Research article Special Issues

An optimal fractional-order accumulative Grey Markov model with variable parameters and its application in total energy consumption

  • Received: 30 June 2023 Revised: 10 August 2023 Accepted: 13 August 2023 Published: 15 September 2023
  • MSC : 62M05, 62M10, 62P05, 62P20,

  • In this paper, we propose an optimal fractional-order accumulative Grey Markov model with variable parameters (FOGMKM (1, 1)) to predict the annual total energy consumption in China and improve the accuracy of energy consumption forecasting. The new model is built upon the traditional Grey model and utilized matrix perturbation theory to study the natural and response characteristics of a system when the structural parameters change slightly. The particle swarm optimization algorithm (PSO) is used to determine the number of optimal fractional order and nonlinear parameters. An experiment is conducted to validate the high prediction accuracy of the FOGMKM (1, 1) model, with mean absolute percentage error (MAPE) and root mean square error (RMSE) values of 0.51% and 1886.6, respectively, and corresponding fitting values of 0.92% and 6108.8. These results demonstrate the superior fitting performance of the FOGMKM (1, 1) model when compared to other six competitive models, including GM (1, 1), ARIMA, Linear, FAONGBM (1, 1), FGM (1, 1) and FOGM (1, 1). Our study provides a scientific basis and technical references for further research in the finance as well as energy fields and can serve well for energy market benchmark research.

    Citation: Dewang Li, Meilan Qiu, Shuiping Yang, Chao Wang, Zhongliang Luo. An optimal fractional-order accumulative Grey Markov model with variable parameters and its application in total energy consumption[J]. AIMS Mathematics, 2023, 8(11): 26425-26443. doi: 10.3934/math.20231349

    Related Papers:

  • In this paper, we propose an optimal fractional-order accumulative Grey Markov model with variable parameters (FOGMKM (1, 1)) to predict the annual total energy consumption in China and improve the accuracy of energy consumption forecasting. The new model is built upon the traditional Grey model and utilized matrix perturbation theory to study the natural and response characteristics of a system when the structural parameters change slightly. The particle swarm optimization algorithm (PSO) is used to determine the number of optimal fractional order and nonlinear parameters. An experiment is conducted to validate the high prediction accuracy of the FOGMKM (1, 1) model, with mean absolute percentage error (MAPE) and root mean square error (RMSE) values of 0.51% and 1886.6, respectively, and corresponding fitting values of 0.92% and 6108.8. These results demonstrate the superior fitting performance of the FOGMKM (1, 1) model when compared to other six competitive models, including GM (1, 1), ARIMA, Linear, FAONGBM (1, 1), FGM (1, 1) and FOGM (1, 1). Our study provides a scientific basis and technical references for further research in the finance as well as energy fields and can serve well for energy market benchmark research.



