Research article

A mathematical model for the robust blood glucose tracking

  • Received: 20 August 2018 Accepted: 23 November 2018 Published: 15 January 2019
  • In this paper, we study the problem of the robust blood glucose tracking. Tracking here means that the error between a state variable of a system under control and its desired time-varying reference converges to zero over time. Robustness here means that a controller designed for a system can tolerate a small variation of the system parameters. Since the parameters in the blood glucose regulation system differ in people, such a robust controller is useful in the insulin pump technology: an insulin pump equipped with such a robust controller could be used in a group of people. Thus, in our study, parameter uncertainties are introduced into a mathematical model of the blood glucose regulation system. Using an actual blood glucose level as feedback and an exogenous glucose input and a desired glucose reference as feedforward, we design a robust feedback and feedforward controller, which drives the blood glucose to track the desired time-varying glucose reference for any small uncertainties. Numerical simulations with published experimental blood glucose data are conducted to further confirm our theoretical results.

    Citation: Weijiu Liu. A mathematical model for the robust blood glucose tracking[J]. Mathematical Biosciences and Engineering, 2019, 16(2): 759-781. doi: 10.3934/mbe.2019036

    Related Papers:

  • In this paper, we study the problem of the robust blood glucose tracking. Tracking here means that the error between a state variable of a system under control and its desired time-varying reference converges to zero over time. Robustness here means that a controller designed for a system can tolerate a small variation of the system parameters. Since the parameters in the blood glucose regulation system differ in people, such a robust controller is useful in the insulin pump technology: an insulin pump equipped with such a robust controller could be used in a group of people. Thus, in our study, parameter uncertainties are introduced into a mathematical model of the blood glucose regulation system. Using an actual blood glucose level as feedback and an exogenous glucose input and a desired glucose reference as feedforward, we design a robust feedback and feedforward controller, which drives the blood glucose to track the desired time-varying glucose reference for any small uncertainties. Numerical simulations with published experimental blood glucose data are conducted to further confirm our theoretical results.


    加载中


    [1] E. Ackerman, J.W. Rosevear andW. F. McGuckin, A mathematical model of the glucose-tolerance test, Phys. Med. Biol., 9 (1964), 203–213.
    [2] E. Ackerman, L. C. Gatewood, J. W. Rosevear and G. D. Molnar, Model studies of blood glucose regulation, Bull. Math. Biophys., 27 (1965), 21–37.
    [3] B. Ashley and W. Liu, Asymptotic tracking and disturbance rejection of the blood glucose regulation system, Math. Biosci., 289 (2017), 78–88.
    [4] R. N. Bergman, Y. Z. Ider, C. R. Bowden and C. Cobelli, Quantitative estimation of insulin sensitivity, Am. J. Physiol. Endocrinol. Metab., 236 (1979), E667–E677.
    [5] R. N. Bergman, L. S. Phillips and C. Cobelli, Measurement of insulin sensitivity and β-cell glucose sensitivity from the response to intraveous glucose, J. Clin. Invest., 68 (1981), 1456–1467.
    [6] R. N. Bergman, D. T. Finegood and M. Ader, Assessment of insulin sensitivity in vivo, Endocrine Reviews, 6 (1985), 45–86.
    [7] R. N. Bergman, Toward physiological understanding of glucose tolerance, Minimal-model approach, Diabetes, 38 (1989), 1512–1527.
    [8] A. Bertoldo, R. R. Pencek, K. Azuma, J. C. Price, C. Kelley, C. Cobelli and D. E. Kelley, Interactions between delivery, transport, and phosphorylation of glucose in governing uptake into human skeletal muscle, Diabetes, 55 (2006), 3028–3037.
    [9] J. Carr, Applications of Center Manifold Theory, Applied Mathematical Sciences 35, Springer, New York, 1981.
    [10] C. Cobelli, G. Federspil, G. Pacini, A. Salvan and C. Scandellari, An integrated mathematical model of the dynamics of blood glucose and its hormonal control, Math. Biosci., 58 (1982), 27– 60.
    [11] K. Fessel, J. B. Gaither, J. K. Bower, G. Gaillard and K. Osei, Mathematical analysis of a model for glucose regulation, Mathematical Biociences and Engineering, 13(2016), 83–90.
    [12] L. B. Freidovich and H. K. Khalil, Performance recovery of feedback-linearization-based designs, IEEE Trans. Automat. Contr., 53 (2008), 2324–2334.
    [13] W. T. Garvey, L. Maianu, J. H. Zhu, G. Brechtel-Hook, P. Wallace and A. D. Baron, Evidence for defects in the tra cking and translocation of GLUT4 glucose transporters in skeltal muscle as a cause of human insulin resistance, J. Clin. Invest., 101 (1998), 2377–2386.
    [14] C. J. Goodner, B. C. Walike, D. J. Koerker, J. W. Ensinck, A. C. Brown, E. W. Chideckel, J. Palmer and L. Kalnasy, Insulin, glucagon, and glucose exhibit synchronous, sustained oscillations in fasting monkeys, Science, 195 (1977), 177–179.
    [15] O. I. Hagren and A. Tengholm, Glucose and insulin synergistically activate phosphatidylinositol 3- kinase to trigger oscillations of phosphatidylinositol 3,4,5-trisphosphate in β-cells, J. Biol. Chem., 281 (2006), 39121–39127.
    [16] B. C. Hansen, K. C. Jen, S. B. Pek and R. A.Wolfe, Rapid oscillations in plasma insulin, glucagon, and glucose in obese and normal weight humans. J. Clin. Endocr. Metab., 54 (1982), 785–792.
    [17] A. Klip and M. Vranic, Muscle, liver, and pancreas: Three Musketeers fighting to control glycemia, Am. J. Physiol. Endocrinol. Metab., 291 (2006), E1141–E1143.
    [18] R. Hovorka, Continuous glucose monitoring and closed-loop systems, Diabetic Med., 23 (2006), 1–12.
    [19] J. Huang, Nonlinear output regulation, theory and applications, Society for Industrial and Applied Mathematics, Philadelphia, 2004.
    [20] H. Kang, K. Han and M. Choi, Mathematical model for glucose regulation in the whole-body system, Islets, 4 (2012), 84–93.
    [21] D. A. Lang, D. R. Matthews, J. Peto, and R. C. Turner, Cyclic oscillations of basal plasma glucose and insulin concentrations in human beings, New Engl. J. Med., 301 (1979), 1023–1027.
    [22] J. Lee, R. Mukherjee and H.K. Khalil, Output feedback performance recovery in the presence of uncertainties, Syst. Control Lett., 90 (2016), 31–37.
    [23] J. Li, Y. Kuang and C. C. Mason, Modeling the glucose-insulin regulatory system and ultradian insulin secretory oscillations with two explicit time delays, J. Theor. Biol., 242 (2006), 722–735.
    [24] W. Liu and F. Tang, Modeling a simplified regulatory system of blood glucose at molecular levels, J. Theor. Biol., 252 (2008), 608–620.
    [25] W. Liu, C. Hsin, and F. Tang, A molecular mathematical model of glucose mobilization and uptake, Math. Biosciences, 221 (2009), 121–129.
    [26] W. Liu, Elementary Feedback Stabilization of the Linear Reaction Diffusion Equation and the Wave Equation, Mathematiques et Applications, Vol. 66, Springer, 2010.
    [27] W. Liu, Introduction to Modeling Biological Cellular Control Systems, Modeling, Simulation and Applications, Vol. 6, Springer, 2012.
    [28] K. Ma, H. K. Khalil and Y. Yao, Guidance law implementation with performance recovery using an extended high-gain observer, Aerosp. Sci. Technol., 24 (2013), 177–186.
    [29] C. D. Man, A. Caumo, R. Basu, R. A. Rizza, G. Toffolo and C. Cobelli, Minimal model estimation of glucose absorption and insulin sensitivity from oral test: validation with a tracer method, Am. J. Physiol. Endocrinol. Metab., 287 (2004), E637–E643.
    [30] C. D. Man, M. Campioni, K. S. Polonsky, R. Basu, R. A. Rizza, G. Toffolo and C. Cobelli, Twohour seven-sample oral glucose tolerance test and meal protocol: minimal model assessment of β-cell responsivity and insulin sensitivity in nondiabetic individuals, Diabetes, 54 (2005), 3265– 3273.
    [31] C. D. Man, R. A. Rizza and C. Cobelli, Meal simulation model of the glucose-insulin system, IEEE Trans. Biomed. Eng., 54 (2007), 1740–1749.
    [32] H. Nishimura, F. Pallardo, G. A. Seidner, S. Vannucci, I. A. Simpson and M. J. Birnbaum, Kinetics of GLUT1 and GLUT4 glucos transporters expressed in Xenopus oocytes, J. Biol. Chem., 268 (1993), 8514–8520.
    [33] A. E. Panteleon, M. Loutseiko, G. M. Steil and K. Rebrin, Evaluation of the effect of gain on the meal response of an automated closed-loop insulin delivery system, Diabetes, 55 (2006), 1995– 2000.
    [34] A. R. Sedaghat, A. Sherman and M. J. Quon, A mathematical model of metabolic insulin signaling pathways, Am. J. Physiol. Endocrinol. Metab., 283 (2002), E1084–E1101.
    [35] E. T. Shapiro, H. Tillil, K. S. Polonsky, V. S. Fang, A. H. Rubenstein and E. V. Cauter, Oscillations in insulin secretion during constant glucose infusion in normal man: relationship to changes in plasma glucose, J. Clin. Endocr. Metab., 67 (1988), 307–314.
    [36] C. Simon, G. Brandenberger and M. Follenius, Ultradian oscillations of plasma glucose, insulin, and C-peptide in man during continuous enteral nutrition, J. Clin. Endocr. Metab., 64 (1987), 669–674.
    [37] J. T. Sorensen, A Physiological Model of Glucose Metabolism in Man and its Use to Design and Assess Improved Insulin Therapies for Diabetes, PhD Thesis, Massachusetts Institute of Technology, 1985.
    [38] G. M. Steil, K. Rebrin, C. Darwin, F. Hariri and M. F. Saad, Feasibility of automating insulin delivery for the treatment of type 1 diabetes, Diabetes, 55 (2006), 3344–3350.
    [39] J. Sturis, E. V. Cauter, J. D. Blackman and K. S. Polonsky, Entrainment of pulsatile insulin secretion by oscillatory glucose infusion, J. Clin. Invest., 87 (1991), 439-445.
    [40] J. Sturis, K. S. Polonsky, E. Mosekilde and E. V. Cauter, Computer model for mechanisms underlying ultradian oscillations of insulin and glucose, Am. J. Physiol. Endocrinol. Metab., 260 (1991), E801–E809.
    [41] G. Toffolo and C. Cobelli, The hot IVGTT two-compartment minimal model: an improved version, Am. J. Physiol. Endocrinol. Metab., 284 (2003), E317–E321.
    [42] G. Toffolo, M. Campioni, R. Basu, R. A. Rizza and C. Cobelli, A minimal model of insulin secretion and kinetics to assess hepatic insulin extraction, Am. J. Physiol. Endocrinol. Metab. 290 (2006), E169–E176.
    [43] I. M. Tolic, E. Mosekilde and J. Sturis, Modeling the insulin-glucose feedback system: the significance of pulsatile insulin secretion, J. Theor. Biol., 207 (2000), 361–375.
    [44] R. C. Turner, R. R. Holman, D. Matthews, T. D. Hockaday and J. Peto, Insulin deficiency and insulin resistance interaction in diabetes: estimation of their relative contribution by feedback analysis from basal plasma insulin and glucose concentrations, Metabolism, 28 (1979), 1086– 1096.
    [45] O. Vahidi, K. E. Kwok, R. B. Gopaluni and L. Sun, Developing a physiological model for type II diabetes mellitus, Biochem. Eng. J., 55 (2011), 7-16.
    [46] O. Vahidi1, K. E. Kwok, R. B. Gopaluni and F. K. Knop, A comprehensive compartmental model of blood glucose regulation for healthy and type 2 diabetic subjects, Med. Biol. Eng. Comput., 54 (2016), 1383-1398.
    [47] R. R. Wolfe, J. R. Allsop and J. F. Burke, Glucose metabolism in man: Responses to intravenous glucose infusion, Metabolism, 28 (1979), 210–220.
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4079) PDF downloads(959) Cited by(2)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog