This paper proposes a model that considers the action and timing of insulin and glucagon in glucose homeostasis after an oral stimulus. We use the Bayesian paradigm to infer kinetic rates, namely insulin and glucagon secretion, gastrointestinal emptying, and basal glucose concentration in blood. We identify two insulin scores related to glucose concentration in both blood and the gastrointestinal tract. The scores allow us to suggest a classification for individuals with impaired insulin sensitivity.
Citation: Hugo Flores-Arguedas, Marcos A. Capistrán. Bayesian analysis of Glucose dynamics during the Oral Glucose Tolerance Test (OGTT)[J]. Mathematical Biosciences and Engineering, 2021, 18(4): 4628-4647. doi: 10.3934/mbe.2021235
This paper proposes a model that considers the action and timing of insulin and glucagon in glucose homeostasis after an oral stimulus. We use the Bayesian paradigm to infer kinetic rates, namely insulin and glucagon secretion, gastrointestinal emptying, and basal glucose concentration in blood. We identify two insulin scores related to glucose concentration in both blood and the gastrointestinal tract. The scores allow us to suggest a classification for individuals with impaired insulin sensitivity.
[1] | N. Kuschinski, Statistical analysis of OGTT results, Ph.D thesis, Centro de Investigación en Matemáticas A. C., Guanajuato, México, 2019. |
[2] | L. Szablewski, Glucose homeostasis–mechanism and defects, Diabetes-Damag. Treatments, 2 (2011). |
[3] | G. P. C. Schianca, A. Rossi, P. P. Sainaghi, E. Maduli, E. Bartoli, The significance of impaired fasting glucose versus impaired glucose tolerance: Importance of insulin secretion and resistance, Diabetes care, 26 (2003), 1333–1337. doi: 10.2337/diacare.26.5.1333 |
[4] | S. Salinari, A. Bertuzzi, G. Mingrone, Intestinal transit of a glucose bolus and incretin kinetics: A mathematical model with application to the oral glucose tolerance test, Am. J. Physiology-Endocrinol. Metab., 300 (2011), E955–E965. doi: 10.1152/ajpendo.00451.2010 |
[5] | P. Palumbo, S. Ditlevsen, A. Bertuzzi, A. De Gaetano, Mathematical modeling of the glucose–insulin system: A review, Math. Biosci., 244 (2013), 69–81. doi: 10.1016/j.mbs.2013.05.006 |
[6] | A. Makroglou, J. Li, Y. Kuang, Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: An overview, Appl. Numer. Math., 56 (2006), 559–573. doi: 10.1016/j.apnum.2005.04.023 |
[7] | T. Oden, R. Moser, O. Ghattas, Computer predictions with quantified uncertainty, part I, SIAM News, 43 (2010), 1–3. |
[8] | J. Kaipio, E. Somersalo, Statistical and computational inverse problems, Vol 160, Springer Science $ & $ Business Media, New York, 2006. |
[9] | J. Yokrattanasak, A. De Gaetano, S. Panunzi, P. Satiracoo, W. M. Lawton, Y. Lenbury, A simple, realistic stochastic model of gastric emptying, PloS One, 11 (2016), e0153297. doi: 10.1371/journal.pone.0153297 |
[10] | E. Ackerman, L. C. Gatewood, J. W. Rosevear, G. D. Molnar, Model studies of blood-glucose regulation, Bullet. Math. Biophys., 27 (1965), 21–37. |
[11] | H. Wu, A case study of type 2 diabetes self-management, Biomed. Eng. Online, (2005), 1–9. |
[12] | Y. Zhang, T. A. Holt, N. Khovanova, A data driven nonlinear stochastic model for blood glucose dynamics, Computer Methods Programs Biomed., (2016), 18–25. |
[13] | P. Vargas, M. A. Moreles, J. Peña, A. Monroy, S. Alavez, Estimation and SVM classification of glucose-insulin model parameters from OGTT data: A comparison with the ADA criteria, Int. J. Diabetes Develop. Countries, (2020), 1–9. |
[14] | M. K. Nauck, F. Stöckmann, R. Ebert, W. Creutzfeldt, Reduced incretin effect in type 2 (non-insulin-dependent) diabetes, Diabetologia, 29 (1986), 46–52. doi: 10.1007/BF02427280 |
[15] | F. K. Knop, T. Vilsbøll, P. V. Højberg, S. Larsen, S. Madsbad, A. Vølund, et al., Reduced incretin effect in type 2 diabetes: cause or consequence of the diabetic state?, Diabetes, 56 (2007), 1951–1959. doi: 10.2337/db07-0100 |
[16] | S. Saber, E. Bashier, S. Alzahrani, I. Noaman, A mathematical model of glucose-insulin interaction with time delay, J. Appl. Comput. Math., 7 (2018). |
[17] | D. V. Giang, Y. Lenbury, A. De Gaetano, P. Palumbo, Delay model of glucose–insulin systems: Global stability and oscillated solutions conditional on delays, J. Math. Anal. Appl., 343 (2008), 996–1006. doi: 10.1016/j.jmaa.2008.02.016 |
[18] | A. De Gaetano, S. Panunzi, A. Matone, A. Samson, J. Vrbikova, B. Bendlova, et al., Routine OGTT: A robust model including incretin effect for precise identification of insulin sensitivity and secretion in a single individual, PLoS One, 8 (2013), e70875. doi: 10.1371/journal.pone.0070875 |
[19] | A. L. Lloyd, Realistic distributions of infectious periods in epidemic models: changing patterns of persistence and dynamics, Theoret. Populat. Biol., 60 (2001), 59–71. doi: 10.1006/tpbi.2001.1525 |
[20] | D. Champredon, J. Dushoff, D. JD Earn, Equivalence of the Erlang-distributed SEIR epidemic model and the renewal equation, SIAM J. Appl. Math., 78 (2018), 3258–3278. doi: 10.1137/18M1186411 |
[21] | P. Goel, D. Parkhi, A. Barua, M. Shah, S. Ghaskadbi, A minimal model approach for analyzing continuous glucose monitoring in type 2 diabetes, Front. Physiol., 9 (2018), 673. |
[22] | M. M. Eichenlaub, J. G. Hattersley, N. A. Khovanova, A Minimal Model Approach for the Description of Postprandial Glucose Responses from Glucose Sensor Data in Diabetes Mellitus, 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC, (2019), 265–268. |
[23] | C. Dalla Man, M. Camilleri, C. Cobelli, A system model of oral glucose absorption: Validation on gold standard data, IEEE Transact. Biomed. Eng., 53 (2006), 2472–2478. doi: 10.1109/TBME.2006.883792 |
[24] | C. Anderwald, A. Gastaldelli, A. Tura, M. Krebs, M. Promintzer-Schifferl, A. Kautzky-Willer, et al., Mechanism and effects of glucose absorption during an oral glucose tolerance test among females and males, J. Clin. Endocrinol. Metab., 96 (2011), 515–524. doi: 10.1210/jc.2010-1398 |
[25] | W. C. Duckworth, R. G. Bennet, F. G. Hamel, Insulin degradation: Progress and potential, Endocr. Rev., 19 (1998), 608–624. |
[26] | S. Vajda, K. R. Godfrey, H Rabitz, Similarity transformation approach to identifiability analysis of nonlinear compartmental models, Math. Biosci., 93 (1989), 217–248. doi: 10.1016/0025-5564(89)90024-2 |
[27] | G. Pillonetto, G. Sparacino, C. Cobelli, Numerical non-identifiability regions of the minimal model of glucose kinetics: Superiority of Bayesian estimation, Math. Biosci., 184 (2003), 53–67. doi: 10.1016/S0025-5564(03)00044-0 |
[28] | M. A. Capistrán, A. Capella, J. A. Christen, Forecasting hospital demand in metropolitan areas during the current COVID-19 pandemic and estimates of lockdown-induced 2nd waves, PloS One, 16 (2021), e0245669. doi: 10.1371/journal.pone.0247131 |
[29] | T. Cassidy, Distributed delay differential equation representations of cyclic differential equations, arXiv: 2007.03173. |
[30] | M. A. Capistrán, J. A. Christen, S. Donnet, Bayesian analysis of ODEs: Solver optimal accuracy and Bayes factors, SIAM/ASA J. Uncertain., 4 (2016), 829–849. doi: 10.1137/140976777 |
[31] | H. A. Flores-Arguedas, Bayesian Analysis of a model for glucose-insulin dynamics during the Oral Glucose Tolerance Test (OGTT), MSc thesis, Centro de Investigación en Matemáticas, 2016. |
[32] | C. W. Eurich, M. C. Mackey, H. Schwegler, Recurrent inhibitory dynamics: The role of state-dependent distributions of conduction delay times, J. Theoret. Biol., 216 (2002), 31–50. doi: 10.1006/jtbi.2002.2534 |
[33] | M. C. Mackey, U. An der Heiden, The dynamics of recurrent inhibition, J. Math. Biol., 19 (1984), 211–225. doi: 10.1007/BF00277747 |
[34] | A. De Gaetano, T. Hardy, B. Beck, E. Abu-Raddad, P. Palumbo, J. Bue-Valleskey, et al., Mathematical models of diabetes progression, Am. J. Physiology-Endocrinol. Metab., 295 (2008), E1462–E1479. doi: 10.1152/ajpendo.90444.2008 |
[35] | D. Liberzon, Switching in systems and control, Springer Science & Business Media, 2003. |
[36] | J. A. Christen, C. Fox, A general purpose sampling algorithm for continuous distributions (the t-walk), Bayesian Anal., 5 (2010), 263–281. doi: 10.1214/10-BA603 |
[37] | G. O. Roberts, J. S. Rosenthal, Optimal scaling for various Metropolis-Hastings algorithms, Stat. Sci., 16 (2001), 351–367. |
[38] | D. W. Hogg, D. Foreman-Mackey, Data analysis recipes: Using markov chain monte carlo, Astrophys. J. Supplement Series, 236 (2018), 11. doi: 10.3847/1538-4365/aab76e |
[39] | C. Dalla Man, K. E. Yarasheski, A. Caumo, H. Robertson, G. Toffolo, K. S. Polonsky, et al., Insulin sensitivity by oral glucose minimal models: validation against clamp, Am. J. Physiology-Endocrinol. Metab., 289 (2005), E954–E959. doi: 10.1152/ajpendo.00076.2005 |
[40] | F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, et al., Scikit-learn: Machine learning in Python, J. Machine Learning Res., 12 (2011), 2825–2830. |
[41] | W. S. Noble, What is a support vector machine?, Nat. Biotechnol., 24 (2006), 1565–1567. doi: 10.1038/nbt1206-1565 |
[42] | E. Henkel, M. Menschikowski, C. Koehler, W. Leonhardt, M. Hanefeld, Impact of glucagon response on postprandial hyperglycemia in men with impaired glucose tolerance and type 2 diabetes mellitus, Metabolism, 54 (2005), 1168–1173. doi: 10.1016/j.metabol.2005.03.024 |