Research article Special Issues

Application of discrete shape function in absolute nodal coordinate formulation

  • Received: 09 April 2021 Accepted: 25 May 2021 Published: 27 May 2021
  • To solve integrals in the absolute nodal coordinate method and address the difficulty in applying it to an arbitrary-section beam, this paper focuses on two methods involving single integrals:the invariant matrix method and the Gerstmayr method, with cross-section characteristics by applying the interpolation of a discrete function. Such single integrals demonstrate that the nodal coordinate method can be applied to an arbitrary-section beam. The Euler–Bernoulli beam used in engineering structures is characterised by a symmetrical cross-section, small section size, zero odd integrals and negligible high-order even integrals, which simplifies the single integrals of the two methods. Finally, the Gaussian integration is adopted to improve the solving efficiency of elastic force and force Jacobian.

    Citation: Zhicheng Song, Jinbao Chen, Chuanzhi Chen. Application of discrete shape function in absolute nodal coordinate formulation[J]. Mathematical Biosciences and Engineering, 2021, 18(4): 4603-4627. doi: 10.3934/mbe.2021234

    Related Papers:

  • To solve integrals in the absolute nodal coordinate method and address the difficulty in applying it to an arbitrary-section beam, this paper focuses on two methods involving single integrals:the invariant matrix method and the Gerstmayr method, with cross-section characteristics by applying the interpolation of a discrete function. Such single integrals demonstrate that the nodal coordinate method can be applied to an arbitrary-section beam. The Euler–Bernoulli beam used in engineering structures is characterised by a symmetrical cross-section, small section size, zero odd integrals and negligible high-order even integrals, which simplifies the single integrals of the two methods. Finally, the Gaussian integration is adopted to improve the solving efficiency of elastic force and force Jacobian.



    加载中


    [1] B. Y. Duan, The state-of-the-art and development trend of large space-borne deployable antenna, Electro-Mech. Eng., 33 (2017), 1-14.
    [2] J. Wu, S. Yan, L. Xie, G. Peng, Reliability apportionment approach for spacecraft solar array using fuzzy reasoning petri net and fuzzy comprehensive evaluation, Acta Astronaut., 76 (2012), 136-144. doi: 10.1016/j.actaastro.2012.02.023
    [3] X. M. Gao, D. P. Jin, T. Chen, Nonlinear analysis and experimental investigation of a rigid-flexible antenna system, Meccanica, 53 (2018), 33-48. doi: 10.1007/s11012-017-0708-z
    [4] Y. H. Zheng, P. Ruan, S. Cao, Deployable structure design and analysis for space membrane diffractive telescope, Hongwai Yu Jiguang Gongcheng/Infrared Laser Eng., 45 (2016), 133-137.
    [5] P. Li, Q. W. Ma, Y. P. Song, C. Liu, Q. Tian, S. P. Ma, et al., Deployment dynamics simulation and ground test of a large space hoop truss antenna reflector, Sci. Sin. Phys., Mech. Astron., 47 (2017), 104602.
    [6] X. L. Du, J. L. Du, H. Bao, G. H. Sun, Deployment analysis of deployable antennas considering cable net and truss flexibility, Aerosp. Sci. Technol., 82-83 (2018), 557-565.
    [7] K. N. Urata, J. Sumantyo, N. Imura, K. Ito, S. Gao, Development of a circularly polarized L-band SAR deployable mesh reflector antenna for microsatellite earth observation, in 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, IEEE, (2017).
    [8] A. A. Shabana, Flexible multibody dynamics: Review of past and recent developments, Multibody Syst. Dyn., 1 (1997), 189-222. doi: 10.1023/A:1009773505418
    [9] D. A. Turcic, A. Midha, J. R. Bosnik, Dynamic analysis of elastic mechanism systems. Part Ⅱ: Experimental results, J. Dyn. Syst. Meas. Control, 106 (1984), 255.
    [10] M. Manish, Kineto-elastodynamic analysis of Watt's mechanism using ANSYS, Procedia Technol., 23 (2016), 51-59. doi: 10.1016/j.protcy.2016.03.073
    [11] P. W. Likins, Finite element appendage equations for hybrid coordinate dynamic analysis, Int. J. Solids Struct., 8 (1972), 709-731. doi: 10.1016/0020-7683(72)90038-8
    [12] J. L. Escalona, H. A. Hussien, A. A. Shabana, Application of the absolute nodal co-ordinate formulation to multibody system dynamics, J. Sound Vib., 214 (1998), 833-851. doi: 10.1006/jsvi.1998.1563
    [13] A. A. Shabana, An absolute nodal coordinates formulation for the large rotation and deformation analysis of flexible bodies, No. MBS96-1-UIC, University of Illinois at Chicago, 1996.
    [14] A. A. Shabana, C. J. Desai, E. Grossi, M. Patel, Generalization of the strain-split method and evaluation of the nonlinear ANCF finite elements, Acta Mech., 231 (2020), 1365-1376. doi: 10.1007/s00707-019-02558-w
    [15] Y. Zhang, C. Wei, Y. Zhao, C. L. Tan, Y. J. Liu, Adaptive ANCF method and its application in planar flexible cables, Acta Mech. Sin., 34 (2018), 199-213. doi: 10.1007/s10409-017-0721-4
    [16] C. H. Zhao, Dynamic model of flexible beam with arbitrary rigid motion based on floating frame of reference formulation, J. Shanghai Univ. Eng., 27 (2013), 39-42.
    [17] A. A. Shabana, Geometrically accurate infinitesimal-rotation spatial finite elements, Proc. Inst. Mech. Eng., 233 (2019), 182-187. doi: 10.1177/0954405417712550
    [18] J. L. Sun, Q. Tian, H. Y. Hu, Advances in dynamic modeling and optimization of flexible multibody systems, Chin. J. Theor. Appl. Mech., 51 (2019), 1565-1586.
    [19] M. Dibold, J. Gerstmayr, H. Irschik, A detailed comparison of the absolute nodal coordinate and the floating frame of reference formulation in deformable multibody systems, J. Comput. Nonlinear Dyn., 4 (2009).
    [20] R. Y. Yakoub, A New Three-Dimensional Absolute Coordinate Based Beam Element with Application to Wheel/Rail Interaction, University of Illinois at Chicago, 2001.
    [21] P. Li, C. Liu, Q. Tian, H. Y. Hu, Dynamics of a deployable mesh reflector of satellite antenna: Form-finding and modal analysis, J. Comput. Nonlinear Dyn., 11 (2016), 041017.
    [22] Q. Tian, J. Zhao, C. L. Liu, C. Y. Zhou, Dynamics of space deployable structures, in ASME 2015 international design engineering technical conferences and computers and information in engineering conference, 2015.
    [23] P. Lan, Q. L. Tian, Z. Q. Yu, A new absolute nodal coordinate formulation beam element with multilayer circular cross section, Acta Mech. Sin., 36 (2020), 82-96. doi: 10.1007/s10409-019-00897-4
    [24] Z. Wang, Q. Tian, H. Y. Hu, Dynamics of flexible multibody systems with hybrid uncertain parameters, Mech. Mach. Theory, 121 (2018), 128-147. doi: 10.1016/j.mechmachtheory.2017.09.024
    [25] M. Campanelli, M. Berzeri, A. A. Shabana, Performance of the incremental and non-incremental finite element formulations in flexible multibody problems, J. Mech. Design, 122 (2000), 498-507. doi: 10.1115/1.1289636
    [26] M. A. Omar, A. A. Shabana, A two-dimensional shear deformation beam for large rotation and deformation, J. Sound Vib., 243 (2001), 565-576. doi: 10.1006/jsvi.2000.3416
    [27] D. García-Vallejo, A. M. Mikkola, J. L. Escalona, A new locking-free shear deformable finite element based on absolute nodal coordinates, Nonlinear Dyn., 50 (2007), 249-264. doi: 10.1007/s11071-006-9155-4
    [28] A. A. Shabana, R. Y. Yakoub, Three-dimensional absolute nodal coordinate formulation for beam elements: theory, J. Mech. Design, 123 (2001), 614-621. doi: 10.1115/1.1410099
    [29] D. García-Vallejo, J. Mayo, J. L. Escalona, J. Domínguez, Efficient evaluation of the elastic forces and the Jacobian in the absolute nodal coordinate formulation, Nonlinear Dyn., 35 (2004), 313-329. doi: 10.1023/B:NODY.0000027747.41604.20
    [30] J. Gerstmayr, A. A. Shabana, A. Strain, Efficient integration of the elastic forces and thin three-dimensional beam elements in the absolute nodal coordinate formulation, Multibody Dyn., 2005.
    [31] C. Liu, Q. Tian, H. Y. Hu, Efficient computational method for dynamics of flexible multibody systems based on absolute nodal coordinate, Lixue Xuebao/Chin. J. Theor. Appl. Mech., 42 (2010), 1197-1205.
    [32] K. Otsuka, K. Makihara, ANCF-ICE beam element for modeling highly flexible and deployable aerospace structures, in AIAA Scitech 2019 Forum, 2019.
    [33] G. Orzechowski, Analysis of beam elements of circular cross section using the absolute nodal coordinate formulation, Arch. Mech. Eng., 59 (2012), 283-296. doi: 10.2478/v10180-012-0014-1
    [34] J. Gerstmayr, A. A. Shabana, Analysis of thin beams and cables using the absolute nodal co-ordinate formulation, Nonlinear Dyn., 45 (2006), 109-130. doi: 10.1007/s11071-006-1856-1
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2389) PDF downloads(96) Cited by(1)

Article outline

Figures and Tables

Figures(11)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog