,z,t)=(A2+B2C2)2e12/3(2+cos(A2B2+C2(kx+ly+ρzωt)))2832((A2+B2C2)3k)2/3sec(12A2B2+C2(kx+ly+ρzωt))4. (3.6)
    Figure 1.  3-D surface, and 2-D graph of Eq (3.6) are drawn in case μ=0.3,c=0.4,ω=2,e1=2,k=32,ρ=12, λ=15,A=110,B=110,C=1,z=1,t=1.

    Solution 2: When A2+B2C2>0 and (A2+B2C2)3k0 then according to family 2, we gain w-shaped solution as presented in Figure 2.

    ϕ(x,y,z,t)=3e12(A2+B2C23Δtanh2(12A2+B2C2(kx+ly+zρtω)))2832((A2+B2C2)3k)2/3. (3.7)
    Figure 2.  3D surface and 2D graph of Eq (3.7) are drawn in case μ=0.3,c=0.4,ω=2,e1=2,k=32,ρ=12,λ=15, A=110,B=1,C=0.1,z=1,t=1.

    Solution 3: When (A2+B2)k0 then according to family 3, we gain w-shaped solution as shown in Figure 3.

    ϕ(x,y,z,t)=3e12(A2+B23(A2+B2)tanh2(12A2+B2(kx+ly+ρzωt)))2832((A2+B2)3k)2/3. (3.8)
    Figure 3.  3D surface and 2D graph of Eq (3.8) are drawn in case μ=0.3,c=0.4,ω=2,e1=2,k=32,ρ=12, λ=15,A=15,B=15,C=0,z=1,t=1.

    Solution 4: When C2A2>0 and k0 then according to family 4, we gain bright-singular solution

    ϕ(x,y,z,t)=(C12A12)2e12/3(2+cos(C12A12(kx+ly+zρtω)))2832((C12A12)3k)2/3sec4(12C12A12(kx+ly+zρtω)). (3.9)

    Solution 5: When B2C2>0 and k0 then according to family 5, we get w-shaped soliton solution as seen in Figure 4.

    ϕ(x,y,z,t)=(B2C2)23e1222/3(1+3tanh(12B2C2(kx+ly+ρzωt))2)2832((B2C2)3k)2/3. (3.10)
    Figure 4.  3D surface and 2D graph of Eq (3.10) are drawn in case μ=0.3,c=0.4,ω=2,e1=2,k=32, ρ=12,λ=15,A=15, B=15,C=0,z=1,t=1.

    Solution 6: When A0 and k0 then according to family 10, one can construct singular solution as seen in Figure 5.

    ϕ(x,y,z,t)=A43e12k4(2+cosh(Ak(kx+ly+ρzωt)))2csch(12Ak(kx+ly+ρzωt))4832(A6k7)2/3. (3.11)
    Figure 5.  3D surface and 2D graph of Eq (3.11) are drawn in case μ=0.3,c=0.4,ω=2,e1=2, k=12,ρ=12,λ=15,A=1,z=1,t=1.

    Solution 7: When B0 and k0 then according to family 11, we gain singular solution

    ϕ(x,y,z,t)=B4(1+(AB)eB(kx+ly+ρzωt)        (4+(AB)eB(kx+ly+ρzωt)        ))23e12232(1+(A+B)eB(kx+ly+ρzωt    )        )4(B6k)2/3. (3.12)

    Solution 8: When B0 and k0 then according to family 12, we gain singular solution

    ϕ(x,y,z,t)=B43e12(1+(BC)eB(kx+ly+ρzωt)        (4+(BC)eB(kx+ly+ρzωt)        ))2232(1+(B+C)eB(kx+ly+ρzωt    )        )4(B6k)2/3. (3.13)

    Solution 9: When B0 and k0 then according to family 13, we gain singular solution

    ϕ(x,y,z,t)=B43e12((A+B)2+4(A+B)eB(kx+ly+ρzωt)        +e2B(kx+ly+ρzωt)        )2232(A+BeB(kx+ly+ρzωt    )        )4(B6k)2/3. (3.14)

    Solution 10: When A0 and k0 then according to family 14, we gain singular solution

    ϕ(x,y,z,t)=A43e12(1+CeA(kx+ly+ρzωt)        (4+CeA(kx+ly+ρzωt)        ))2232(1+CeA(kx+ly+ρzωt    )        )4(A6k)2/3. (3.15)

    Solution 11: When C0 and k0 then according to family 18, we gain bright-singular solution

    ϕ(x,y,z,t)=C43e1222/3(1+3tan(12C(kx+ly+ρzωt))2)2832(C6k)2/3. (3.16)

    Case 2: In case a0=3e1(2A12B12+C12)234((A2+B2C2)3k)1/3,a1=3A3e1(BC)34((A2+B2C2)3k)1/3, a2=3(BC)23e1234((A2+B2C2)3k)1/3, ρ=(BC)2(k2+332e1((A2+B2C2)3k)1/3l2)(BC)2, ω=ck+33e1((A2+B2C2)3k)2/3234(A2+B2C2)2, we gain the following solutions:

    Solution 1: When ξ<0 and k0 then according to family 1, we have periodic-singular solution as shown in Figure 6.

    ϕ(x,y,z,t)=3e12(Δ+3Δtan2(12Δ(kx+ly+ρzωt)))2832((Δ)3k)2/3. (3.17)
    Figure 6.  3D surface and 2D graph of Eq (3.17) are drawn in case μ=0.3,c=0.4,ω=2,e1=2,k=32,ρ=12, λ=15,A=110,B=110,C=1,z=1,t=1.

    Solution 2: When ξ>0 and k0 then according to family 2, we gain

    ϕ(x,y,z,t)=3e12(Δ3Δtanh2(12ξ(kx+ly+zρtω)))2832((ξ)3k)2/3. (3.18)

    This solution is a W-shaped solution as presented in Figure 7.

    Figure 7.  3D surface and 2D graph of Eq. (3.18) are drawn in case μ=0.3,c=0.4,ω=12,e1=2,k=32,ρ=12, λ=15,A=15,B=15,C=110,z=1,t=1.

    Solution 3: When A2+B20 and k0 then according to family 3, we gain W-shaped solution

    ϕ(x,y,z,t)=3e12(A2+B23(A2+B2)tanh2(12A2+B2(kx+ly+ρzωt)))2832((A2+B2)3k)2/3. (3.19)

    Solution 4: When C2A2>0 and k0 then according to family 4, we gain bright-singular solution

    ϕ(x,y,z,t)=3e12(A2C2+3(C2A2)tan2(12C2A2(kx+ly+ρzωt)))2832((A2C2)3k)2/3. (3.20)

    Solution 5: When B2C2>0 and k0 then according to family 5, we gain W-shaped solution

    ϕ(x,y,z,t)=(B2C2)23e12(13tanh2(12B2C2(kx+ly+ρzωt)))2832((B2C2)3k)2/3. (3.21)

    Solution 6: When A0 and k0 then according to family 10, we gain singular solution

    ϕ(x,y,z,t)=A4k43e12(1+4eAk(kx+ly+ρzωt)        +e2Ak(kx+ly+ρzωt)        )2232(1+eAk(kx+ly+ρzωt    )        )4(A6k7)2/3. (3.22)

    This is singular solution as shown in Figure 8.

    Figure 8.  3D surface and 2D graph of Eq (3.19) are drawn in case μ=0.3,c=0.4,ω=2,e1=2,k=32,ρ=12, λ=15,A=110,z=1,t=1.

    Solution 7: When B0 and k0 then according to family 11, we gain W-shaped solution

    ϕ(x,y,z,t)=B43e12(1+(AB)eB(kx+ly+ρzωt)        (4+(AB)eB(kx+ly+ρzωt)        ))2232(1+(A+B)eB(kx+ly+ρzωt     )        )4(B6k)2/3. (3.23)

    Solution 8: When B0 and k0 then according to family 12, we gain singular solution

    ϕ(x,y,z,t)=B43e12(1+(BC)eB(kx+ly+ρzωt)        (4+(BC)eB(kx+ly+ρzωt)        ))2232(1+(B+C)eB(kx+ly+ρzωt)        )4(B6k)2/3. (3.24)

    Solution 9: When B0 and k0 then according to family 13, we gain singular solution

    ϕ(x,y,z,t)=B43e12((A+B)2+4(A+B)eB(kx+ly+ρzωt)        +e2B(kx+ly+ρzωt)        )2232(A+BeB(kx+ly+ρzωt)        )4(B6k)2/3. (3.25)

    Solution 10: When A0 and k0 then according to family 14, we gain singular solution

    ϕ(x,y,z,t)=A43e12(1+CeA(kx+ly+ρzωt)        (4+CeA(kx+ly+ρzωt)        ))2232(1+CeA(kx+ly+ρzωt)        )4(A6k)2/3. (3.26)

    Solution 11: When C0 and k0 then according to family 18, we gain singular solution

    ϕ(x,y,z,t)=C43e12(1+3tan2(12C(kx+ly+zρωt)))2832(C6k)2/3. (3.27)

    This method is extremely easy to use and is based on the premise in Eq (2.5). Suppose that the formula for the solution to Eq (3.4) is

    u(ζ)=aieiζ++ajejζbgegζ++bhehζ. (3.28)

    Taking the balance of the linear term of the highest order in Eq (3.4) with the highest order nonlinear term. Calculating simply, we get

    vv=c1e(3g+2c)ζ++d1e(3h+2j)ζc2e5gζ++d2e5hζ (3.29)

    and

    v3=c3e3iζ++d3e3jζc4e3gζ++d4e3hζ=c1e(2g+3i)ζ++d1e(2h+3j)ζc4e5gζ++d4e5hζ. (3.30)

    By taking the balance between the highest order of Exp-function in Eqs (3.29) and (3.30), in a simplified form we get

    g=iandh=j. (3.31)

    Taking only consider the simplest case i=j=1 and as a result g=h=1. Now the ansatz (3.28) can be rewrite as:

    v(ζ)=a1eζ+a0+a1eζb1eζ+b0+b1eζ. (3.32)

    Substituting Eq (3.32) into Eq (3.4), collecting the coefficients of exponential function that have the same power to zero, we have the following case

    Case: When a1=0,a1=0,b1=b024b1,l=2a0b0(k2+ρ2)b0,c=a02b0ωk,e1, a result is

    ϕ(x,y,z,t)=16a02b21e2(kx+ρz+2a0b0(k2+ρ2)b0y+ωt)(b0ekx+ρz+2a0b0(k2+ρ2)b0y+2b1eωt)4. (3.33)

    This solution is a bright soliton as seen in Figure 9.

    Figure 9.  3D surface and 2D graph of Eq (3.33) are drawn in case c=0.4,ω=2,e1=0,k=12,ρ=14, l=1,b1=1,a0=1,b0=1,z=1,t=1.

    Consider Eq (3.4) and balance the linear term of the highest order in Eq (2.5) with the highest order nonlinear term. By using balance principle and simple calculation, we get n=2. Now the ansatz (2.6) can be rewrite as:

    v(ζ)=a2(m+φ)2+a1(m+φ)1+a0+a1(m+φ)+a2(m+φ)2. (3.34)

    Substituting Eq (3.34) into Eq (3.4), collecting the coefficients of (m+φ)i,i=0,1,... that have the same power to zero, we have the following cases:

    Case 1: When a1=0,a2=0, a0=(m(m+λ)μ)(k2+l2+ρ2), a2=k2l2ρ2, a1=λ(k2+l2+ρ2), c=14((2m+λ)24μ)(k2+l2+ρ2)ωk,e1, we obtain the following solutions:

    ϕ(x,y,z,t)=γ2(A12A22)2(k2+l2+ρ2)216(A2cosh(12γ(kx+ly+zρtω))+A1sinh(12γ(kx+ly+zρtω)))4, (3.35)

    provided that γ=(2m+λ)24μ>0. When γ<0, the solution is

    ϕ(x,y,z,t)=γ2(A12+A22)2(k2+l2+ρ2)216(A2cos(12γ(kx+ly+zρtω))+A1sin(12γ(kx+ly+zρtω)))4. (3.36)

    In case γ=0, the solution is

    ϕ(x,y,z,t)=A24(k2+l2+ρ2)2(A1+A2(kx+ly+zρtω))4. (3.37)

    These provided solutions are singular as shown in Figures 1012.

    Figure 10.  3D surface and 2D graph of Eq (3.35) are drawn in case c=0.4,λ=1,m=0,μ=1,ω=2,e1=0,k=12,ρ=14, A1=1,A2=12,a1=3,z=1,t=1.
    Figure 11.  3D surface and 2D graph of Eq (3.36) are drawn in case c=0.4,λ=12,m=0,μ=1,ω=2,e1=0,k=12, ρ=12,A1=1,A2=1,a1=13,z=1,t=1.
    Figure 12.  3D surface and 2D graph of Eq (3.37) are drawn in case c=0.4,λ=1,m=0,μ=14,ω=2,e1=0,k=12, ρ=14,A1=1,A2=2,a1=1,z=1,t=1.

    Case 2: When a1=λ(m(m+λ)μ)(k2+l2+ρ2), a2=(μm(m+λ))2(k2+l2+ρ2), a0=(m(m+λ)μ)(k2+l2+ρ2), a2=0, a1=0, c=14((2m+λ)24μ)(k2+l2+ρ2)ωk,e1=0, one can offer the below solutions:

    ϕ(x,y,z,t)=γ2(A1A2)2(A1+A2)2(μm(m+λ))2(k2+l2+ρ2)2((A2λA1γ)(cosh(12γ(kx+ly+zρtω))sinh(12γ(kx+ly+zρtω))))4, (3.38)

    provided that γ>0. When γ<0, the solution is

    ϕ(x,y,z,t)=(A12+A22)2γ2(μm(m+λ))2(k2+l2+ρ2)2((A2λA1γ)cos(12γ(kx+ly+zρtω))+(A1λ+A2γ)sin(12γ(kx+ly+zρtω)))4. (3.39)

    In case γ=0, the solution is

    ϕ(x,y,z,t)=A24(k2+l2+ρ2)2(A1+A2(2+kx+ly+zρtω))4. (3.40)

    These provided solutions are singular.

    Three powerful methods are used to study the considered equation. In this paper, we present W-shaped soliton solutions, in comparison with the solutions reported in Refs. [36,37,38,39,40,41,42]. This pulse propagation is new and can be constructed rarely in nonlinear science. From the results obtained, we can conclude that the tan(ϕ(ζ)/2)-expansion method provides more novel and different types of solutions in comparison with solutions constructed via other suggested methods.

    In the current research paper, we have constructed some novel analytical solutions to the (3+1)-dimensional modified Zakharov-Kuznetsov equation. This equation presents the ion-acoustic waves in a magnetized plasma. Three methods namely; the tan(ϕ(ζ)/2)-expansion, (m+G(ζ)/G(ζ))-expansion and He exponential function methods are used to offer different solutions for this model. Various soliton solutions are constructed such as W-shaped, singular, bright and periodic bright-singular. To verify the existence of the solutions, we have inserted them into Eq (1.1) and they satisfy it.

    This research received funding support from the NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation (grant number B05F650018).

    We declare that all the authors have no any conflicts of interest about this submission and publication of this article.

    Conceptualization, H.R.N. and N.A.S.; methodology, H.F.I.; software, H.F.I.; validation, H.R.N., N.A.S. and W.W.; formal analysis, W.W.; investigation, H.R.N, H.F.I. and N.A.S.; A.A.H.; writing—original draft preparation, H.R.N., and H.F.I.; writing—review and editing, All authors. Harivan R. Nabi and Nehad Ali Shah contributed equally to this work and are co-first authors.



    [1] A. Zeeshan, H. F. Ismael, M. A. Yousif, T. Mahmood, S. U. Rahman, Simultaneous effects of slip and wall stretching/shrinking on radiative flow of magneto nanofluid through porous medium, J. Magn., 23 (2018), 491–498. http://dx.doi.org/10.4283/JMAG.2018.23.4.491 doi: 10.4283/JMAG.2018.23.4.491
    [2] H. F. Ismael, Carreau-Casson fluids flow and heat transfer over stretching plate with internal heat source/sink and radiation, Int. J. Adv. Appl. Sci. J., 6 (2017), 81–86. http://dx.doi.org/10.1371/journal.pone.0002559 doi: 10.1371/journal.pone.0002559
    [3] K. K. Ali, A. Varol, Weissenberg and Williamson MHD flow over a stretching surface with thermal radiation and chemical reaction, JP J. Heat Mass Transf., 18 (2019), 57–71. http://dx.doi.org/10.17654/HM018010057 doi: 10.17654/HM018010057
    [4] H. F. Ismael, N. M. Arifin, Flow and heat transfer in a maxwell liquid sheet over a stretching surface with thermal radiation and viscous dissipation, JP J. Heat Mass Transf., 15 (2018), 847–866. http://dx.doi.org/10.17654/HM015040847 doi: 10.17654/HM015040847
    [5] Z. F. Kocak, H. Bulut, G. Yel, The solution of fractional wave equation by using modified trial equation method and homotopy analysis method, AIP Conf. P., 1637 (2014), 504–512. http://dx.doi.org/10.1063/1.4904617 doi: 10.1063/1.4904617
    [6] K. Mohamed, A. Seadawy, Finite volume scheme for numerical simulation of the sediment transport model, Int. J. Mod. Phys. B, 1637 (2019), 1950283. http://dx.doi.org/10.1142/S0217979219502837 doi: 10.1142/S0217979219502837
    [7] A. Atangana, A. Ahmed, S. C. Oukouomi Noutchie, On the Hamilton-Jacobi-Bellman equation by the homotopy perturbation method, in Abstract and Applied Analysis, 2014 (2014), 436362. http://dx.doi.org/10.1155/2014/436362 doi: 10.1155/2014/436362
    [8] M. A. Yousif, B. A. Mahmood, K. K. Ali, H. F. Ismael, Numerical simulation using the homotopy perturbation method for a thin liquid film over an unsteady stretching sheet, Int. J. Pure Appl. Math., 107 (2016), 289–300. http://dx.doi.org/10.12732/ijpam.v107i2.1 doi: 10.12732/ijpam.v107i2.1
    [9] D. Anker, N. C. Freeman, On the soliton solutions of the Davey-Stewartson equation for long waves, P. Royal Soc. A, 360 (1978), 529–540. http://dx.doi.org/10.1098/rspa.1978.0083 doi: 10.1098/rspa.1978.0083
    [10] T. A. Sulaiman, H. Bulut, A. Yokus, H. M. Baskonus, On the exact and numerical solutions to the coupled Boussinesq equation arising in ocean engineering, Indian J. Phys., 93 (2019), 647–656. http://dx.doi.org/10.1007/s12648-018-1322-1 doi: 10.1007/s12648-018-1322-1
    [11] O. González-Gaxiola, A. Biswas, M. R. Belic, Optical soliton perturbation of Fokas-Lenells equation by the Laplace-Adomian decomposition algorithm, J. Eur. Opt. Soc.-Rapid Publ., 15 (2019), 1–9. http://dx.doi.org/10.1186/s41476-019-0111-6 doi: 10.1186/s41476-019-0111-6
    [12] H. F. Ismael, K. K. Ali, MHD Casson flow over an unsteady stretching sheet, Adv. Appl. Fluid Mech., 20 (2017), 533–541. http://dx.doi.org/10.17654/FM020040533 doi: 10.17654/FM020040533
    [13] A. R. Seadawy, K. El-Rashidy, Application of the extension exponential rational function method for higher-dimensional Broer–Kaup–Kupershmidt dynamical system, Mod. Phys. Lett. A, 35 (2020), 1950345. http://dx.doi.org/10.1142/S0217732319503450 doi: 10.1142/S0217732319503450
    [14] W. Gao, H. F. Ismael, S. A. Mohammed, H. M. Baskonus, H. Bulut, Complex and real optical soliton properties of the paraxial nonlinear Schrödinger equation in Kerr media with M-fractional, Front. Phys., 7 (2019), 197. http://dx.doi.org/10.3389/fphy.2019.00197 doi: 10.3389/fphy.2019.00197
    [15] K. K. Ali, R. Yilmazer, H. Bulut, Analytical solutions to the coupled boussinesq–burgers equations via sine-gordon expansion method, Adv. Intell. Syst. Comput., 1111 (2019), 233–240. http://dx.doi.org/10.1007/978-3-030-39112-6-17 doi: 10.1007/978-3-030-39112-6-17
    [16] H. Bulut, T. A. Sulaiman, H. M. Baskonus, T. Aktürk, On the bright and singular optical solitons to the (2 + 1)-dimensional NLS and the Hirota equations, Opt. Quantum Electron., 50 (2018), 1–12. http://dx.doi.org/10.1007/s11082-018-1411-6 doi: 10.1007/s11082-018-1411-6
    [17] W. Gao, H. F. Ismael, A. M. Husien, H. Bulut, H. M. Baskonus, Optical soliton solutions of the cubic-quartic nonlinear schrödinger and resonant nonlinear schrödinger equation with the parabolic law, Appl. Sci., 10 (2019), 219. http://dx.doi.org/10.3390/app10010219 doi: 10.3390/app10010219
    [18] H. F. Ismael, H. Bulut, H. M. Baskonus, Optical soliton solutions to the Fokas–Lenells equation via sine-Gordon expansion method and (m+(G/G))-expansion method, Pramana J., 94 (2020), 1–9. http://dx.doi.org/10.1007/s12043-019-1897-x doi: 10.1007/s12043-019-1897-x
    [19] C. Cattani, T. A. Sulaiman, H. M. Baskonus, H. Bulut, On the soliton solutions to the Nizhnik-Novikov-Veselov and the Drinfel'd-Sokolov systems, Opt. Quantum Electron., 50 (2018), 1–11. http://dx.doi.org/10.1007/s11082-018-1406-3 doi: 10.1007/s11082-018-1406-3
    [20] H. Bulut, T. A. Sulaiman, H. M. Baskonus, Dark, bright and other soliton solutions to the Heisenberg ferromagnetic spin chain equation, Superlattice. Microst., 123 (2018), 12–19. http://dx.doi.org/10.1016/j.spmi.2017.12.009 doi: 10.1016/j.spmi.2017.12.009
    [21] H. M. Baskonus, T. A. Sulaiman, H. Bulut, T. Aktürk, Investigations of dark, bright, combined dark-bright optical and other soliton solutions in the complex cubic nonlinear Schrödinger equation with δ-potential, Superlattice. Microst., 115 (2018), 19–29. http://dx.doi.org/10.1016/j.spmi.2018.01.008 doi: 10.1016/j.spmi.2018.01.008
    [22] A. R. Seadawy, N. Cheemaa, Applications of extended modified auxiliary equation mapping method for high-order dispersive extended nonlinear Schrödinger equation in nonlinear optics, Mod. Phys. Lett. B, 33 (2019), 1950203. http://dx.doi.org/10.1142/S0217984919502038 doi: 10.1142/S0217984919502038
    [23] M. Iqbal, A. R. Seadawy, D. Lu, X. Xianwei, Construction of a weakly nonlinear dispersion solitary wave solution for the Zakharov–Kuznetsov-modified equal width dynamical equation, Indian J. Phys., 94 (2020), 1465–1474. http://dx.doi.org/10.1007/s12648-019-01579-4 doi: 10.1007/s12648-019-01579-4
    [24] H. H. Abdulkareem, H. F. Ismael, E. S. Panakhov, H. Bulut, Some novel solutions of the coupled whitham-broer-kaup equations, Adv. Intell. Syst. Comput., 1111 (2020), 200–208. http://dx.doi.org/10.1007/978-3-030-39112-6-14 doi: 10.1007/978-3-030-39112-6-14
    [25] H. F. Ismael, H. Bulut, On the solitary wave solutions to the (2+ 1)-dimensional davey-stewartson equations, Adv. Intell. Syst. Comput., 1111 (2020), 156–165. http://dx.doi.org/10.1007/978-3-030-39112-6-11 doi: 10.1007/978-3-030-39112-6-11
    [26] H. M. Baskonus, H. Bulut, Exponential prototype structures for (2+1)-dimensional Boiti-Leon-Pempinelli systems in mathematical physics, Wave. Random Complex, 26 (2016), 189–196. http://dx.doi.org/10.1080/17455030.2015.1132860 doi: 10.1080/17455030.2015.1132860
    [27] H. M. Baskonus, G. Yel, H. Bulut, Novel wave surfaces to the fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony equation, AIP Conf. P., 1863 (2017), 560084. http://dx.doi.org/10.1063/1.4992767 doi: 10.1063/1.4992767
    [28] H. M. Baskonus, H. Bulut, On the complex structures of Kundu-Eckhaus equation via improved Bernoulli sub-equation function method, Wave. Random Complex, 25 (2015), 720–728. http://dx.doi.org/10.1080/17455030.2015.1080392 doi: 10.1080/17455030.2015.1080392
    [29] M. M. A. El-Sheikh, A. R. Seadawy, H. M. Ahmed, A. H. Arnous, W. B. Rabie, Dispersive and propagation of shallow water waves as a higher order nonlinear Boussinesq-like dynamical wave equations, Phys. A Stat. Mech. Appl., 537 (2020), 122662. http://dx.doi.org/10.1016/j.physa.2019.122662 doi: 10.1016/j.physa.2019.122662
    [30] W. Gao, H. F. Ismael, H. Bulut, H. M. Baskonus, Instability modulation for the (2+1)-dimension paraxial wave equation and its new optical soliton solutions in Kerr media, Phys. Scr., 95 (2019), 035207. http://dx.doi.org/10.1088/1402-4896/ab4a50 doi: 10.1088/1402-4896/ab4a50
    [31] C. Qian, J. Rao, D. Mihalache, J. He, Rational and semi-rational solutions of the y-nonlocal Davey–Stewartson Ⅰ equation, Comput. Math. with Appl., 75 (2018), 3317–3330. http://dx.doi.org/10.1016/j.camwa.2018.01.049 doi: 10.1016/j.camwa.2018.01.049
    [32] M. Rani, N. Ahmed, S. S. Dragomir, S. T. Mohyud-Din, Travelling wave solutions of 3+ 1-dimensional Boiti–Leon–Manna–Pempinelli equation by using improved tanh(ϕ2)-expansion method, Partial Differ. Eq. Appl. Math., 6 (2022), 100394. http://dx.doi.org/10.1016/j.padiff.2022.100394 doi: 10.1016/j.padiff.2022.100394
    [33] M. Rani, N. Ahmed, S. S. Dragomir, S. T. Mohyud-Din, New travelling wave solutions to (2+ 1)-Heisenberg ferromagnetic spin chain equation using Atangana's conformable derivative, Phys. Scr., 96 (2021), 94007. http://dx.doi.org/10.1088/1402-4896/ac07b9 doi: 10.1088/1402-4896/ac07b9
    [34] M. Rani, N. Ahmed, S. S. Dragomir, S. T. Mohyud-Din, I. Khan, K. S. Nisar, Some newly explored exact solitary wave solutions to nonlinear inhomogeneous Murnaghan's rod equation of fractional order, J. Taibah Univ. Sci., 15 (2021), 97–110. http://dx.doi.org/10.1080/16583655.2020.1841472 doi: 10.1080/16583655.2020.1841472
    [35] M. Wang, X. Li, Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation, Chaos Soliton. Fract., 24 (2005), 1257–1268. http://dx.doi.org/10.1016/j.chaos.2004.09.044 doi: 10.1016/j.chaos.2004.09.044
    [36] A. R. Seadawy, D. Lu, N. Nasreen, S. Nasreen, Structure of optical solitons of resonant Schrödinger equation with quadratic cubic nonlinearity and modulation instability analysis, Phys. A Stat. Mech. Its Appl., 534 (2019), 122155. http://dx.doi.org/10.1016/j.physa.2019.122155 doi: 10.1016/j.physa.2019.122155
    [37] A. R. Seadawy, M. Arshad, D. Lu, Dispersive optical solitary wave solutions of strain wave equation in micro-structured solids and its applications, Phys. A Stat. Mech. Its Appl., 540 (2019), 123122. http://dx.doi.org/10.1016/j.physa.2019.123122 doi: 10.1016/j.physa.2019.123122
    [38] A. R. Seadawy, D. Yaro, D. Lu, Computational wave solutions of generalized higher-order nonlinear Boussinesq dynamical wave equation, Mod. Phys. Lett. A, 34 (2019), 1950338. http://dx.doi.org/10.1142/S0217732319503383 doi: 10.1142/S0217732319503383
    [39] S. Munro, E. J. Parkes, The derivation of a modified Zakharov-Kuznetsov equation and the stability of its solutions, J. Plasma Phys., 62 (1999), 305–317. http://dx.doi.org/10.1017/S0022377899007874 doi: 10.1017/S0022377899007874
    [40] A. M. Wazwaz, The extended tanh method for the Zakharov-Kuznetsov (ZK) equation, the modified ZK equation, and its generalized forms, Commun. Nonlinear Sci. Numer. Simul., 13 (2008), 1039–1047. http://dx.doi.org/10.1016/j.cnsns.2006.10.007 doi: 10.1016/j.cnsns.2006.10.007
    [41] H. L. Zhen, B. Tian, H. Zhong, Y. Jiang, Dynamic behaviors and soliton solutions of the modified Zakharov-Kuznetsov equation in the electrical transmission line, Comput. Math. with Appl., 68 (2014), 579–588. http://dx.doi.org/10.1016/j.camwa.2014.06.021 doi: 10.1016/j.camwa.2014.06.021
    [42] A. M. Wazwaz, Exact solutions with solitons and periodic structures for the Zakharov-Kuznetsov (ZK) equation and its modified form, Commun. Nonlinear Sci. Numer. Simul., 10 (2005), 597–606. http://dx.doi.org/10.1016/j.cnsns.2004.03.001 doi: 10.1016/j.cnsns.2004.03.001
    [43] A. R. Seadawy, Three-dimensional nonlinear modified Zakharov-Kuznetsov equation of ion-acoustic waves in a magnetized plasma, Comput. Math. Appl., 71 (2016), 201–212. http://dx.doi.org/10.1016/j.camwa.2015.11.006 doi: 10.1016/j.camwa.2015.11.006
    [44] S. S. Ray, S. Sahoo, New exact solutions of fractional Zakharov - Kuznetsov and modified Zakharov - Kuznetsov equations using fractional sub-equation method, Commun. Theor. Phys., 63 (2015), 25. http://dx.doi.org/10.1088/0253-6102/63/1/05 doi: 10.1088/0253-6102/63/1/05
    [45] M. Eslami, M. Mirzazadeh, Exact solutions of modified Zakharov–Kuznetsov equation by the homogeneous balance method, Ain Shams Eng. J., 5 (2014), 221–225. http://dx.doi.org/10.1016/j.asej.2013.06.005 doi: 10.1016/j.asej.2013.06.005
    [46] Z. Li, L. Li, H. Tian, G. Zhou, New types of solitary wave solutions for the higher order nonlinear Schrödinger equation, Phys. Rev. Lett., 84 (2000), 4096. http://dx.doi.org/10.1103/PhysRevLett.84.4096 doi: 10.1103/PhysRevLett.84.4096
    [47] I. Bendahmanea, H. Trikib, A. Biswascde, A. S. Alshomranid, Q. Zhou, S. P.Moshokoa, et al., NBright, dark and W-shaped solitons with extended nonlinear Schrödinger's equation for odd and even higher-order terms, Superlattice. Microst., 114 (2018), 53–61. http://dx.doi.org/10.1016/j.spmi.2017.12.007 doi: 10.1016/j.spmi.2017.12.007
    [48] H. F. Ismael, H. Bulut, H. M. Baskonus, W-shaped surfaces to the nematic liquid crystals with three nonlinearity laws, Soft Comput., 25 (2021), 4513–4524. http://dx.doi.org/10.1007/s00500-020-05459-6 doi: 10.1007/s00500-020-05459-6
    [49] W. P. Hong, Optical solitary wave solutions for the higher order nonlinear Schrödinger equation with cubic-quintic non-Kerr terms, Opt. Commun., 194 (2001), 217–223. http://dx.doi.org/10.1016/S0030-4018(01)01267-6 doi: 10.1016/S0030-4018(01)01267-6
    [50] J. Manafian, M. F. Aghdaei, M. Zadahmad, Analytic study of sixth-order thin-film equation by tan(ϕ2)-expansion method, Opt. Quant. Electron., 48 (2016), 1–14. http://dx.doi.org/10.1007/s11082-016-0683-y doi: 10.1007/s11082-016-0683-y
    [51] J. H. He, X. H. Wu, Exp-function method for nonlinear wave equations, Chaos Soliton. Fract., 30 (2006), 700–708. http://dx.doi.org/10.1016/j.chaos.2006.03.020 doi: 10.1016/j.chaos.2006.03.020
    [52] R. Sabry, W. M. Moslem, F. Haas, S. Ali, P. K. Shukla, Nonlinear structures: explosive, soliton, and shock in a quantum electron-positron-ion magnetoplasma, Phys. Plasmas, 14 (2008), 122308. http://dx.doi.org/10.1063/1.3037265 doi: 10.1063/1.3037265
  • This article has been cited by:

    1. Hajar F. Ismael, Haci Mehmet Baskonus, Hasan Bulut, Wei Gao, Instability modulation and novel optical soliton solutions to the Gerdjikov–Ivanov equation with M-fractional, 2023, 55, 0306-8919, 10.1007/s11082-023-04581-7
    2. Nauman Raza, Abdel-Haleem Abdel-Aty, Traveling wave structures and analysis of bifurcation and chaos theory for Biswas–Milovic Model in conjunction with Kudryshov’s law of refractive index, 2023, 287, 00304026, 171085, 10.1016/j.ijleo.2023.171085
    3. Hakima Khudher Ahmed, Hajar Farhan Ismael, Optical soliton solutions for the nonlinear Schrödinger equation with higher-order dispersion arise in nonlinear optics, 2024, 99, 0031-8949, 105276, 10.1088/1402-4896/ad78c3
    4. Nirman Bhowmike, Zia Ur Rehman, Zarmeena Naz, Muhammad Zahid, Sultan Shoaib, Yasar Amin, Non-linear electromagnetic wave dynamics: Investigating periodic and quasi-periodic behavior in complex engineering systems, 2024, 184, 09600779, 114984, 10.1016/j.chaos.2024.114984
    5. Saumya Ranjan Jena, Itishree Sahu, A novel approach for numerical treatment of traveling wave solution of ion acoustic waves as a fractional nonlinear evolution equation on Shehu transform environment, 2023, 98, 0031-8949, 085231, 10.1088/1402-4896/ace6de
    6. Ri Zhang, Muhammad Shakeel, Nasser Bin Turki, Nehad Ali Shah, Sayed M Tag, Novel analytical technique for mathematical model representing communication signals: A new travelling wave solutions, 2023, 51, 22113797, 106576, 10.1016/j.rinp.2023.106576
    7. Exact Solutions of Beta-Fractional Fokas-Lenells Equation via Sine-Cosine Method, 2023, 16, 20710216, 10.14529/mmp230201
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1494) PDF downloads(74) Cited by(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog