Research article Special Issues

Investigation and analysis of the numerical approach to solve the multi-term time-fractional advection-diffusion model

  • Received: 02 June 2023 Revised: 07 October 2023 Accepted: 15 October 2023 Published: 31 October 2023
  • MSC : 65L60, 65N12, 35R11

  • In this paper, a methodical approach is presented to approximate the multi-term fractional advection-diffusion model (MT-FAD). The Lagrange squared interpolation is used to discretize temporal fractional derivatives, and Legendre polynomials are shifted as an operator to discretize the spatial fractional derivatives. The advantage of these numerical techniques lies in the orthogonality of Legendre polynomials and its matrix operations. A quadratic implicit design as well as its stability and convergence analysis are evaluated. It should be noted that the theoretical proof obtained from this study represents the first results for these numerical schemes. Finally, we provide three numerical examples to verify the validity of the proposed methods and demonstrate their accuracy and effectiveness in comparison with previous studies shown in [W. P. Bu, X. T. Liu, Y. F. Tang, J. Y. Yang, Finite element multigrid method for multi-term time fractional advection diffusion equations, Int. J. Model. Simul. Sci. Comput., 6 (2015), 1540001].

    Citation: Yones Esmaeelzade Aghdam, Hamid Mesgarani, Zeinab Asadi, Van Thinh Nguyen. Investigation and analysis of the numerical approach to solve the multi-term time-fractional advection-diffusion model[J]. AIMS Mathematics, 2023, 8(12): 29474-29489. doi: 10.3934/math.20231509

    Related Papers:

  • In this paper, a methodical approach is presented to approximate the multi-term fractional advection-diffusion model (MT-FAD). The Lagrange squared interpolation is used to discretize temporal fractional derivatives, and Legendre polynomials are shifted as an operator to discretize the spatial fractional derivatives. The advantage of these numerical techniques lies in the orthogonality of Legendre polynomials and its matrix operations. A quadratic implicit design as well as its stability and convergence analysis are evaluated. It should be noted that the theoretical proof obtained from this study represents the first results for these numerical schemes. Finally, we provide three numerical examples to verify the validity of the proposed methods and demonstrate their accuracy and effectiveness in comparison with previous studies shown in [W. P. Bu, X. T. Liu, Y. F. Tang, J. Y. Yang, Finite element multigrid method for multi-term time fractional advection diffusion equations, Int. J. Model. Simul. Sci. Comput., 6 (2015), 1540001].



    加载中


    [1] S. Chandrasekar, Stochastic problems in physics and astronomy, Rev. Mod. Phys., 15 (1943), 1–89. https://doi.org/10.1103/RevModPhys.15.1 doi: 10.1103/RevModPhys.15.1
    [2] C. E. Baukal Jr., V. Y. Gershtein, X. M. Li, Computational fluid dynamics in industrial combustion, CRC press, 2000.
    [3] M. Dehghan, Weighted finite difference techniques for the one-dimensional advection-diffusion equation, Appl. Math. Comput., 147 (2004), 307–319. https://doi.org/10.1016/S0096-3003(02)00667-7 doi: 10.1016/S0096-3003(02)00667-7
    [4] J. D. Seymour, J. P. Gage, S. L. Codd, R. Gerlach, Anomalous fluid transport in porous media induced by biofilm growth, Phys. Rev. Lett., 93 (2004), 198103. https://doi.org/10.1103/PhysRevLett.93.198103 doi: 10.1103/PhysRevLett.93.198103
    [5] J. P. Bouchaud, A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), 127–293. https://doi.org/10.1016/0370-1573(90)90099-N doi: 10.1016/0370-1573(90)90099-N
    [6] G. A. Maugin, On the thermomechanics of continuous media with diffusion and/or weak nonlocality, Arch. Appl. Mech., 75 (2006), 723–738. https://doi.org/10.1007/s00419-006-0062-4 doi: 10.1007/s00419-006-0062-4
    [7] H. D. Qu, X. Liu, X. Lu, M. ur Rahman, Z. H. She, Neural network method for solving nonlinear fractional advection-diffusion equation with spatiotemporal variable-order, Chaos Solitons Fract., 156 (2022), 111856. https://doi.org/10.1016/j.chaos.2022.111856 doi: 10.1016/j.chaos.2022.111856
    [8] X. W. Jiang, J. H. Li, B. Li, W. Yin, L. Sun, X. Y. Chen, Bifurcation, chaos, and circuit realisation of a new four-dimensional memristor system, Int. J. Nonlinear Sci. Numer. Simul., 2022. https://doi.org/10.1515/ijnsns-2021-0393 doi: 10.1515/ijnsns-2021-0393
    [9] J. Li, Y. L. Cheng, Barycentric rational interpolation method for solving time-dependent fractional convection-diffusion equation, Electron. Res. Arch., 31 (2023), 4034–4056. https://doi.org/10.3934/era.2023205 doi: 10.3934/era.2023205
    [10] A. Atangana, A. Kılıçman, The use of Sumudu transform for solving certain nonlinear fractional heat-like equations, Abstr. Appl. Anal., 2013 (2013), 1–12. https://doi.org/10.1155/2013/737481 doi: 10.1155/2013/737481
    [11] E. Barkai, R. Metzler, J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E, 61 (2000), 132–138. https://doi.org/10.1103/PhysRevE.61.132 doi: 10.1103/PhysRevE.61.132
    [12] A. Blumen, G. Zumofen, J. Klafter, Transport aspects in anomalous diffusion: Lévy walks, Phys. Rev. A, 40 (1989), 3964–3973. https://doi.org/10.1103/PhysRevA.40.3964 doi: 10.1103/PhysRevA.40.3964
    [13] J. P. Bouchaud, A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), 127–293. https://doi.org/10.1016/0370-1573(90)90099-N doi: 10.1016/0370-1573(90)90099-N
    [14] A. S. Chaves, A fractional diffusion equation to describe Lévy flights, Phys. Lett. A, 239 (1998), 13–16. https://doi.org/10.1016/S0375-9601(97)00947-X doi: 10.1016/S0375-9601(97)00947-X
    [15] J. Klafter, A. Blumen, M. F. Shlesinger, Stochastic pathway to anomalous diffusion, Phys. Rev. A, 35 (1987), 3081–3085. https://doi.org/10.1103/PhysRevA.35.3081 doi: 10.1103/PhysRevA.35.3081
    [16] B. Baeumer, M. M. Meerschaert, Stochastic solutions for fractional Cauchy problems, Fract. Calc. Appl. Anal., 4 (2001), 481–500.
    [17] M. M. Meerschaert, D. A. Benson, H. P. Scheffler, B. Baeumer, Stochastic solution of space-time fractional diffusion equations, Phys. Rev. E, 65 (2002), 041103. https://doi.org/10.1103/PhysRevE.65.041103 doi: 10.1103/PhysRevE.65.041103
    [18] A. I. Saichev, G. M. Zaslavsky, Fractional kinetic equations: Solutions and applications, Chaos, 7 (1997), 753–764. https://doi.org/10.1063/1.166272 doi: 10.1063/1.166272
    [19] G. M. Zaslavsky, Fractional kinetic equation for Hamiltonian chaos, Phys. D, 76 (1994), 110–122. https://doi.org/10.1016/0167-2789(94)90254-2 doi: 10.1016/0167-2789(94)90254-2
    [20] B. Baeumer, D. A. Benson, M. M. Meerschaert, S. W. Wheatcraft, Subordinated advection-dispersion equation for contaminant transport, Water Resour. Res., 37 (2001), 1543–1550. https://doi.org/10.1029/2000WR900409 doi: 10.1029/2000WR900409
    [21] D. A. Benson, R. Schumer, M. M. Meerschaert, S. W. Wheatcraft, Fractional dispersion, Lévy motion, and the MADE tracer tests, Transport Porous Med., 42 (2001), 211–240. https://doi.org/10.1023/A:1006733002131 doi: 10.1023/A:1006733002131
    [22] D. A. Benson, S. W. Wheatcraft, M. M. Meerschaert, The fractional-order governing equation of Lévy motion, Water Resour. Res., 36 (2000), 1413–1423. https://doi.org/10.1029/2000WR900032 doi: 10.1029/2000WR900032
    [23] R. Schumer, D. A. Benson, M. M. Meerschaert, B. Baeumer, Multiscaling fractional advection-dispersion equations and their solutions, Water Resour. Res., 39 (2003), 1022–1032. https://doi.org/10.1029/2001WR001229 doi: 10.1029/2001WR001229
    [24] Y. Povstenko, Generalized boundary conditions for the time-fractional advection diffusion equation, Entropy, 17 (2015), 4028–4039. https://doi.org/10.3390/e17064028 doi: 10.3390/e17064028
    [25] Q. Rubbab, I. A. Mirza, M. Z. A. Qureshi, Analytical solutions to the fractional advection-diffusion equation with time-dependent pulses on the boundary, AIP Adv., 6 (2016), 075318. https://doi.org/10.1063/1.4960108 doi: 10.1063/1.4960108
    [26] F. S. Md Nasrudin, C. Phang, A. Kanwal, Fractal-fractional advection-diffusion-reaction equations by Ritz approximation approach, Open Phys., 21 (2023), 20220221. https://doi.org/10.1515/phys-2022-0221 doi: 10.1515/phys-2022-0221
    [27] A. A. El-Sayed, P. Agarwal, Numerical solution of multiterm variable-order fractional differential equations via shifted Legendre polynomials, Math. Methods Appl. Sci., 42 (2019), 3978–3991. https://doi.org/10.1002/mma.5627 doi: 10.1002/mma.5627
    [28] Q. Yang, F. Liu, I. Turner, Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model., 34 (2010), 200–218. https://doi.org/10.1016/j.apm.2009.04.006 doi: 10.1016/j.apm.2009.04.006
    [29] S. J. Shen, F. W. Liu, V. Anh, Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation, Numer. Algorithms, 56 (2011), 383–403. https://doi.org/10.1007/s11075-010-9393-x doi: 10.1007/s11075-010-9393-x
    [30] F. W. Liu, M. M. Meerschaert, R. J. McGough, P. H. Zhuang, Q. X. Liu, Numerical methods for solving the multi-term time-fractional wave-diffusion equation, Fract. Calc. Appl. Anal., 16 (2013), 9–25. https://doi.org/10.2478/s13540-013-0002-2 doi: 10.2478/s13540-013-0002-2
    [31] A. V. Pskhu, Multi-time fractional diffusion equation, Eur. Phys. J. Spec. Top., 222 (2013), 1939–1950. https://doi.org/10.1140/epjst/e2013-01975-y doi: 10.1140/epjst/e2013-01975-y
    [32] M. Garg, P. Manohar, S. L. Kalla, Generalized differential transform method to space-time fractional telegraph equation, Int. J. Differ. Equ., 2011 (2011), 1–9. https://doi.org/10.1155/2011/548982 doi: 10.1155/2011/548982
    [33] W. P. Bu, X. T. Liu, Y. F. Tang, J. Y. Yang, Finite element multigrid method for multi-term time fractional advection diffusion equations, Int. J. Model. Simul. Sci. Comput., 6 (2015), 1540001. https://doi.org/10.1142/S1793962315400012 doi: 10.1142/S1793962315400012
    [34] H. Jiang, F. Liu, I. Turner, K. Burrage, Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain, J. Math. Anal. Appl., 389 (2012), 1117–1127. https://doi.org/10.1016/j.jmaa.2011.12.055 doi: 10.1016/j.jmaa.2011.12.055
    [35] V. V. Uchaĭkin, R. Sibatov, Fractional kinetics in solids: Anomalous charge transport in semiconductors, dielectrics, and nanosystems, World Scientific, 2013.
    [36] X. L. Ding, Y. L. Jiang, Analytical solutions for the multi-term time-space fractional advection-diffusion equations with mixed boundary conditions, Nonlinear Anal. Real World Appl., 14 (2013), 1026–1033. https://doi.org/10.1016/j.nonrwa.2012.08.014 doi: 10.1016/j.nonrwa.2012.08.014
    [37] K. Kumar, R. K. Pandey, S. Sharma, Comparative study of three numerical schemes for fractional integro-differential equations, J. Comput. Appl. Math., 315 (2017), 287–302. https://doi.org/10.1016/j.cam.2016.11.013 doi: 10.1016/j.cam.2016.11.013
    [38] H. Mesgarani, A. Adl, Y. E. Aghdam, Approximate price of the option under discretization by applying quadratic interpolation and Legendre polynomials, Math. Sci., 17 (2023), 51–58. https://doi.org/10.1007/s40096-021-00439-9 doi: 10.1007/s40096-021-00439-9
    [39] V. J. Ervin, J. P. Roop, Variational solution of fractional advection dispersion equations on bounded domains in $\mathbb{R}^d$, Numer. Methods Partial Differ. Equ., 23 (2007), 256–281. https://doi.org/10.1002/num.20169 doi: 10.1002/num.20169
    [40] Y. E. Aghdam, H. Mesgarani, G. M. Moremedi, M. Khoshkhahtinat, High-accuracy numerical scheme for solving the space-time fractional advection-diffusion equation with convergence analysis, Alex. Eng. J., 61 (2022), 217–225. https://doi.org/10.1016/j.aej.2021.04.092 doi: 10.1016/j.aej.2021.04.092
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(939) PDF downloads(62) Cited by(1)

Article outline

Figures and Tables

Figures(3)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog