Citation: Alan Dyson. Traveling wave solutions to a neural field model with oscillatory synaptic coupling types[J]. Mathematical Biosciences and Engineering, 2019, 16(2): 727-758. doi: 10.3934/mbe.2019035
[1] | S. i. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields, Biol. Cybernet., 27 (1977), 77–87. |
[2] | D. Avitabile and H. Schmidt, Snakes and ladders in an inhomogeneous neural field model, Phys. D, 294 (2015), 24–36. |
[3] | A. Benucci, R. A. Frazor and M. Carandini, Standing waves and traveling waves distinguish two circuits in visual cortex, Neuron, 55 (2007), 103–117. |
[4] | F. Botelho, J. Jamison and A. Murdock, Single-pulse solutions for oscillatory coupling functions in neural networks, J. Dynam. Differential Equations, 20 (2008), 165–199. |
[5] | P. C. Bressloff, Traveling fronts and wave propagation failure in an inhomogeneous neural network, Phys. D, 155 (2001), 83–100. |
[6] | P. C. Bressloff, Waves in Neural Media, Springer Science & Business Media, New York, 2014. 18–19. |
[7] | H. J. Chisum, F. Mooser and D. Fitzpatrick, Emergent properties of layer 2/3 neurons reflect the collinear arrangement of horizontal connections in tree shrew visual cortex., J. Neurosci., 23 (2003), 2947–2960. |
[8] | B.W. Connors and Y. Amitai, Generation of epileptiform discharges by local circuits in neocortex, Epilepsy: Models, Mechanisms and Concepts, 388–424. |
[9] | S. Coombes, G. J. Lord and M. R. Owen, Waves and bumps in neuronal networks with axodendritic synaptic interactions, Phys. D, 178 (2003), 219–241. |
[10] | S. Coombes and M. R. Owen, Evans Functions for Integral Neural Field Equations with Heaviside Firing Rate Function, SIAM J. Appl. Dyn. Syst., 3 (2004), 574–600. |
[11] | S. Coombes and C. Laing, Pulsating fronts in periodically modulated neural field models, Phys. Rev. E, 83 (2011), 011912. |
[12] | S. Coombes and H. Schmidt, Neural fields with sigmoidal firing rates: Approximate solutions, Discrete Contin. Dyn. Syst. Ser. A, 28 (2010), 1369–1379. |
[13] | R. J. Douglas and K. A. Martin, Neuronal circuits of the neocortex, Annu. Rev. Neurosci., 27 (2004), 419–451. |
[14] | A. J. Elvin, C. R. Laing, R. I. McLachlan and M. G. Roberts, Exploiting the Hamiltonian structure of a neural field model, Phys. D, 239 (2010), 537–546. |
[15] | B. Ermentrout, Neural networks as spatio-temporal pattern-forming systems, Rep. Prog. Phys., 61 (1998), 353–430. |
[16] | G. B. Ermentrout and J. B. McLeod, Existence and uniqueness of travelling waves for a neural network, Proc. Roy. Soc. Edinburgh Sect. A, 123A (1993), 461–478. |
[17] | G. B. Ermentrout and D. H. Terman, Mathematical Foundations of Neuroscience, vol. 35, Springer Science & Business Media, 2010. |
[18] | J. W. Evans, Nerve axon equations. I. Linear approximations, Indiana Univ. Math. J., 21 (1972), 877–885. |
[19] | J. W. Evans, Nerve axon equations. II. Stability at rest, Indiana Univ. Math. J., 22 (1972), 75–90. |
[20] | J. W. Evans, Nerve axon equations. III Stability of the nerve impulse, Indiana Univ. Math. J., 22 (1972), 577–593. |
[21] | J. W. Evans, Nerve axon equations. IV The stable and the unstable impulse, Indiana Univ. Math. J., 24 (1975), 1169–1190. |
[22] | G. Faye, Existence and stability of traveling pulses in a neural field equation with synaptic depression, SIAM J. Appl. Dyn. Syst., 12 (2013), 2032–2067. |
[23] | G. Faye and A. Scheel, Existence of pulses in excitable media with nonlocal coupling, Adv. Math., 270 (2015), 400–456. |
[24] | W. Gerstner, Time structure of the activity in neural network models, Phys. Rev. E, 51 (1995), 738–758. |
[25] | C. D. Gilbert and T. N. Wiesel, Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex, J. Neurosci., 9 (1989), 2432–2442. |
[26] | D. Golomb and Y. Amitai, Propagating neuronal discharges in neocortical slices: computational and experimental study, J. Neurophysiol., 78 (1997), 1199–1211. |
[27] | B. S. Gutkin, G. B. Ermentrout and J. O'Sullivan, Layer 3 patchy recurrent excitatory connections may determine the spatial organization of sustained activity in the primate prefrontal cortex, Neurocomputing, 32-33 (2000), 391–400. |
[28] | A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117 (1952), 500–544. |
[29] | E. M. Izhikevich and R. FitzHugh, Fitzhugh-nagumo model, Scholarpedia, 1 (2006), 1349. |
[30] | C. K. Jones, Stability of the travelling wave solution of the fitzhugh-nagumo system, Trans. Amer. Math. Soc., 286 (1984), 431–469. |
[31] | C. Jones and N. Kopell, Tracking invariant manifolds with differential forms in singularly perturbed systems, J. Differential Equations, 108 (1994), 64–88. |
[32] | Z. P. Kilpatrick, S. E. Folias and P. C. Bressloff, Traveling pulses and wave propagation failure in inhomogeneous neural media, SIAM J. Appl. Dyn. Syst., 7 (2008), 161–185. |
[33] | C. R. Laing, W. C. Troy, B. Gutkin and G. B. Ermentrout, Multiple bumps in a neuronal model of working memory, SIAM J. Appl. Math., 63 (2002), 62–97. |
[34] | C. R. Laing andW. C. Troy, PDE methods for nonlocal models, SIAM J. Appl. Dyn. Syst., 2 (2003), 487–516. |
[35] | C. R. Laing and W. C. Troy, Two-bump solutions of Amari-type models of neuronal pattern formation, Phys. D, 178 (2003), 190–218. |
[36] | J. W. Lance, Current concepts of migraine pathogenesis., Neurology, 43 (1993), S11–5. |
[37] | S.-H. Lee, R. Blake and D. J. Heeger, Traveling waves of activity in primary visual cortex during binocular rivalry, Nat. Neurosci., 8 (2005), 22–23. |
[38] | J. B. Levitt, D. A. Lewis, T. Yoshioka and J. S. Lund, Topography of pyramidal neuron intrinsic connections in macaque monkey prefrontal cortex (areas 9 and 46), J. Comp. Neurol., 338 (1993), 360–376. |
[39] | S. Lowel and W. Singer, Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity, Science, 255 (1992), 209–212. |
[40] | J. S. Lund, T. Yoshioka and J. B. Levitt, Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex, Cereb. Cortex, 3 (1993), 148–162. |
[41] | G. Lv and M.Wang, Traveling waves of some integral-differential equations arising from neuronal networks with oscillatory kernels, J. Math. Anal. Appl., 370 (2010), 82–100. |
[42] | F. M. G. Magpantay and X. Zou,Wave fronts in neuronal fields with nonlocal post-synaptic axonal connections and delayed nonlocal feedback connections, Math. Biosci. Eng., 7 (2010), 421–442. |
[43] | K. A. C. Martin, S. Roth and E. S. Rusch, A biological blueprint for the axons of superficial layer pyramidal cells in cat primary visual cortex, Brain Struct. Funct., 0 (2017), 1–24. |
[44] | D. S. Melchitzky, S. R. Sesack, M. L. Pucak and D. A. Lewis, Synaptic targets of pyramidal neurons providing intrinsic horizontal connections in monkey prefrontal cortex, J. Comp. Neurol., 390 (1998), 211–224. |
[45] | B. Pakkenberg, D. Pelvig, L. Marner, M. J. Bundgaard, H. J. G. Gundersen, J. R. Nyengaard and L. Regeur, Aging and the human neocortex, Exp. Geront., 38 (2003), 95–99. |
[46] | D. J. Pinto and G. B. Ermentrout, Spatially structured activity in synaptically coupled neuronal networks: I. traveling fronts and pulses, SIAM J. Appl. Math., 62 (2001), 206–225. |
[47] | D. J. Pinto, R. K. Jackson and C. E. Wayne, Existence and stability of traveling pulses in a continuous neuronal network, SIAM J. Appl. Dyn. Syst., 4 (2005), 954–984. |
[48] | B. Sandstede, Evans functions and nonlinear stability of traveling waves in neuronal network models, Int. J. Bifurc. Chaos, 17 (2007), 2693–2704. |
[49] | T. K. Sato, I. Nauhaus and M. Carandini, Traveling waves in visual cortex, Neuron, 75 (2012), 218–229. |
[50] | H. Schmidt, A. Hutt and L. Schimansky-Geier,Wave fronts in inhomogeneous neural field models, Phys. D, 238 (2009), 1101–1112. |
[51] | R. Traub, J. Jefferys and R. Miles, Analysis of the propagation of disinhibition-induced afterdischarges along the guinea-pig hippocampal slice in vitro., J. Physiol., 472 (1993), 267–287. |
[52] | H. R. Wilson and J. D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons., Biophys. J., 12 (1972), 1–24. |
[53] | L. Zhang, Existence and uniqueness of wave fronts in neuronal network with nonlocal postsynaptic axonal and delayed nonlocal feedback connections, Adv. Difference Equ., 2013 (2013), 243. |
[54] | L. Zhang, L. Zhang, J. Yuan and C. Khalique, Existence of wave front solutions of an integral differential equation in nonlinear nonlocal neuronal network, in Abstr. Appl. Anal., Hindawi Publishing Corporation, 2014. |
[55] | L. Zhang, On stability of traveling wave solutions in synaptically coupled neuronal networks, Differ. Integral Equ., 16 (2003), 513–536. |
[56] | L. Zhang, How do synaptic coupling and spatial temporal delay influence traveling waves in nonlinear nonlocal neuronal networks?, SIAM J. Appl. Dyn. Syst., 6 (2007), 597–644. |
[57] | L. Zhang and A. Hutt, Traveling wave solutions of nonlinear scalar integral differential equations arising from synaptically coupled neuronal networks, J. Appl. Anal. Comp., 4 (2014), 1–68. |