    加载中


    [1] J. F. Guo, Analysis on regional differences and influencing factors of energy consumption intensity, Coal Technology, 40 (2021), 232–234. https://doi.org/10.13301/j.cnki.ct.2021.10.059 doi: 10.13301/j.cnki.ct.2021.10.059
    [2] H. Q. Liu, S. Tang, Research on characteristics of energy consumption and influencing factors of all the prefectures in Yunnan, Ecol. Econ. (Chinese), 36 (2020), 85–91.
    [3] J. R. Zhang, L. Tang, L. Li, L. A. Yu, Analysis on factors of Beijing's energy intensity with structural decomposition, Systems Engineering-Theory & Practice, 37 (2017), 1201–1209. https://doi.org/10.12011/1000-6788(2017)05-1201-09 doi: 10.12011/1000-6788(2017)05-1201-09
    [4] S. Franco, V. R. Mandla, K. R. M. Rao, Urbanization, energy consumption and emissions in the Indian context a review, Renew. Sust. Energ. Rev., 71 (2017), 898–907. https://doi.org/10.1016/j.rser.2016.12.117 doi: 10.1016/j.rser.2016.12.117
    [5] J. Yang, W. Zhang, Z. Y. Zhang, Impacts of urbanization on renewable energy consumption in China, J. Clean. Prod., 114 (2016), 443–451. https://doi.org/10.1016/j.jclepro.2015.07.158 doi: 10.1016/j.jclepro.2015.07.158
    [6] M. He, P. Liu, L. Ma, C. Chong, X. Li, S. Song, et al., A systems analysis of the development status and trends of rural household energy in China, Energies, 11 (2018), 1741. https://doi.org/10.3390/en11071741 doi: 10.3390/en11071741
    [7] C. H. Chong, P. Liu, L. Ma, Z. Li, W. Ni, X. Li, et al., LMDI decomposition of energy consumption in Guangdong province, China, based on an energy allocation diagram, Energy, 133 (2017), 525–544. https://doi.org/10.1016/j.energy.2017.05.045 doi: 10.1016/j.energy.2017.05.045
    [8] X. X. Zhou, C. Feng, The impact of environmental regulation on fossil energy consumption in China: direct and indirect effects, J. Clean. Prod., 142 (2017), 3174–3183. https://doi.org/10.1016/j.jclepro.2016.10.152 doi: 10.1016/j.jclepro.2016.10.152
    [9] J. Y. Wang, X. Zhang, The research on energy consumption forecast based on trend prediction method in China, J. Appl. Sci. Eng. Inno., 6 (2019), 203–205.
    [10] P. A. Adedeji, S. Akinlabi, O. Ajayi, N. Madushele, Non-linear autoregressive neural network (NARNET) with SSA filtering for a university energy consumption forecast, Procedia Manufacturing, 33 (2019), 176–183. https://doi.org/10.1016/j.promfg.2019.04.022 doi: 10.1016/j.promfg.2019.04.022
    [11] E. S. Silva, C. R. Rajapaksa, Evaluating the effectiveness of parametric and nonparametric energy consumption forecasts for a developing country, International Journal of Energy and Statistics, 02 (2014), 89–101. https://doi.org/10.1142/S2335680414500070 doi: 10.1142/S2335680414500070
    [12] M. W. Wang, D. F. Wei, J. Li, H. Jiang, J. L. Jin, A novel clustering model based on set pair analysis for the energy consumption forecast in China, Math. Probl. Eng., 2014 (2014), 191242. https://doi.org/10.1155/2014/191242 doi: 10.1155/2014/191242
    [13] C. A. Craig, Energy consumption, energy efficiency, and consumer perceptions: A case study for the Southeast United States, Appl. Energ., 165 (2016), 660–669. https://doi.org/10.1016/j.apenergy.2015.12.069 doi: 10.1016/j.apenergy.2015.12.069
    [14] N. Hajiyev, A. Abdimomynova, D. Trukhan, Global and local aspects of world energy consumption: forecast and risks, P. I. Civil. Eng. Energy, 175 (2022), 1–18. https://doi.org/10.1680/jener.21.00105 doi: 10.1680/jener.21.00105
    [15] L. F. Wu, S. F. Liu, L. G. Yao, S. L. Yan, D. L. Liu, Grey system model with the fractional order accumulation, Commun. Nonlinear Sci., 18 (2013), 1775–1785. https://doi.org/10.1016/j.cnsns.2012.11.017 doi: 10.1016/j.cnsns.2012.11.017
    [16] G. F. Fan, A. Wang, W. C. Hong, Combining Grey model and self-adapting intelligent Grey model with genetic algorithm and annual share changes in natural gas demand forecasting, Energies, 11 (2018), 1624–1644.
    [17] X. Ma, Z. B. Liu, Application of a novel time-delayed polynomial grey model to predict the natural gas consumption in China, J. Comput. Appl. Math., 324 (2017), 17–24. https://doi.org/10.1016/j.cam.2017.04.020 doi: 10.1016/j.cam.2017.04.020
    [18] X. Zhang, W. G. Zhou, Forecast of China's natural gas consumption using mathematical models, Energ. Source. Part B, 13 (2018), 246–250. https://doi.org/10.1080/15567249.2013.863410 doi: 10.1080/15567249.2013.863410
    [19] Y. B. Cai, X. Ma, A novel ensemble learning-based grey model for electricity supply forecasting in China, AIMS Mathematics, 6 (2021), 12339–12358. https://doi.org/10.3934/math.2021714 doi: 10.3934/math.2021714
    [20] Y. Hu, X. Ma, W. P. Li, W. Q. Wu, D. X. Tu, Forecasting manufacturing industrial natural gas consumption of China using a novel time-delayed fractional grey model with multiple fractional order, Comp. Appl. Math., 39 (2020), 263. https://doi.org/10.1007/s40314-020-01315-3 doi: 10.1007/s40314-020-01315-3
    [21] W. Q. Wu, X. Ma, B. Zeng, W. Y. Lv, Y. Wang, W. P. Li, A novel Grey Bernoulli model for short-term natural gas consumption forecasting, Appl. Math. Model., 84 (2020), 393–404. https://doi.org/10.1016/j.apm.2020.04.006 doi: 10.1016/j.apm.2020.04.006
    [22] Y. Z. Chen, S. Z. Li, S. B. Gu, A novel fractional Hausdorff discrete Grey model for forecasting the renewable energy consumption, J. Math., 2022 (2022), 8443619. https://doi.org/10.1155/2022/8443619 doi: 10.1155/2022/8443619
    [23] P. Zhang, X. Ma, K. She, A novel Power-Driven Grey model with whale optimization algorithm and its application in forecasting the residential energy consumption in China, Complexity, 2019 (2019), 1510257. https://doi.org/10.1155/2019/1510257 doi: 10.1155/2019/1510257
    [24] Y. X. Zhang, H. Guo, X. Xiong, Forecasting Chinese carbon emissions from fossil energy based on the fractional order cumulative multivariate Grey model, J. Math., 2022 (2022), 5623519. https://doi.org/10.1155/2022/5623519 doi: 10.1155/2022/5623519
    [25] Z. H. Li, Z. H. Zou, Y. Yu, Forecasting of wastewater discharge and the energy consumption in China based on Grey, Math. Probl. Eng., 2019 (2019), 4141085. https://doi.org/10.1155/2019/4141085 doi: 10.1155/2019/4141085
    [26] X. B. He, Y. Wang, Y. Y. Zhang, X. Ma, W. Q. Wu, L. Zhang, A novel structure adaptive new information priority discrete grey prediction model and its application in renewable energy generation forecasting, Appl. Energ., 325 (2022), 119854. https://doi.org/10.1016/j.apenergy.2022.119854 doi: 10.1016/j.apenergy.2022.119854
    [27] W. Q. Wu, X. Ma, Y. Y. Zhang, W. P. Li, Y. Wang, A novel conformable fractional non-homogeneous grey model for forecasting carbon dioxide emissions of BRICS countries, Sci. Total Environ., 707 (2020) 135447. https://doi.org/10.1016/j.scitotenv.2019.135447 doi: 10.1016/j.scitotenv.2019.135447
    [28] Y. Wang, Z. S. Yang, L. Wang, X. Ma, W. Q. Wu, L. L. Ye, et al., Forecasting China's energy production and consumption based on a novel structural adaptive Caputo fractional grey prediction model, Energy, 259 (2022), 124935. https://doi.org/10.1016/j.energy.2022.124935 doi: 10.1016/j.energy.2022.124935
    [29] L. Yu, X. Ma, W. Q. Wu, X. W. Xiang, Y. Wang B. Zeng, Application of a novel time-delayed power-driven grey model to forecast photovoltaic power generation in the Asia-Pacific region, Sustain. Energy Techn., 44 (2021), 100968. https://doi.org/10.1016/j.seta.2020.100968 doi: 10.1016/j.seta.2020.100968
    [30] Y. Wang, R. Nie, P. Chi, X. Ma, W. Q. Wu, B. H. Guo, et al., A novel fractional structural adaptive grey Chebyshev polynomial Bernoulli model and its application in forecasting renewable energy production of China, Expert Syst. Appl., 210 (2022), 118500. https://doi.org/10.1016/j.eswa.2022.118500 doi: 10.1016/j.eswa.2022.118500
    [31] X. Ma, M. Xie, W. Q. Wu, B. Zeng, Y. Wang, X. X. Wu, The novel fractional discrete multivariate grey system model and its applications, Appl. Math. Model., 70 (2019), 402–424. https://doi.org/10.1016/j.apm.2019.01.039 doi: 10.1016/j.apm.2019.01.039
    [32] W. Q. Wu, X. Ma, B. Zeng, Y. Wang, W. Cai, Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model, Renew. Energ., 140 (2019), 70–87. https://doi.org/10.1016/j.renene.2019.03.006 doi: 10.1016/j.renene.2019.03.006
    [33] S. H. Mao, M. Y. Gao, X. P. Xiao, M. Zhu, A novel fractional grey system model and its application, Appl. Math. Model., 40 (2016), 5063–5076. https://doi.org/10.1016/j.apm.2015.12.014 doi: 10.1016/j.apm.2015.12.014
    [34] S. H. Mao, Y. X. Kang, Y. H. Zhang, X. P. Xiao, H. M. Zhu, Fractional grey model based on non-singular exponential kernel and its application in the prediction of electronic waste precious metal content, ISA T., 107 (2020), 12–26. https://doi.org/10.1016/j.isatra.2020.07.023 doi: 10.1016/j.isatra.2020.07.023
    [35] Y. X. Kang, S. H. Mao, Y. H. Zhang, Variable order fractional grey model and its application, Appl. Math. Model., 97 (2021), 619–635. https://doi.org/10.1016/j.apm.2021.03.059 doi: 10.1016/j.apm.2021.03.059
    [36] W. L. Xie, W. Z. Wu, C. Liu, M. Goh, Generalized fractional grey system models: the memory effects perspective, ISA T., 126 (2022), 36–46. https://doi.org/10.1016/j.isatra.2021.07.037 doi: 10.1016/j.isatra.2021.07.037
    [37] C. Liu, Empirical analysis of the relationship between renewable energy consumption and economic growth based on the Grey Markov model, J. Math., 2022 (2022), 5679696. https://doi.org/10.1155/2022/5679696 doi: 10.1155/2022/5679696
    [38] G. D'Amico, F. Petroni, F. Prattico, Reliability measures of second-order Semi-Markov chain applied to wind energy production, Journal of Renewable Energy, 2013 (2013), 368940. https://doi.org/10.1155/2013/368940 doi: 10.1155/2013/368940
    [39] F. Ren, L. H. Gu, Study on transition of primary energy structure and carbon emission reduction targets in China based on Markov chain model and GM (1, 1), Math. Probl. Eng., 2016 (2016), 4912935. https://doi.org/10.1155/2016/4912935 doi: 10.1155/2016/4912935
    [40] J. Kennedy, R. Eberhart, Particle swarm optimization, ICNN'95-International Conference on Neural Networks, Australia, Perth, 1995, 1942–1948. https://doi.org/10.1109/ICNN.1995.488968
    [41] F. Zhang, Z. C. Xu, A mine image reconstruction method based on residual neural network, Journal of China Coal Society, 44 (2019), 3614–3624. https://doi.org/10.13225/j.cnki.jccs.2019.0691 doi: 10.13225/j.cnki.jccs.2019.0691
    [42] W. C. Fan, Y. Jiang, S. Y. Huang, W. G. Liu, Research and prediction of opioid crisis based on BP neural network and Markov chain, AIMS Mathematics, 4 (2019), 1357–1368. https://doi.org/10.3934/math.2019.5.1357 doi: 10.3934/math.2019.5.1357
    [43] A. Souissi, E. G. Soueidy, M. Rhaima, Clustering property for quantum Markov chains on the comb graph, AIMS Mathematics, 8 (2023), 7865–7880. https://doi.org/10.3934/math.2023396 doi: 10.3934/math.2023396
    [44] Y. H. Lin, H. Y. Liu, Inverse problems for fractional equations with a minimal number of measurements, Communications on Analysis and Computation, 1 (2023), 72–93. https://doi.org/10.3934/cac.2023005 doi: 10.3934/cac.2023005
    [45] X. L. Cao, H. Y. Liu, Determining a fractional Helmholtz equation with unknown source and scattering potential, Commun. Math. Sci., 17 (2019), 1861–1876. https://doi.org/10.4310/CMS.2019.v17.n7.a5 doi: 10.4310/CMS.2019.v17.n7.a5
    [46] X. L. Cao, Y. H. Lin, H. Y. Liu, Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrodinger operators, Inverse Probl. Imag., 13 (2019), 197–210. https://doi.org/10.3934/ipi.2019011 doi: 10.3934/ipi.2019011
    [47] Y. T. Chow, Y. J. Deng, Y. Z. He, H. Y. Liu, X. C. Wang, Surface-localized transmission eigenstates, super-resolution imaging, and pseudo surface plasmin modes, SIAM J. Imaging Sci., 14 (2021), 946–975. https://doi.org/10.1137/20M1388498 doi: 10.1137/20M1388498
    [48] M. H. Ding, G. H. Zheng, Determination of the reaction coefficient in a time dependent nonlocal diffusion process, Inverse Probl., 37 (2021), 025005. https://doi.org/10.1088/1361-6420/abd384 doi: 10.1088/1361-6420/abd384
    [49] G. H. Zheng, M. H. Ding, Identification of the degradation coefficient for an anomalous diffusion process in hydrology, Inverse Probl., 36 (2020), 035006. https://doi.org/10.1088/1361-6420/ab1ed7 doi: 10.1088/1361-6420/ab1ed7
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1094) PDF downloads(71) Cited by(1)

Article outline

Figures and Tables

Figures(1)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog