
http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(12): 29474–29489.
DOI: 10.3934/math.20231509
Received: 02 June 2023
Revised: 07 October 2023
Accepted: 15 October 2023
Published: 31 October 2023

Research article

Investigation and analysis of the numerical approach to solve the multi-term
time-fractional advection-diffusion model

Yones Esmaeelzade Aghdam1,*, Hamid Mesgarani1, Zeinab Asadi1 and Van Thinh Nguyen2,*

1 Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University,
Tehran, 16785-136, Iran

2 Department of Civil and Environmental Engineering, Seoul National University, Seoul, South
Korea

* Correspondence: Email: yonesesmaeelzade@gmail.com; vnguyen@snu.ac.kr.

Abstract: In this paper, a methodical approach is presented to approximate the multi-term fractional
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1. Introduction

Diffusion refers to the movement of substances in a physical system due to differences in the
concentration of regions. The transfer of quantity due to the bulk movement of fluid is called
advection [1, 2]. In combination of the advection and diffusion equations, the transfer of substance
or quantity (particle, energy or chemical substances) in a medium is explained, namely the advection-
diffusion equation. The advection-diffusion equation is a partial differential equation used to describe
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physical phenomena, including two processes of advection and diffusion [3, 4].
In recent years, researchers observed that the classical advection-diffusion equation is insufficient in

explaining some physical phenomena. For example, in the classical equation of motion, the diffusion
process is assumed to be linear, while there are many media in which the transport motion is not
linear [5]. Therefore, the fractional advection-diffusion equation considers the non-linearity of the
transport movement in the media and the feature of the memory effects (the effect of the previous
transport processes on the current state of media) for the system to fix the failures of the classical
equation. Because the fractional equation includes all-around movements, it is more accurate than the
classical model [6–9]. The fractional advection-diffusion equation was used for the first time in 1990
to describe the physical phenomenon of the anomalous diffusion of particles in disordered systems.
After that, other researchers used the fractional equation to describe various physical phenomena
until 2000 [5].

The fractional advection-diffusion equation is a powerful tool for modeling transport phenomena
in complex systems. For example, one of the applications of the advection-diffusion equation is
modeling the transport of passive tracers in groundwater in porous media [10]. Apprehending the
advection-diffusion instrument is important for forecasting and overseeing the transport procedures
of substances in different environments. However, there are many transport procedures in complex
systems controlled by non-Brownian diffusion, which is well described by fractional calculus, and
fractional advection-dispersion equations recently play an important role in the modeling of transport
processes in various physical [11–19] and natural [20–23] systems. However, solving such equations is
not always possible, because finding an answer for the fractional advection-diffusion equation is more
difficult than the classical advection-diffusion equation. In addition, the fractional advection-diffusion
equation may not be appropriate for all media, therefore, it is crucial to choose appropriate equations
to represent advection-diffusion processes in particular systems [24, 25].

In general, various numerical methods can be employed to solve the fractional advection-diffusion
equations, including finite difference, finite element, spectral, and Monte Carlo methods. However,
the use of the Legendre-shifted polynomials [24] to approximate the fractional advection-diffusion
equation is limited. The Legendre-shifted polynomials constitute a specific type of polynomials, which
are suitable for approximating functions with special boundary conditions. The main feature of these
polynomials is to calculate a more accurate solution using fewer terms than other methods [26, 27].
A type of multi-time fractional advection-diffusion (MT-FADE) equation with boundary and initial
conditions is defined as follows:

P(Dτ)v(x, τ) = K1
∂2β1v(x, τ)
∂|x|2β1

+ K2
∂2β2v(x, τ)
∂|x|2β2

+ q(x, τ), 0 < x < 1, 0 < τ < T, (1.1)

with initial v(x, 0) = z(x), 0 ≤ x ≤ 1 and boundary conditions v(0, τ) = r(τ), v(1, τ) = s(τ), 0 ≤ τ ≤ T .

In Eq (1.1), the fractional factor P(Dτ) is described as P(Dτ)v(x, τ) =
ϵ∑

e=0
be

C
0 Dαe
τ v(x, τ), ϵ ∈ N with

0 < αe < αe−1 < . . . < α0 ≤ 1 and be ≥ 0. Terms ∂
2βi v(x,τ)
∂|x|2βi , i = 1, 2 are the Riesz fractional derivative

with respect to x are described as

∂2βiv(x, τ)
∂|x|2βi

=
−1

2 cos(βiπ)
(

xD2βi
L v(x, τ) + xD2βi

R v(x, τ)
)
,
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where xD2βi
L v(x, τ) and xD2βi

R v(x, τ) describe the left and right fractional Riemann-Liouville derivatives
specified as below:

xD2βi
L v(x, τ) =

1
Γ(2 − 2βi)

( d
dx

)n
∫ x

0
(x − ζ)n−2βiv(ζ, τ)dζ,

xD2βi
R v(x, τ) =

1
Γ(2 − 2βi)

(
−

d
dx

)n
∫ 1

x
(ζ − x)n−2βiv(ζ, τ)dζ,

where n − 1 < 2βi ≤ n, n ∈ N.
It is noted that the well-known Eq (1.1) consists of some classic fractional instances. Using e =

0 in the fractional factor P(Dτ) results in traditional advection-diffusion equation [28, 29]. Taking
K1 = 0, β2 = 1, the multi-term time-fractional diffusion equations are obtained [30, 31]. Taking
α0 = 2, α1 = 1 and K1 = 0 in the case 1 < αe < αe−1 < . . . < α0 ≤ 2 results in a spatially fractional
Telegraph equation [32].

The MT-FAD model describes the changes in a quantity on multiple time scales. It is a
generalization of the classical advection-diffusion equation. We often use these equations to model
physical phenomena such as heat conduction, diffusion, and wave propagation [30, 33]. There are
two general analytical and numerical solutions to solve these equations. There are analytical ways
for some MT-FAD model, although most of these answers are not accurate. In using numerical
methods, we usually use finite difference methods [33, 34]. In this way, we first discretize time and
space and then solve the resulting system of equations using numerical techniques. In most cases,
finite difference methods are the only possible way to solve MT-FAD model [30]. Many authors
discussed the solution of MT-FAD model with numerical and analytical methods [35, 36]. It is worth
mentioning that Legendre-shifted polynomials are a specific type of polynomials, and they are suitable
for approximating functions with special boundary conditions. The main feature of these polynomials
is to calculate a solution more accurately using fewer terms than other methods. In this study, we
proposed a novel approach to solve multi-term time-fractional advection-diffusion equation (1.1). We
introduce Lagrange linear interpolation for temporal discretization and Legendre approximation for
spatial discretization in Section 2. The highlights of the proposed numerical methods are unconditional
stability and convergence, which are presented in Section 3. To demonstrate the effectiveness of
the proposed numerical methods, we conducted some numerical experiments illustrated in Section 4.
Eventually, the conclusion is summarized in Section 5.

2. Discretization methods

This section consults the discretization of relation Eq (1.1). To do so, let δh and δτ = T
M denote the

sizes of the spatial and temporal discretization steps, respectively. We describe the partition in space
as {xi}

M
i=0 that is the root of the basis polynomials and the partition in time as τ j = jδτ, j = 0, 1, . . . ,M.

We denote the discrete values of the variables v(x, τ) and q(x, τ) as

v(x, τk) = vk(x), v(xi, τk) = vk
i , q(xi, τk) = qk

i , k = 0, 1, . . . ,M.

Considering the fact that 0 < αe ≤ 1, the Caputo fractional derivative can be utilized instead of the
Riemann-Liouville.
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2.1. Time-discretization scheme

To start off on discretization, we use S 2 method in paper [37]. First, we must approximate unknown
function for the case that j = 0 in the intervals [τ0, τ1] by Lagrange linear interpolation, then, for the
rest of the nodes j ≥ 0 in the interval [τ j−1, τ j] we apply Lagrange square interpolation. Practically, we
have three nodes to conduct the approximation.

C
0 Dαe
τ vk(x) =

δτ−αe

Γ(2 − αe)

k∑
j=0

S
αe
k, jv

j(x) + O(δτ3−αe), (2.1)

where for k = 1 and k = 2 the coefficients Sαe
k, j is as

S
αe
1, j =

−A1, j = 0,
A1, j = 1,

S
αe
2, j =


−A2 + B2,2, j = 0,
A2 + C2,2, j = 1,
D2,2, j = 2,

and for k ≥ 3, we have

S
αe
k, j =



−Ak + Bk, j+2, j = 0,
Ak + Bk, j+2 + Ck, j+1, j = 1,
Bk, j+2 + Ck, j+1 +Dk, j, 2 ≤ j ≤ k − 2,
Ck, j+1 +Dk, j, j = k − 1,
Dk, j, j = k,

in which

Ak = k1−αe − (k − 1)1−αe ,

Bk, j =
1

2 − αe

[
(k − j + 1)1−αe(k − j +

αe

2
) − (k − j)1−αe(k − j −

αe

2
+ 1)

]
,

Ck, j =
2

2 − αe

[
(k − j)1−αe(k − j − αe + 2) − (k − j + 1)2−αe

]
,

Dk, j =
1

2 − αe

[
(k − j + 1)1−αe(k − j −

αe

2
+ 2) − (k − j)1−αe(k − j −

3αe

2
+ 3)

]
.

Applying the discretization of the relation (2.1) for the left side of Eq (1.1), we have

ϵ∑
e=0

beδτ
−αe

Γ(2 − αe)
S
αe
k,kv

k(x) − K1
∂2β1vk(x)
∂|x|2β1

− K2
∂2β2vk(x)
∂|x|2β2

=

ϵ∑
e=0

k−1∑
j=0

beδτ
−αe

Γ(2 − αe)
S
αe
k−1, jv

j(x) + qk(x) + O(δτ3−maxαe), 0 < x < 1,

(2.2)

Letting Vk
i as the approximate solution vk

i in Eq (2.2), then we have

ϵ∑
e=0

beδτ
−αe

Γ(2 − αe)
S
αe
k,kV

k(x) − K1
∂2β1Vk(x)
∂|x|2β1

− K2
∂2β2Vk(x)
∂|x|2β2

=

ϵ∑
e=0

k−1∑
j=0

beδτ
−αe

Γ(2 − αe)
S
αe
k−1, jV

j(x) + qk(x). (2.3)
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2.2. Spatial discretization scheme with Legendre approximation

Now, to get the full discrete of Eq (2.3), we employ the following series:

Vk(x) =
n∑

i=0

σk
iL
Ⓢ
i (x), n = 0, 1, . . .N, k = 1, 2, . . .M, (2.4)

where N and M are the number point of spatial and temporal directions, respectively. Moreover, LⓈι (x)
is the shifted orthogonal polynomials in the domain [0, 1] that is defined in paper [38] as

LⓈi (x) =
⌊ i

2 ⌋∑
r=0

i−2r∑
ι=0

Ni,r,ιxι, i = 0, 1, . . . , (2.5)

where

Ni,r,ι =

(
i − 2r
ι

)
(−1)i−r−ι2ι−i(2i − 2r)!

r!(i − r)!(i − 2r)!
.

Then the unknown coefficients in Eq (2.4) are defined below:

σk
i = (2i + 1)

∫ 1

0
LⓈi (x)Vk(x)dx.

Here is a formula for the approximation of the fractional derivative LⓈi is carried out that we define it
with the symbol Lγ,Ⓢi . Suppose γ > 0, by using the Caputo linearity property, we get

Lγ,Ⓢi (x) =
⌊ i

2 ⌋∑
r=0

i−2r∑
ι=⌈γ⌉

Nγi,r,ιx
ι−γ, i = 0, 1, . . . , (2.6)

in which ⌊γ⌋ and ⌈γ⌉ are the floor and ceiling of the fractional term γ and

Nγi,r,ι =
(
i − 2r
ι

)
(−1)i−r−ι2ι−i(2i − 2r)!Γ(ι + 1)
r!(i − r)!(i − 2r)!Γ(ι − γ + 1)

.

Notice that for 0 ≤ i < ⌈γ⌉ we have Lγ,Ⓢi (x) = 0. Substituting the operators (2.5) and (2.6) in (2.3), we
approximate Vk(x) with respect to x as below:

n∑
i=0

σk
i Ae,i(x) =

n−1∑
j=0

j∑
i=0

σ
j
i Be,i(x) + Q(x), (2.7)

where

Ae,i(x) =
ϵ∑

e=0

⌊ i
2 ⌋∑

r=0

i−2r∑
ι=0

beδτ
−αe

Γ(2 − αe)
S
αe
k,kNi,r,ιxι +

K1

2 cos(β1π)

⌊ i
2 ⌋∑

r=0

i−2r∑
ι=⌈β1⌉

(
Nβ1

i,r,ιx
ι−β1 + Nβ1

i,r,ι(1 − x)ι−β1
)

+
K2

2 cos(β2π)

⌊ i
2 ⌋∑

r=0

i−2r∑
ι=⌈β2⌉

(
Nβ2

i,r,ιx
ι−β2 + Nβ2

i,r,ι(1 − x)ι−β2
)
,

Be,i(x) =
ϵ∑

e=0

⌊ i
2 ⌋∑

r=0

i−2r∑
ι=0

beδτ
−αe

Γ(2 − αe)
S
αe
k−1, jNi,r,ιxι, Q(x) = qk(x).
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We use the collocation manner to obtain the coefficients σk
i of relation (2.7). For this objective, we

get the roots of the shifted Legendre polynomials, LⓈi (x), as the collocation points and substitute them
in Eq (2.7) to obtain linear equations at each time step k. LⓈN−1(x) has N − 1 roots, which needs two
more conditions to obtain a system of linear equations with N + 1 equations, which can be obtained
using the following boundary conditions for i = 0, 1, . . .N and k = 1, 2, . . .M.

v(0, t) =
n∑

i=0

σk
iL
Ⓢ
i (0) =

n∑
i=0

σk
i (−1)i = r(τk), v(1, t) =

n∑
i=0

σk
iL
Ⓢ
i (1) =

n∑
i=0

σk
i = s(τk).

To start the iterative method, we need the initial condition as
n∑

i=0

σk
iL
Ⓢ
i (x) = z(x),

where

σk
i = (2i + 1)

∫ 1

0
LⓈi (x)z(x)dx.

Below, we briefly describe the step-by-step numerical algorithm.
Step 1. Generate the basis functions, {LⓈι (x)}Ni=0, select the time step, δτ, and produce a set of roots

of LⓈι (x),{xi}
N
i=0, as the collocation points.

Step 2. Define the approximate fractional time derivative (2.1) and construct the matrix Ae,i(x), the
vectors matrix Be,i(x) and Q(x) in relation (2.7).

Step 3. Compute the coefficient matrices, σk
i , in relation (2.7) with considering the initial and

boundary conditions.
Step 4. Finally, by substituting these coefficients in relation (2.4), one estimates the approximate

solution.

3. Study of the stability and convergence approach

This section investigates the order of convergence and the stability of the numerical method. Using
the weak design (2.3) and defining the following function space in Hilbert space L2(Ω) in Ω and
standard norm ∥θ(x)∥22 = ⟨θ(x), θ(x)⟩, we prove two theorems that describe the precision and efficiency
of the numerical strategy explained in the earlier section.

Hn
Ω(θ) = {θ ∈ L2(Ω),Dαθ ∈ L2(Ω),∀|α| ≤ n},

where Dα is the fractional derivative.
Let Vk(x) and V

k
(x) be the exact and approximate solution of Eq (2.3), respectively. Multiplying

εk(x) and integrating on Ω in the relation (2.3) and denoting εk(x) = V
k
(x) − Vk(x), we get the weak

form of the relation (2.3) as
ϵ∑

e=0

beδτ
−αe

Γ(2 − αe)
S
αe
k,k⟨ε

k(x), εk(x)⟩ − K1⟨
∂2β1εk(x)
∂|x|2β1

, εk(x)⟩ − K2⟨
∂2β2εk(x)
∂|x|2β2

, εk(x)⟩

=

ϵ∑
e=0

k−1∑
j=0

beδτ
−αe

Γ(2 − αe)
S
αe
k−1, j⟨ε

j(x), εk(x)⟩.

(3.1)

Before giving the stability and convergence of the weak scheme (3.1), we first give some lemmas.
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Lemma 3.1. (See [39]) For ∀ f , g ∈ Hn
Ω

and ∀x ∈ R, we have

⟨xDαL f (x), xDαR f (x)⟩ = cos(απ)∥xDαL f (x)∥2 = cos(απ)∥xDαR f (x)∥2, ∀α > 0,

⟨xDαL f (x), g(x)⟩ = ⟨xD
α
2
L f (x), xD

α
2
R g(x)⟩, ⟨xDαR f (x), g(x)⟩ = ⟨xD

α
2
R f (x), xD

α
2
L g(x)⟩, ∀α ∈ (1, 2).

Lemma 3.2. For ∀ε ∈ Hn
Ω

, we have

⟨
∂2βiεk(x)
∂|x|2βi

, εk(x)⟩ = −∥xDβi
L ε

k(x)∥2, ∀i = 1, 2.

Proof. Using Lemma 3.1 and features of the interior product, we get

⟨
∂2βiεk(x)
∂|x|2βi

, εk(x)⟩ = ⟨
−1

2 cos(βiπ)
(

xD2βi
L ε

k(x) + xD2βi
R ε

k(x)
)
, εk(x)⟩

=
−1

2 cos(βiπ)

(
⟨xD2βi

L ε
k(x), εk(x)⟩ + ⟨xD2βi

R ε
k(x), εk(x)⟩

)
=

−1
2 cos(βiπ)

(
⟨xDβi

L ε
k(x), xDβi

R ε
k(x)⟩ + ⟨xDβi

R ε
k(x), xDβi

L ε
k(x)⟩

)
= −∥xDβi

L ε
k(x)∥2.

Theorem 3.1. When 0 < αe, βi < 1, e = 0, 1, . . . , ε, i = 1, 2, the scheme (2.2) is unconditionally
stable.

Proof. According to the Lemmas 3.1 and 3.2, the second and third terms of Eq (3.1) can be removed,
then we gain

ϵ∑
e=0

beδτ
−αe

Γ(2 − αe)
S
αe
k,k⟨ε

k(x), εk(x)⟩ ≤
ϵ∑

e=0

k−1∑
j=0

beδτ
−αe

Γ(2 − αe)
S
αe
k−1, j⟨ε

j(x), εk(x)⟩,

and using the Cauchy Schwarz inequality, one get

ϵ∑
e=0

beδτ
−αe

Γ(2 − αe)
S
αe
k,k∥ε

k(x)∥ ≤
ϵ∑

e=0

k−1∑
j=0

beδτ
−αe

Γ(2 − αe)
S
αe
k−1, j∥ε

j(x)∥.

Since beδτ
−αe

Γ(2−αe) > 0 and 1 < Sαe
k,k ≤

3
2 from lemma of paper [40], we denote the above relation as form

∥εk(x)∥ ≤ ϵSαe
k,k∥ε

k(x)∥ ≤
ϵ∑

e=0

S
αe
k,k∥ε

k(x)∥ ≤
ϵ∑

e=0

k−1∑
j=0

ΓeS
αe
k−1, j∥ε

j(x)∥,

where Γe =
beδτ

−αe

Γ(2−αe) . Applying the theory of induction applies to all k, we know that the above relation
satisfies as below:

∥εk(x)∥ ≤
ϵ∑

e=0

Γe

k−1∑
j=0

S
αe
k−1, j∥ε

0(x)∥.
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Using the properties of the expansion coefficients in the lemma of paper [40] that describe the
characteristics of approximation coefficient 1 < Dk,k ≤

3
2 and

∑k−1
j=0 Sk, j = −Dk−1,k−1, it can be written as

∥εk(x)∥ ≤
ϵ∑

e=0

Γe|Dk,k|∥ε
0(x)∥ = c∥ε0(x)∥,

where c =
ϵ∑

e=0
Γe|Dk,k| is the positive constant. Then it shows that the discredited scheme (2.3) is

unconditionally stable.

The convergence of the scheme (2.3) is given in the following theorem.

Theorem 3.2. Let vk(x) ∈ H2
Ω

be the exact solution of (2.2), Vk(x) ∈ H2
Ω

be the solution of the semi-
scheme (2.3). Then there exists a positive constant C such that

∥ξM(x)∥ ≤ CO(δτ3−maxαe).

Proof. Subtracting (2.2) from (2.3) and denoting ξk(x) = vk(x) − Vk(x), k = 1, 2, . . . ,M, we can
obtain that

ϵ∑
e=0

beδτ
−αe

Γ(2 − αe)
S
αe
k,kξ

k(x) − K1
∂2β1ξk(x)
∂|x|2β1

− K2
∂2β2ξk(x)
∂|x|2β2

=

ϵ∑
e=0

k−1∑
j=0

beδτ
−αe

Γ(2 − αe)
S
αe
k−1, jξ

j(x) +CRk,

where Rk = O(δτ3−maxαe). From Lemmas 3.1 and 3.2, we know that the second and third terms of the
above relation are negative, thus it can be rewritten as

ϵ∑
e=0

beδτ
−αe

Γ(2 − αe)
S
αe
k,k∥ξ

k(x)∥ ≤
ϵ∑

e=0

k−1∑
j=0

beδτ
−αe

Γ(2 − αe)
S
αe
k−1, j∥ξ

j(x)∥ +C∥Rk∥.

By the method employed to prove the earlier theorem, we know that there exists a positive fixed term c
such that

∥ξk(x)∥ ≤ c∥ξ0(x)∥ +C∥Rk∥.

Since ∥ξ0(x)∥ = 0, then
∥ξM(x)∥ ≤ CO(δτ3−maxαe).

This concludes the proof.

4. Numerical experiments

We have conducted some experiments to demonstrate the effectiveness of our proposed methods.
The numerical calculation is carried out on a Dell Inspiron personal computer equipped with an
Intel (R) Core i72630QM 2.00GHz processor and 8GB of memory, using Wolfram Mathematica
version 11. Our unique approach helped to address various issues, and we evaluated the maximum
norm error L∞-norm and L2-norm error between the numerical solution and the exact solution at T = 1
as below:

L∞ − norm = E∞(δh, δτ) = max
0≤i≤N

|vM
i − v̂M

i |, L2 − norm = E2(δh, δτ) =

√√
1
N

N∑
i=0

|vM
i − v̂M

i |
2
,
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respectively. In this case, vM
i is the exact solution and v̂M

i is the numerical solution with mesh step
size δh and grid point (xi, τ j), where i = 0, 1, . . . ,N and j = 0, 1, . . . ,M. Moreover, the convergence
rate is calculated as follows:

Rate∞ = log2(
E∞(δh, 2δτ)
E∞(δh, δτ)

), Rate2 = log2(
E2(δh, 2δτ)
E2(δh, δτ)

).

This formula measures how the error between the exact and numerical solutions decreases as the mesh
step size δh is decreased. A higher convergence rate indicates that the numerical solution is converging
to the exact solution more rapidly.

The numerical experiments conducted to evaluate the precision of the new approach for discretizing
equations. Equation (1.1) is presented in the tables. The convergence rate Rate∞ and maximal norm
error E∞(δh, δτ) are demonstrated for various mesh step sizes δh. The findings suggest that the
innovative approach can achieve temporal convergence accuracy of O(3 − max(αi)), where i = 1, 2.
Furthermore, the accuracy of the outcomes was compared to a previous study [33], and the proposed
method demonstrated higher accuracy with lower errors than the method used in [33].

Example 4.1. Consider the following model with the diffusion coefficients are given K1 = K2 = 2 that
the source term q(x, τ) is obtained from the exact solution v(x, τ) = exp(−τ) sin(x)(x2 − x + 1).

C
0 D0.3
τ v(x, τ) + C

0 D0.8
τ v(x, τ) = 2

∂1.5v(x, τ)
∂|x|1.5

+ 2
∂1.7v(x, τ)
∂|x|1.7

+ q(x, τ), 0 < x < 1, 0 < τ < 1,

where the initial condition is v(x, 0) = sin(x)(x2 − x + 1), and the boundary conditions are v(0, τ) = 0
and v(1, τ) = sin(1). The computing results of this model are shown in Table 1, wherein the maximal
norm and E2-norm errors have been provided; and the convergence rate has been found that it is equal
to O(3 − max(αi)), i = 1, 2 for all temporal discretization levels. From this table, we can see that the
convergence rate is 2.2. Then the largest numbers of the parameters αi are required to determine the
convergence rate.

Table 1. Maximal norm, E2-norm error and the convergence rate for Example 4.1 at T = 1.

δτ E∞(δh, δτ) Rate∞ E2(δh, δτ) Rate2
1

15 4.67736E−4 − 1.84571E−3 −

1
30 1.02080E−4 2.19600 4.04321E−4 2.19060
1

60 2.22318E−5 2.19900 8.85524E−5 2.19090
1

120 4.83179E−6 2.20199 1.93902E−5 2.1912.
1

240 1.04796E−6 2.20497 4.24498E−6 2.19150
1

480 2.26841E−7 2.20783 9.29134E−7 2.19180

Example 4.2. We first consider the one-dimensional Eq (1.1) in the domain (x, τ) ∈ [0, 1]× [0, 1], with
T = 1,K1 = K2 = 1, and source term
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q(x, t) =200(x2 − x3)
( t2−α0

Γ(3 − α0)
+

t2−α1

Γ(3 − α1)

)
+

50K1(t2 + 1)
cos(β1π)

(2
(
x2−2β1 + (1 − x)2−2β1

)
Γ(3 − 2β1)

−
6
(
x3−2β1 + (1 − x)3−2β1

)
Γ(4 − 2β1)

)
+

50K2(t2 + 1)
cos(β2π)

(2
(
x2−2β2 + (1 − x)2−2β2

)
Γ(3 − 2β2)

−
6
(
x3−2β2 + (1 − x)3−2β2

)
Γ(4 − 2β2)

)
.

To be specific, the initial condition is v(x, 0) = 100(x2 − x3), and the boundary conditions are v(0, τ) =
v(1, τ) = 0. The precise solution for this issue can be expressed as v(x, τ) = 100(1 + τ2)(x2 − x3). We
have carried out numerical experiments and presented the results in Tables 2 and 3. Table 2 shows
the maximum norm and E2 − norm errors for the new method, which uses parameters β1 = 0.2 and
β2 = 0.7. Based on our analysis, we have determined that the convergence rate can be expressed as
O(3 − max(αi)).

Table 3 shows cases of a comparison between the error and convergence order of our novel method
and the technique outlined in [33]. We used parameters α0 = 0.5, α1 = 0.2, β0 = 0.3 and β1 = 0.8. Our
results demonstrate that our new method is more efficient than the method presented in [33]. When
α0 = 0.5, the convergence order for our new method is 2.5, while the convergence order for the method
presented in [33] is only 1.5. Additionally, the error of our new method is significantly lower than
the error of the method presented in [33]. In conclusion, our new method outperforms the method
presented in [33] in terms of efficiency and accuracy.

Table 2. Maximal norm, E2-norm error and the convergence rate with β1 = 0.2, β2 = 0.7
and N = 5 for Example 4.2 at T = 1.

with α1 = α2 = 0.5 with α1 = 0.7, α2 = 0.3

δτ E∞(δh, δτ) Rate∞ E2(δh, δτ) Rate2 E∞(δh, δτ) Rate∞ E2(δh, δτ) Rate2
1

20 2.88003E−3 − 8.36760E−3 − 4.65992E−3 − 1.35337E−2 −
1

40 5.04560E−4 2.51299 1.46594E−3 2.51298 9.12647E−4 2.35218 2.65059E−3 2.35217
1

80 8.88040E−5 2.50633 2.58011E−4 2.50633 1.80816E−4 2.33553 5.25143E−5 2.33553
1

160 1.56647E−5 2.50311 4.55123E−5 2.50310 3.60866E−5 2.32499 1.04806E−6 2.32499
1

320 2.76789E−6 2.50066 8.04183E−6 2.50066 7.23087E−6 2.31926 2.10001E−5 2.31926

Table 3. Comparing the error and convergence order of method [33] with the new method
for Example 4.2 with α0 = 0.5, α1 = 0.2, β0 = 0.3 and β1 = 0.8.

Error and the convergence order Error and the convergence order
of paper [33] of the new method with N = 5

δτ E∞(δh, δτ) Rate∞ E∞(δh, δτ) Rate∞ E2(δh, δτ) Rate2
1

64 2.9976E−2 − 3.91334E−5 − 1.08214E−4 −
1

128 9.4587E−3 1.6641 6.72919E−6 2.53990 1.86054E−5 2.54009
1

256 3.1683E−3 1.5779 1.16248E−6 2.53323 3.21374E−6 2.53340
1

512 1.5910E−3 1.5435 1.80841E−7 2.68442 4.99025E−7 2.68707
1

1024 8.3916E−4 1.5777 1.11978E−8 2.64325 3.13224E−8 2.65001
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The stiffness matrix’s condition numbers obtained for space partitions N = 5 and N = 7 with
different values of β1 and β2 are shown in Figure 1. The two curves indicate that the new algorithm is
robust in discretizing the equation to obtain the resulting systems. The condition numbers decrease as
the number of discretization points increases. In Figure 2, the absolute error is shown with N = 5, α1 =

0.5, α2 = β1 = 0.2 and β2 = 0.7 parameters, while M values are varied. As the number of discretization
points increases, the absolute error decreases. In conclusion, the new algorithm effectively discretizes
the equation and the resulting systems. When you increase the number of discretization points, it leads
to a decrease in both the condition numbers and absolute error.

Figure 1. Condition numbers of the stiffness matrix obtained for the space partitions N = 5
and N = 7 with the various values β1 (left panel) and β2 (right panel) for Example 4.2.

Figure 2. Absolute error for the first example with parameter N = 5, α1 = 0.5, α2 = β1 = 0.2
and β2 = 0.7.

Example 4.3. The second example is similar to the first one, with the same accurate resolution of
v(x, τ) = 100(1 + τ2)x2(1 − x)2 and diffusion coefficients K1 = K2 = 1. The source term for this
example is

AIMS Mathematics Volume 8, Issue 12, 29474–29489.
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q(x, t) =200x2(1 − x)2
( t2−α0

Γ(3 − α0)
+

t2−α1

Γ(3 − α1)

)
+

100K1(t2 + 1)
cos(β1π)

((x2−2β1 + (1 − x)2−2β1
)

Γ(3 − 2β1)

−
6
(
x3−2β1 + (1 − x)3−2β1

)
Γ(4 − 2β1)

+
12

(
x4−2β1 + 12(1 − x)4−2β1

)
Γ(5 − 2β1)

)
+

100K2(t2 + 1)
cos(β2π)

((x2−2β2 + (1 − x)2−2β2
)

Γ(3 − 2β2)
−

6
(
x3−2β2 + (1 − x)3−2β2

)
Γ(4 − 2β2)

+
12

(
x4−2β2 + (1 − x)4−2β2

)
Γ(5 − 2β2)

)
.

Tables 4 and 5 present the results of numerical experiments conducted on a new method. In Table 4,
wherein the maximal norm and E2-norm errors have been provided with parameters β1 = 0.45, β2 =

0.7, and the convergence rate has been found that it is equal to O(3−max(αi)), i = 1, 2 for all temporal
discretization levels. From this table, we can see that the convergence rate is 2.5 when α1 = α2 = 0.5
but it is 2.35 for α1 = 0.2, α2 = 0.65. Then, the largest numbers of the parameters αi are required
to determine the convergence rate. Comparing the error and convergence order of the method [33]
with the new method is represented in Table 5 with the parameters α0 = 0.7, α1 = 0.4, β0 = 0.3 and
β1 = 0.85. From this table, we can see that the proposed method is much more efficient than method
of [33]. Moreover, the error of the new method is much less compared to the paper of [33].

Table 4. Maximal norm, E2-norm error and convergence rate with β1 = 0.45, β2 = 0.7 and
N = 5 for Example 4.3 at T = 1.

with α1 = 0.2, α2 = 0.65 with α1 = α2 = 0.5

δτ E∞(δh, δτ) Rate∞ E2(δh, δτ) Rate2 E∞(δh, δτ) Rate∞ E2(δh, δτ) Rate2
1

10 1.30566E−3 − 4.49206E−7 − 1.52349E−4 − 4.64827E−4 −
1

20 2.20088E−5 2.56862 2.30350E−6 2.56742 2.31367E−5 2.71912 7.06426E−5 2.71808
1

40 3.97720E−6 2.46826 1.21600E−5 2.46729 3.68642E−6 2.64989 1.12627E−5 2.64899
1

80 7.53043E−7 2.40095 6.72457E−5 2.40025 6.06790E−7 2.60295 1.85482E−6 2.60220
1

160 1.46802E−7 2.35886 3.98597E−4 2.35838 1.02142E−7 2.57063 3.12350E−7 2.57004

Table 5. Comparing the error and the CPU time of the method [33] with the new method for
example 4.3 with α0 = 0.7, α1 = 0.4, β0 = 0.3 and β1 = 0.85.

Error and the CPU time Error and the CPU time
of paper [33] of the new method with N = 5

δτ E∞(2δτ, δτ) CPU(s) E∞(δh, δτ) CPU(s) Rate∞

Gauss CGNR MG New method
1

128 1.9108E−3 0.02 0.02 0.04 1.98616E−5 0.0189 −
1

256 4.7880E−4 0.24 0.38 0.19 3.36372E−6 0.2154 2.56186
1

512 1.2254E−5 3.19 3.14 0.84 6.06274E−7 1.0259 2.47202
1

1024 2.7918E−5 40.15 34.59 4.20 1.13894E−7 3.2468 2.41227
1

2048 8.5361E−6 698.80 693.64 22.54 2.20280E−8 8.5496 2.37028

AIMS Mathematics Volume 8, Issue 12, 29474–29489.



29486

Figure 3 illustrates the absolute error at different values of M, with parameters N = 5, α1 =

0.3, α2 = 0.6, β1 = 0.4 and β2 = 0.8. The figure shows that increasing the number of discretization
points decreases the absolute error. In conclusion, the new technique is more efficient and accurate
than the method from [33].

Figure 3. Absolute error with parameters N = 5, α1 = 0.3, α2 = 0.6, β1 = 0.4 and β2 = 0.8
for Example 4.3.

5. Conclusions

In this study, we have introduced a novel approach for solving multi-term time-fractional
advection-diffusion equations that utilizes a square interpolation method to discretize the temporal
fractional derivative and a spectral method and employs Legendre polynomials to discretize the spatial
derivatives. We then construct a matrix-approximate preconditioner to accelerate the solution of the
discretized system. Our approach has been proven to be stable without any conditions and has a
convergence rate of O(3 −max(αi)). To the best of our knowledge, the theoretical proof obtained from
this study represents the first results for these numerical schemes. We also presented experimental
results that demonstrate the effectiveness of our proposed method in comparison with the methods
shown in [33]. However, the proposed method is inherently a limitation, wherein the coefficient matrix
of the linear system obtained from the discretization methods is not a sparse matrix, and this may
increase a significant amount of memory and slow down the processing of that data for a large matrix
of three-dimensional and large scale problems. In the future, we aim to expand our proposed approach
to address variable coefficients in higher-order fractional differential equations and also plan to develop
some fast numerical methods for these equations.
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