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Abstract: In this paper, we investigate the existence, uniqueness, and spectral stability of traveling
waves arising from a single threshold neural field model with one spatial dimension, a Heaviside firing
rate function, axonal propagation delay, and biologically motivated oscillatory coupling types. Neu-
ronal tracing studies show that long-ranged excitatory connections form stripe-like patterns throughout
the mammalian cortex; thus, we aim to generalize the notions of pure excitation, lateral inhibition, and
lateral excitation by allowing coupling types to spatially oscillate between excitation and inhibition.
With fronts as our main focus, we exploit Heaviside firing rate functions in order to establish existence
and utilize speed index functions with at most one critical point as a tool for showing uniqueness of
wave speed. We are able to construct Evans functions, the so-called stability index functions, in or-
der to provide positive spectral stability results. Finally, we show that by incorporating slow linear
feedback, we can compute fast pulses numerically with phase space dynamics that are similar to their
corresponding singular homoclinical orbits.
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1. Introduction

Modern research of the mammalian brain has significantly gravitated towards predicting, observing,
and analyzing traveling waves. The combination of using sophisticated electrode recording technol-
ogy and pharmacologically blocking inhibition allows researchers to observe these patterns experi-
mentally [26, 51]. Pathology and general physiological phenomenon are often strong motivators for
such research; for example, traveling waves have been observed during epileptiform [8, 26, 51], mi-
graines [36], and visual stimuli [3, 37, 49]. Naturally, computational and theoretical mathematical
modeling arises in order to predict or explain propagations.

We gain insight as to why mathematical models have been proposed for decades by realizing that
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the mammalian nervous system is extraordinarily complex. For some perspective, comprehensive
studies show that in a human neocortex, there are approximately 20 billion neurons and .15 × 1015

synapses [45]. Even a single synaptic event, spanning from an action potential to neurotransmission,
is highly nontrivial to model. Notably, the famous Hodgkin Huxley experiments [28] provided a basis
for understanding the connection between action potentials and voltage-gated sodium and potassium
channels. More models have been implemented in order to track the impact that neurotransmitters
have on conductance after reaching their postsynaptic receptors. Changes caused by excitatory and
inhibitory neurotransmitters lead to fast and slow dynamics based on receptor type [6]. By adding firing
rate patterns such as oscillations and bursting [29] into the mix, we see that single neuron dynamics
constitute a deep segment of neuroscience in their own right.

The difficulty level grows when we embed single cell dynamics into networks. After accounting
for metabolic processes like spike frequency adaptation and synaptic depression at the network level,
we may convince ourselves that macroscopic modeling has its place for capturing and predicting novel
wave-like behaviors. While we acknowledge that there are different valid approaches to the problem,
we choose to treat firing times of single neurons as uncorrelated [24] and consider a neural field model,
treating space and time as continuous. Fittingly, we model firing rates as functions at the network
level that only depend on the average voltage in spatial patches. Since average voltage is implicitly
related to single neuron dynamics, we find that single neuron features are relevant, but significantly
less emphasized.

Instead, our emphasis is on how patches of neurons connect based on spatial positioning. A key
component of our model is invoking a homogeneous synaptic coupling weight kernel K(x − y) to
describe the spatial contribution to membrane potential that presynaptic neurons at position y contribute
to postsynaptic neurons at position x. Here the sign of K(x − y) determines whether the connection is
inhibitory or excitatory and the magnitude determines the connection strength.

Coupling patterns in the neocortex described by oscillations of excitation and inhibition are known
to exist and therefore, merit investigation. In particular, superficial layers such as layers 2 and 3 are
where excitatory pyramidal cells make extensive arborizations laterally with inhibitory interneurons
in the gaps [13]. Depending on the mammal and the brain region, tracing studies reveal excitatory
stripes of varying patterns and purposes. For example, tracer injections in the visual cortex of cats re-
veal intercolumn connections are likely based on functional specificity [25]; intracortical connections
are correlated with visual experiences [39] and context-dependent processing [43]. Similar horizon-
tal connections have also been found in the primary visual cortexes of tree shrews [7] and macaque
monkeys [40]. Experiments have also been carried on on the macaque monkey prefrontal cortex where
biotinylated dextran amine was injected in the layer 3 prefrontal cortex of macaque monkeys and re-
vealed long-range stripe-like connections [38, 40, 44].

Motivated by such biologically observed connection types, we seek traveling wave solutions arising
from well-studied neural field models. Others have invoked similar coupling types in related work on
traveling and standing waves arising from models like ours; see [4, 27, 33–35, 41, 53, 54].

1.1. Model equations and background

In this paper, fronts are our main focus. Thus, we study the following homogeneous neural field
model with axonal transmission delay [16, 46]:
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ut + u = α

∫
R

K(x − y)H(u
(
y, t −

1
c0
|x − y|

)
− θ) dy, (1.1)

where u = u(x, t) is the mean electric potential in the spatial patch at position x and time t. The
aforementioned kernel function K, which is normalized to integrate to one, represents the coupling
strength and type (excitatory or inhibitory) based on spatial positioning. The constant parameter α > 0
controls global coupling strength, while θ > 0 is the single threshold of excitation for the network.
A delay in transmission arises from the parameter c0, which is the speed of action potentials in the
network. The Heaviside step function H represents the firing rate of a single neuron. In this simplified
model, we can understand our firing rate function as a binary mechanism: if u(x, t) is above a threshold
θ, the neurons in spatial patch x will fire at a maximum rate; otherwise, they will not fire at all. Such
an assumption is reasonable and is used to simplify the analysis.

In order to understand the biophysical basis of (1.1), we briefly review the derivation in [16]. First
suppose we have a fixed spatial patch of postsynaptic neurons at position x and N arbitrarily spaced
presynaptic patches yi for i = 1, ..,N. Moreover, suppose we observe activity at times s j for j = 1, ...,M.
For each i and j, activity from patch yi at time s j contributes

αη(t − s j)K(x − yi)S (u
(
yi, s j −

1
c0
|x − yi|

)
− θ)∆yi∆s j

to the potential of neurons at patch x. Here η(t − s) is the time dependent contribution that activity
at time s has at time t, S is the firing rate for the network where axonal velocity delay is properly
accounted for. Summing over all i and j, the total input to neurons at position x is

α

M∑
j=1

N∑
i=1

η(t − s j)K(x − yi)S (u
(
yi, s j −

1
c0
|x − yi|

)
− θ)∆yi∆s j. (1.2)

If we allow M and N to go to infinity and suppose (1.2) is the only input the neurons at x receive at
time t, u(x, t) takes on the form

u(x, t) = α

∫ t

−∞

η(t − s)
∫
R

K(x − y)S (u
(
y, s −

1
c0
|x − y|

)
− θ) dyds. (1.3)

Finally, for the special case where η(t) = exp (−t)H(t) and S is the Heaviside step function, differenti-
ation of (1.3) leads to (1.1).

Research concerning numerous wave form solutions of (1.1) has expanded largely because of some
important initial results. Wilson and Cowan [52] were the first to study space and time coarse graining
of local populations of interacting excitatory and inhibitory neurons. Amari [1] was the first to bio-
logically justify simplifying the Wilson-Cowan model to one that combines excitatory and inhibitory
neurons; by doing so, he implemented Heaviside firing rates to obtain closed form bump (respectively,
traveling front) solutions when Mexican hat (respectively, pure excitation) kernels were used. In [16],
Ermentrout and McLeod applied a homotopy argument to prove the existence of traveling fronts in the
presence of sigmoidal firing rate functions and nonnegative kernels. Pinto and Ermentrout [46] were
the first to add slow linear feedback and derive a singular perturbation problem to obtain traveling
pulses.
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Following the seminal, foundational work above, there have been hundreds of related studies. Some
of the primary interests are comparing wave speeds in models to experiments, bifurcations, threshold
noise, single and multiple standing and traveling pulses, spectral theory, operator theory methods,
heterogeneities, multiple thresholds, and synaptic depression. For comprehensive background on the
models, see [6, 9, 15, 17] and the sources within.

1.2. Main goal and improvement from previous results

Our main goals, accomplished in Sections 3 and 4, pertain to the existence, uniqueness, and stability
of traveling front solutions when K is in one of the kernel classes formulated in Section 2.3. The
resulting solutions U(·) are heteroclinical orbits that connect the fixed points U ≡ 0 and U ≡ α, crossing
the threshold θ exactly once. While this idea has been investigated before, we improve previous results.

Firstly, we expand the class of kernels such that (1.1) has traveling wave solutions with unique
wave speeds. By translation invariance, we assume without loss of generality, that U(0) = θ. In turn,
we handle the unique wave speed problem using a speed index function, first derived by Pinto and
Ermentrout [46] and later by others:

φ(µ) :=
∫ 0

−∞

exp
(
c0 − µ

c0µ
x
)
K(x) dx. (1.4)

Our main improvement can be seen in our handling of unique roots µ0 ∈ (0, c0) of the compatibility
equation

φ(µ) =
1
2
−
θ

α
, (1.5)

for 0 < 2θ < α, arising from the requirement that the traveling waves cross the threshold exactly once.
Under our methods, we consider three new biologically motivated types of oscillatory kernel classes.
The first class type can be understood as a result of combining the mechanics of previous results. The
other two class types invoke new techniques; they are constructed with the intent of showing that φ has
at most one critical point.

In Section 4, we formulate the eigenvalue problem and examine spectral stability of our solutions for
kernels of all three types. The essential spectrum is shown to be on the left half plane and for the point
spectrum analysis on the right half plane, our main tool is the complex analytic Evans function [18–21]

E(λ) := 1 −
φ( µ0

λ+1 )
φ(µ0)

, (1.6)

the so-called stability index function, where roots are equivalent to eigenvalues. Although many au-
thors have used the Evans function successfully, stability of traveling waves has not been discussed
concerning many of the kernels considered in this paper. As a special case, we exploit the uniqueness
of the wave speed to obtain meaningful stability results, seen in Theorem 1.2 below.

In Section 5, we show how to apply our results to a kernel type commonly studied in the literature,

K(x) = C(a) exp (−a|x|)(a sin(|x|) + cos(x)),

by fully classifying the existence, uniqueness, and stability of front solutions to such a model as a
function of a and θ.
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We conclude with Section 6, where we motivate future work by computing fast traveling pulses
arising from the singularly perturbed system of integral equations [46, 47]:

ut + u + w = α

∫
R

K(x − y)H(u
(
y, t −

1
c0
|x − y|

)
− θ) dy, (1.7)

wt = ε(u − γw), (1.8)

for 0 < ε � 1. Using the same example kernels used for the fronts, pulses are plotted and compared to
singular solutions in phase space portraits.

Before stating our main theorems in Section 1.2.2, we take a closer look at the difficulties we must
overcome in our problem and future open problems.

1.2.1. Mathematical difficulties and open problems

Existence, uniqueness, and stability results become deceptively difficult to prove when we allow K
to have any regions of negative output. The setup of the problem and canonical tools involved—like
speed (1.4) and stability (1.6) index functions—are almost exactly the same across studies. But the
difference in difficulty jumps substantially when K ≥ 0 does not hold since standard methods like
monotonicity arguments and maximum principle are not obviously viable.

For example, when K ≥ 0, it is trivial to see that φ is strictly increasing and (1.5) holds for some
unique µ0. Now consider when K crosses the x-axis countably many times. With the exception of
lateral excitation kernels [56], all previous work imposes conditions on K to replicate these mechanics.
To the author’s knowledge, relaxing assumptions in such a way that φ has critical points is a new
approach when K is general.

In the stability analysis, we can also see illustrative reasons why our work is highly nontrivial.
When K ≥ 0, one can show that the ubiquitous inequality∣∣∣∣∣∣

∫ 0

−∞

exp
(
c0(λ + 1) − µ

c0µ
x
)
K(x) dx

∣∣∣∣∣∣ <
∫ 0

−∞

exp
(
c0 − µ

c0µ
x
)
K(x) dx (1.9)

holds when Re(λ) ≥ 0, λ , 0, showing that |1 − E(λ)| < 1. In contrast, when K has countably
many zeros, proving inequalities like (1.9) are not straightforward at all. In fact, in [56], which to the
author’s knowledge contains the most rigorous stability analysis of fronts arising from kernels with
only two zeros on the real line, a rigorous proof of (1.9) is not provided and is still an open problem.
We expect such a problem to be difficult to resolve—especially considering one has to simultaneously
prove existence and uniqueness by calculating µ.

Finally, a rich open problem is to expand this paper’s results by providing criteria for K so that φ has
multiple critical points. Such a result would be interesting, as then we could look into the problem of
multiple front solutions. Inevitably, there would be a mix of stable and unstable waves; a close look at
bifurcations may predict a meaningful connection between synaptic coupling types and experimental
findings.

1.2.2. Main theorems

Using careful analysis, we overcome some of the difficulties above—seen in the following theorems.
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Theorem 1.1 (Existence and Uniqueness of Front). Suppose that 0 < 2θ < α and K is in class
A j,k, B j,k, or C j,k for some integers j and k. Then there exists a unique traveling wave front solution
u(x, t) = U(z) to (1.1) such that U(0) = θ, U′(0) > 0, U(z) < θ on (−∞, 0), and U(z) > θ on (0,∞).
The front satisfies the reduced equation

µ0U′ + U = α

∫
R

K(z − y)H
(
U

(
y −

µ0

c0
|z − y|

)
− θ

)
dy (1.10)

with exponentially decaying limits

lim
z→−∞

U(z) = 0, lim
z→∞

U(z) = α, lim
z→±∞

U′(z) = 0.

The wave travels under the traveling coordinate z = x + µ0t at the unique wave speed µ0 ∈ (0, c0).

Theorem 1.2 (Stability of Front). Suppose that 0 < 2θ < α, K is in class A j,k, B j,k, or C j,k for some
integers j and k, and U is a unique solution described in Theorem 1.1. If the Laplace transform of K
satisfies ∫ 0

−∞

exp (sx)K(x) dx =
p(s)
q(s)

, (1.11)

where p and q are polynomials of degree at most two, then U is spectrally stable. Moreover, if c0 = ∞,
then U is linearly and nonlinearly stable.

2. Kernel classes

In this section, we systematically describe the oscillatory kernel classes that are referenced in our
main results; examples are then provided in Section 2.3.

Basic assumptions and terminology

In all cases, we assume our kernel K has the following typical properties for this type of problem:∫ 0

−∞

K(x) dx =

∫ ∞

0
K(x) dx =

1
2
, |K(x)| ≤ C exp (−ρ|x|) for all x ∈ R.

For some background, we define commonly used kernel types that oscillate at most once on each half
plane.

Definition 2.1. We say K is a pure excitation kernel if K(x) ≥ 0 for all x.

Definition 2.2. We say K is a lateral inhibition kernel, or Mexican hat kernel, if there exists unique
constants M1 > 0 and M2 > 0 such that K(x) ≥ 0 on (−M1,M2) and K(x) ≤ 0 on (−∞,−M1)∪ (M2,∞).

Definition 2.3. We say K is a lateral excitation kernel, or upside down Mexican hat kernel, if there
exists unique constants N1 > 0 and N2 > 0 such that K(x) ≥ 0 on (−∞,−N1) ∪ (N2,∞) and K(x) ≤ 0
on (−N1,N2).

We will come back to these definitions in Section 2.4 after we have defined our oscillatory kernel
classes.
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2.1. Wave speed conditions for uniqueness

The conditions presented in this subsection, which we shall call wave speed conditions, underlie the
main difference in approach between this work and others. In particular, This subsection provides the
groundwork for obtaining the existence and uniqueness of wave speeds when the kernel functions os-
cillate any number of times on the left half plane. The following repeated integral of |x|K(x), originally
proposed in [57], will be used throughout the paper:

Λ0K(x) := |x|K(x),

ΛnK(x) :=
∫ 0

x

∫ 0

zn−1

...

∫ 0

z1

|z0|K(z0) dz0...dzn−2dzn−1

=

∫ 0

x
Λn−1K(zn−1) dzn−1 for x ≤ 0 and n ≥ 1.

(2.1)

Using this definition, we define three wave speed conditions.

(An) Suppose there exists N > 0 such that ΛN K(x) ≥ 0 for all x ≤ 0. Then the same condition holds
for all m ≥ N. Denoting n as the smallest N where such a property holds, we say K satisfies wave
speed condition (An).

(Bn) Suppose there exists N > 0 and a constant BN > 0 such that ΛN K(x) ≥ 0 on (−BN , 0), ΛN K(x) ≤
(.) 0 on (−∞,−BN). Then the same condition holds for all m ≥ N. Denoting n as the smallest N
where such a property holds, we say K satisfies wave speed condition (Bn).

(Cn) Suppose there exists N > 0 and a constant CN > 0 such that ΛN K(x) ≤ (.) 0 on (−CN , 0),
ΛN K(x) ≥ 0 on (−∞,−CN). Then the same condition holds for all m ≥ N. Denoting n as the
smallest N where such a property holds, we say K satisfies wave speed condition (Cn).

We remark that pure excitation kernels satisfy (A1); lateral inhibition kernels satisfy (A1) (respectively

(B1)) if
∫ 0

−∞

|x|K(x) dx ≥ 0 (respectively < 0); lateral excitation kernels satisfy (C1). Roughly speak-

ing, the smaller n is, the closer K resembles pure excitation, lateral inhibition, or lateral excitation
respectively.

Our strategy involving these conditions breaks down as follows (see Figure 4):

• (An) results in φ strictly increasing.
• (Bn) leads to φ strictly increasing when φ ∈ (0, 1

2 ) with one local maximum when φ > 1
2 .

• (Cn) leads to φ strictly increasing when φ ∈ (0, 1
2 ) with at most one local minimum when φ < 0.

2.2. Threshold requirements

The proceeding left and right half plane conditions, which we will call threshold conditions, ensure
that regardless of how much K oscillates, our traveling wave front solution satisfies U(·) < θ on (−∞, 0)
and U(·) > θ on (0,∞).

2.2.1. Left half plane threshold conditions

We consider situations where K transversely crosses the negative x-axis at most countably many
times. The first proceeding condition L0 represents pure excitation on the left half plane. The next
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condition L j was formulated from the original work in [54, Assumptions (L2) − (L3), p. 2-3]. We do,
however, remove the requirements∫ −M2n−2

−M2n

|x|K(x) dx ≥ 0,
∫ 0

−M2n

|x|K(x) dx ≥ 0 (2.2)

for 1 ≤ n < ∞, since these estimates are special cases of wave speed condition (A1).
Based on the methods in [54], the requirements in (2.2) appear to be the main barrier that prevents

their kernel classes from including kernels that oscillate infinitely many times. By modifying these
requirements, we overcome this obstacle. We see such improvement in the creation of condition L∞
below. Furthermore, we present the conditions L− j and L−∞, which for j , 1 are new and arise since
we may use wave speed condition (Cn).

L0: Suppose K(x) ≥ 0 on (−∞, 0). Then K satisfies condition L0.
L j: Suppose K transversely crosses the negative x-axis exactly j times in the sense that there exists

constants 0 < M1 < M2 < ... < M j such that K(−Mn) = 0 and sgn(K′(−Mn)) = (−1)n+1 for
n = 1, 2, ..., j. Also, if j ≥ 2, suppose

α

2
− α

∫ 0

−M2n

K(x) dx < θ for n = 1, 2, ...,
⌊ j
2

⌋
.

Then K satisfies condition L j. If K transversely crosses the negative x-axis infinitely many times,
we allow j→ ∞.

L− j: Suppose K transversely crosses the negative x-axis exactly j times in the sense that there exists
constants 0 < M1 < ... < M j such that K(−Mn) = 0 and sgn(K′(−Mn)) = (−1)n for n = 1, 2, ..., j.
Also, if j ≥ 3, suppose

α

2
− α

∫ 0

−M2n+1

K(x) dx < θ for n = 1, 2, ...,
⌊

j − 1
2

⌋
.

Then K satisfies condition L− j. If K transversely crosses the negative x-axis infinitely many
times, we allow j→ ∞.

Remark 2.1. The main physical difference between L j and L− j can be understood in the following
manner: For a fixed postsynaptic patch of neurons at position x, the local presynaptic neurons at
position y satisfying x < y < x + M1 will be excitatory if K(x− y) satisfies L j and inhibitory if K(x− y)
satisfies L− j. A similar physical interpretation can be drawn from Rk and R−k below, but with the
position of local presynaptic neurons relative to x reversed.

2.2.2. Right half plane threshold conditions

Conditions Rk and R−k below come from [54, Assumption (R2) − (R6), p. 3].

R0: Suppose K(x) ≥ 0 on (0,∞). Then K satisfies condition R0.
Rk: Suppose K transversely crosses the positive x-axis exactly k times in the sense that there exists

constants 0 < N1 < ... < Nk such that K(Nn) = 0 and sgn(K′(Nn)) = (−1)n for n = 1, 2, ..., k. Also,
if k ≥ 2, suppose

α

2
+ α

∫ N2n

0
K(x) dx > θ for n = 1, ...,

⌊
k
2

⌋
.
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Then K satisfies condition Rk. If K transversely crosses the positive x-axis infinitely many times,
we allow k → ∞.

R−k: Suppose K transversely crosses the positive x-axis exactly k times in the sense that there exists
constants 0 < N1 < ... < Nk such that K(Nn) = 0 and sgn(K′(Nn)) = (−1)n+1 for n = 1, ..., k. Also,
suppose

α

2
+ α

∫ N2n−1

0
K(x) dx > θ for n = 1, ...,

⌊
k + 1

2

⌋
.

Then K satisfies condition R−k. If K transversely crosses the positive x-axis infinitely many times,
we allow k → ∞.

Remark 2.2. If K is symmetric, as it often is assumed to be for these types of problems, and satisfies
L j for j ≥ 1, then K also satisfies Rk for k = j.

2.3. Three families of kernel classes

We define the following disjoint types of kernel classes used throughout this paper:

A j,k Suppose on the left half plane, K satisfies threshold condition L j for some j ≥ 0 and wave speed
condition (An) for some n > 0; on the right half plane K satisfies threshold condition Rk for some
k ≥ 0. Then we say K is in classA j,k.

B j,k Suppose on the left half plane, K satisfies threshold condition L j for some j ≥ 1 and wave speed
condition (Bn) for some n > 0; on the right half plane K satisfies threshold condition Rk for some
k ≥ 0. Then we say K is in class B j,k.

C j,k Suppose on the left half plane, K satisfies threshold condition L− j for some j ≥ 1 and wave speed
condition (Cn) for some n > 0; on the right half plane K satisfies threshold condition R−k for some
k ≥ 0. Then we say K is in class C j,k.

Examples

We consider three examples of kernels that oscillate countably many times. These kernels will be
used throughout the paper to supplement our understanding of the main results. We also use the same
example kernels when studying the pulse in Section 6. In all cases, the kernels are symmetric and
normalized by a constant A in order to integrate to one. The rest of the model parameters are assigned
the values α = 1, θ = 0.4, and c0 = 1.

Example 2.1. The first example is a kernel in classA∞,∞:

K1(x) := A exp (−a|x|)(cos(bx) + c), (2.3)

where a = 0.2, b = 2, c = 0.4. Note that A =
a(a2+b2)

2(a2+c(a2+b2)) .

Example 2.2. The second example is a kernel in class B∞,∞:

K2(x) := A exp (−a|x|)(a sin(|x|) + cos(x)), (2.4)

where a = 0.3. Note that A = 1+a2

4a . This type of kernel has already been studied explicitly in the setting
of standing waves in [14,33,34] and traveling waves in [12,14]. We will study this kernel type in more
detail in Section 5 by letting a and θ vary.
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Example 2.3. The third example is a kernel in class C∞,∞:

K3(x) := A exp (−a|x|)(c − cos(bx)), (2.5)

where a = 0.2, b = 2, c = 0.4. Note that A =
a(a2+b2)

2(c(a2+b2)−a2) .

See Figures 1, 2, and 3. Not pictured: Kernels K1, K2, and K3 satisfy wave speed conditions (A2),
(B2), and (C1) respectively.

Figure 1. Plot of K1(x) (solid) and
α

2
−α

∫ 0

x
K1(y) dy (dotted). The function K1 satisfies L∞

on the left half plane since the values at the dots are below the threshold and R∞ on the right
half plane since the values at the squares are above the threshold.

Figure 2. Plot of K2(x) (solid) and
α

2
−α

∫ 0

x
K2(y) dy (dotted). The function K2 satisfies L∞

on the left half plane since the values at the dots are below the threshold and R∞ on the right
half plane since the values at the squares are above the threshold.
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Figure 3. Plot of K3(x) (solid) and
α

2
− α

∫ 0

x
K3(y) dy (dotted). The function K3 satisfies

L−∞ on the left half plane since the values at the dots are below the threshold and R−∞ on the
right half plane since the values at the squares are above the threshold.

2.4. Previous kernel classes

2.4.1. Homogeneous kernels

For pure excitation kernels, existence, uniqueness, and stability of traveling wave solutions to (1.1)
and similar models (seen as classA0,0) have been studied in tremendous depth; the resulting traveling
wave solutions are monotonic with Evans functions that are easy to handle.

The analysis immediately becomes more challenging when K may become even a lateral inhibition
or lateral excitation kernel. In such circumstances, Zhang [56] first studied the existence, uniqueness,
and stability of traveling wave solutions to (1.1). For lateral inhibition kernels, he imposed the condi-
tion

∫ 0

−∞
|x|K(x) dx ≥ 0 in order to guarantee uniqueness of wave speed. In this paper, such kernels can

be regarded as lateral inhibition kernels that satisfy the wave speed condition (A1) and are therefore in
class A1,1. The consideration that

∫ 0

−∞
|x|K(x) dx < 0 is necessarily the case where K is in class B1,1,

which is new.
Other works ( [42, 53]) have furthered the study by considering multiple delays such as

ut + u = α

∫
R

K(x − y)H(u(y, t −
1
c0
|x − y|) − θ) dy

+ β

∫
R

J(x − y)H(u(y, t − τ) − θ) dy,
(2.6)

but the mechanics of the speed index function are similar to [56].
Beyond lateral inhibition and lateral excitation kernels, others have explored kernels with more

oscillations. Notably, Lv and Wang [41] first created five oscillatory kernel classes and proved the
existence and uniqueness of the corresponding front solutions to (1.1). Although their methods are
important, all of their kernels cross the x-axis at most four times. Using similar techniques and kernel
assumptions, Zhang et al. [54] improved their results by increasing the maximum number of oscilla-
tions to any finite number.
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However, the main limitations in [41,54] arise from the kernel assumptions they employ to guaran-
tee the fronts have unique wave speeds. In particular, for kernels with more than one oscillation on the
left half plane, they do not allow their speed index functions to have any critical points. Rather than
using the repeated integral function ΛnK(x) and wave speed conditions from Section 2.1, they impose
stronger conditions. In the most nonrestrictive cases, their kernels satisfy condition (An) in the special
case where n = 1. Moreover, conditions (Bn) and (Cn) are not discussed at all. From a biological
perspective, this means that oscillatory kernels modeling local inhibition were neglected.

On the other end of the spectrum, in a more general model, Zhang and Hutt [57] considered the
unique wave speed problem for kernels that oscillated finitely or infinitely many times, but for condition
(An) only. Moreover, they only studied the threshold requirements of fronts corresponding with pure
excitation, lateral inhibition, and lateral excitation kernels.

2.4.2. Heterogeneities

While our mathematical techniques are only associated with homogeneous kernels, we encourage
the reader to consider heterogeneities as well. Real neural tissue in the cortex certainly contains hetero-
geneities that if significant, may disrupt propagation. Such phenomena was explored by Bressloff [5]
and later in other studies [2, 11, 32, 50]. Very briefly, we will highlight the main physical reasoning.

Consider model (1.1) without delay and with nonnegative kernels of the from
K(x, y) = K(|x − y|)(1 + ah

(
y
ε

)
), where a|h| ≤ 1, h is periodic, and 0 < ε � 1. As ε → 0, we

recover the homogeneous case and existence and unqueness results from [16] may be applied. Using a
perturbation argument and the spatial averaging theory, it is shown in [5] that wave propagation failure
occurs if ε or a is too large. The intuition is that heterogeneities with larger amplitude and slower
frequency cause a breakdown of propagation. See the references above (and the references therein)
for more information.

3. Existence and uniqueness

In this section, our goal is to prove Theorem 1.1.

3.1. Step 1: Formal solution

Starting with the original scalar equation (1.1), we let z = x + µ0t and u(x, t) = U(z). Equation (1.1)
immediately reduces to

µ0U′ + U = α

∫
R

K(z − y)H
(
U

(
y −

µ0

c0
|z − y|

)
− θ

)
dy. (3.1)

Under the change of variable η = y− µ0
c0
|z−y|, we have z−y = c0

c0+sgn(z−η)µ0
(z−η) and dy = c0

c0+sgn(z−η)µ0
dη.

Using the assumption U(·) > θ on (0,∞) and U(·) < θ on (−∞, 0), we arrive at the equation

µ0U′ + U = α

∫ ∞

0

c0

c0 + sgn(z − η)µ0
K

(
c0

c0 + sgn(z − η)µ0
(z − η)

)
dη

= α

∫ c0z
c0+sgn(z)µ0

−∞

K (x) dx. (3.2)
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Keeping the boundary conditions in mind, equation (3.1) can easily be solved using variation of pa-
rameters. After solving and simplifying with integration by parts, we obtain the solution representation

U(z) = α

∫ c0z
c0+sgn(z)µ0

−∞

K(x) dx

− α

∫ z

−∞

c0

c0 + sgn(x)µ0
exp

(
x − z
µ0

)
K

(
c0x

c0 + sgn(x)µ0

)
dx,

(3.3)

U′(z) =
α

µ0

∫ z

−∞

c0

c0 + sgn(x)µ0
exp

(
x − z
µ0

)
K

(
c0x

c0 + sgn(x)µ0

)
dx. (3.4)

3.2. Step 2: Existence and uniqueness of wave speed

Existence

Setting U(0) = θ, as deemed necessary by Theorem 1.1, we see that if µ0 ∈ (0, c0) exists and is
unique, it must be the only solution to the equation

φ(µ) =
1
2
−
θ

α
, (1.5)

where we recall from the introduction,

φ(µ) :=
∫ 0

−∞

exp
(
c0 − µ

c0µ
x
)
K (x) dx (1.4)

is the speed index function. Since the integrand of φ is exponentially bounded, we use dominated
convergence theorem and see that

lim
µ→0+

φ(µ) = 0, lim
µ→c−0

φ(µ) =

∫ 0

−∞

K(x) dx =
1
2
.

Finally, since 0 < 1
2 −

θ
α
< 1

2 by assumption, we use the intermediate value theorem to conclude there
exists at least one solution to (1.5).

Uniqueness

In this subsection, we prove Lemma 3.1. Part (i) was first proven in [57, Subsection 2.3, parts d1,d2
p. 32-34]∗ for a similar model.

Lemma 3.1 (Unique Wave Speed).

(i) Suppose K satisfies wave speed condition (An) for some n > 0 and all other assumptions hold.
Then φ′(µ) > 0 for all µ ∈ (0, c0). Thus, there exists a unique solution µ0 ∈ (0, c0) to (1.5).

(ii) Suppose K satisfies wave speed condition (Bn) for some n > 0 and all other assumptions hold.
Then φ has one critical point, a local maximum. Such a local maximum occurs when φ > 1

2 and
thus, there exists a unique solution µ0 ∈ (0, c0) to (1.5).

∗An inconsequential error was made that is corrected here.
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(iii) Suppose K satisfies wave speed condition (Cn) for some n > 0 and all other assumptions hold.
Then φ has at most one critical point, a local minimum. Such a local minimum occurs when φ < 0
and thus, there exists a unique solution µ0 ∈ (0, c0) to (1.5).

Proof. (i) Differentiating φ and using integration by parts n times, we may write

φ′(µ) =
1
µ2

∫ 0

−∞

|x| exp
(
c0 − µ

c0µ
x
)
K(x) dx

=
1
µ2

∫ 0

−∞

exp
(
c0 − µ

c0µ
x
)
Λ0K(x) dx

=
1
µ2

∫ 0

−∞

exp
(
c0 − µ

c0µ
x
) [
−Λ1K(x)

]′
dx

=
c0 − µ

c0µ

1
µ2

∫ 0

−∞

exp
(
c0 − µ

c0µ
x
)
Λ1K(x) dx

...

=

(
c0 − µ

c0µ

)n 1
µ2

∫ 0

−∞

exp
(
c0 − µ

c0µ
x
)
ΛnK(x) dx. (3.5)

Since K satisfies wave speed condition (An), we have ΛnK(x) ≥ 0 for x ≤ 0. Therefore, φ′(µ) > 0
for all µ ∈ (0, c0) so there exists a unique solution µ0 ∈ (0, c0) to (1.5).

(ii) For all n, define the function

ζn(µ) :=
∫ 0

−∞

exp
(
c0 − µ

c0µ
x
)
ΛnK(x) dx. (3.6)

We observe that the sign of φ′ and ζn are equivalent since µ < c0 and by (3.2),

φ′(µ) =

(
c0 − µ

c0µ

)n 1
µ2 ζn(µ). (3.7)

Since K satisfies wave speed condition (Bn), there exists a constant Bn > 0 such that ΛnK(x) ≥ 0
on (−Bn, 0) and ΛnK(x) ≤ 0 on (−∞,−Bn). Suppose φ′(µ∗) = 0 for some µ∗ ∈ (0, c0). This implies
ζn(µ∗) = 0 and

ζ′n(µ∗) =
1
µ2
∗

∫ 0

−∞

|x| exp
(
c0 − µ∗

c0µ∗
x
)
ΛnK(x) dx

=
1
µ2
∗

[∫ 0

−Bn

|x| exp
(
c0 − µ∗

c0µ∗
x
)
ΛnK(x) dx

+

∫ −Bn

−∞

|x| exp
(
c0 − µ∗

c0µ∗
x
)
ΛnK(x) dx

]
<

Bn

µ2
∗

[∫ 0

−Bn

exp
(
c0 − µ∗

c0µ∗
x
)
ΛnK(x) dx

+

∫ −Bn

−∞

exp
(
c0 − µ∗

c0µ∗
x
)
ΛnK(x) dx

]
Mathematical Biosciences and Engineering Volume 16, Issue 2, 727–758.
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=
Bn

µ2
∗

ζn(µ∗) = 0.

Hence, ζn(µ) changes signs from positive to negative at µ = µ∗. Since ζn and φ′ have equivalent
signs, we may conclude that φ has a local maximum at µ = µ∗ by the first derivative test. More-
over, since µ∗ is arbitrary and φ is differentiable on (0, c0), we conclude that all critical points of
φ must be local maximums. Finally, we have

lim
µ→0+

φ(µ) = 0, lim
µ→c−0

φ(µ) =
1
2
, (3.8)

and

lim
µ→c−0

φ′(µ) =
1

c2n
0

lim
µ→c−0

(c0 − µ)n
∫ 0

−∞

exp
(
c0 − µ

c0µ
x
)
ΛnK(x) dx (3.9)

so if ΛnK(−∞) ∈ [−∞, 0), the limit in (3.9) will be negative and such a µ∗ will exist by the
intermediate value theorem with φ(µ∗) > 1

2 . Therefore, φ is strictly increasing when 0 < φ < 1
2 so

there exists a unique solution µ0 ∈ (0, c0) to (1.5).
(iii) We proceed similarly to (ii). Since K satisfies wave speed condition (Cn), there exists a constant

Cn > 0 such that ΛnK(x) ≤ 0 on (−Cn, 0) and ΛnK(x) ≥ 0 on (−∞,−Cn). Suppose φ′(µ∗) = 0 for
some µ∗ ∈ (0, c0). Then as before, ζn(µ∗) = 0 and

ζ′n(µ∗) =
1
µ2
∗

∫ 0

−∞

|x| exp
(
c0 − µ∗

c0µ∗
x
)
ΛnK(x) dx

=
1
µ2
∗

[∫ 0

−Cn

|x| exp
(
c0 − µ∗

c0µ∗
x
)
ΛnK(x) dx

+

∫ −Cn

−∞

|x| exp
(
c0 − µ∗

c0µ∗
x
)
ΛnK(x) dx

]
>

Cn

µ2
∗

[∫ 0

−Cn

exp
(
c0 − µ∗

c0µ∗
x
)
ΛnK(x) dx

+

∫ −Cn

−∞

exp
(
c0 − µ∗

c0µ∗
x
)
ΛnK(x) dx

]
=

Cn

µ2
∗

ζn(µ∗) = 0.

We apply the first derivative test on φ again; this time we find that φ has a local minimum at
µ = µ∗ and conclude that critical points of φ must be local minimums with φ(µ∗) < 0. Therefore,
by similar reasoning to (ii), φ is strictly increasing when 0 < φ < 1

2 so there exists a unique
solution µ0 ∈ (0, c0) to (1.5).

�

See Figure 4. As a corollary to Lemma 3.1, we may easily answer an open problem: does a front
solution to (1.1) arising from a lateral inhibition kernel with

∫ 0

−∞
|x|K(x) dx < 0 have a unique wave

speed?

Corollary 3.1. Suppose K is any lateral inhibition kernel. Then there exists a unique solution µ0 ∈

(0, c0) to (1.5) independent of the value of
∫ 0

−∞
|x|K(x) dx.
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Proof. If
∫ 0

−∞
|x|K(x) dx ≥ 0, then K is in class A1,1. Otherwise, K is in B1,1. Applying Lemma 3.1

(i)-(ii), the result follows. �

Combining the results of Step 1 with Lemma 3.1, we see that if our formal solutions are in fact real
fronts, they will have unique wave speeds. The last step we must take is proving that the solutions sat-
isfy the necessary threshold requirements to be actual solutions. After this step, our proof of existence
and uniqueness of front solutions to (1.1) will be complete.

Figure 4. Plots of φ(µ) for kernels K1 (dotted), K2 (dashed), and K3 (solid). Note that the
shapes of φ correspond with the descriptions of (An), (Bn), and (Cn) from Section 2.1.

3.3. Step 3: Formal solution is a real solution

The main intent of this step is to use the threshold conditions outlined in Section 2.2 to prove that
U(0) = θ, U(z) < θ on (−∞, 0), and U(z) > θ on (0,∞). We analyze the left and right half planes
separately.

Following the approach by others, our technique is to show that on the left half plane, our conditions
on K are sufficient in guaranteeing that all possible local maximums of U lie below the threshold. On
the right half plane, we show that all possible local minimums of U lie above the threshold.

We now prove the following lemmas using a modified version of [54, Lemma 3 and 4, p. 6]. The
modifications account for the case where K oscillates infinitely many times and when K satisfies L− j

for j > 1.

Lemma 3.2. If K satisfies L j or L− j for some j ≥ 0, then U(z) < θ on (−∞, 0).
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Proof. If K satisfies L j for some 0 ≤ j < ∞, see [54, Lemma 4, p. 6]. The case where j = ∞ is a trivial
extension of the same argument: since α

∫ 0

−∞
K(x) dx = α

2 , there exists a positive integer N(α, θ) such

that α
2 − α

∫ 0

−M2n
K(x) dx < θ for all n ≥ N(α, θ). Hence, the argument for the 0 ≤ j < ∞ case can be

applied again.
Suppose K satisfies L− j for some j ≥ 1. For z ≤ 0, define

ψ(z) :=
∫ z

−∞

exp
(
c0 − µ0

c0µ0
x
)
K(x) dx

=

(
1
2
−
θ

α

)
−

∫ 0

z
exp

(
c0 − µ0

c0µ0
x
)
K(x) dx.

(3.10)

The sign of U′( c0−µ0
c0

z) is determined by ψ(z) since

U′
(
c0 − µ0

c0
z
)

=
α

µ0
exp

(
−

c0 − µ0

c0µ0
z
) ∫ z

−∞

exp
(
c0 − µ0

c0µ0
x
)
K(x) dx

=
α

µ0
exp

(
−

c0 − µ0

c0µ0
z
)
ψ(z).

(3.11)

If j = 1, then ψ(z) is increasing on (−∞,−M1), decreasing on (−M1, 0) with ψ(0) = 1
2 −

θ
α
> 0 and

lim
z→−∞

ψ(z) = 0. Therefore, ψ(z) ≥ 0 on (−∞, 0) so U(z) is monotonic on (−∞, 0).

If j = 2, then ψ(z) is decreasing on (−∞,−M2) ∪ (−M1, 0), increasing on (−M2,−M1). Since
ψ(0) > 0 and lim

z→−∞
ψ(z) = 0, we conclude that ψ(z) changes signs exactly one time, from negative to

positive for some z∗ ∈ (−M2,−M1). But this mean U(z) has a local minimum at z =
c0−µ0

c0
z∗ and no local

maximums on (−∞, 0).
If j ≥ 3, then ψ(z) is increasing on (−M2n+2,−M2n+1) and decreasing on (−M2n+1,−M2n) for n ≥ 0,

where we let M0 = 0. Based again on the fact that ψ(0) > 0 and lim
z→−∞

ψ(z) = 0, we see that if ψ(z)

changes signs from positive to negative at z = z∗, and therefore U(z) has a local maximum at z =
c0−µ0

c0
z∗,

then z∗ ∈ (−M2n+1,−M2n) for n ≥ 1. But then

U
(
c0 − µ0

c0
z∗

)
= α

∫ z∗

−∞

K(x) dx − µ0U′
(
c0 − µ0

c0
z∗

)
= α

∫ z∗

−∞

K(x) dx

=
α

2
− α

∫ 0

z∗
K(x) dx

<
α

2
− α

∫ 0

−M2n+1

K(x) dx < θ.

(3.12)

Therefore, U stays below the threshold on all possible local maximums. �

Lemma 3.3. If K satisfies Rk or R−k for some k ≥ 0, then U(z) > θ on (0,∞).

Proof. If k < ∞, see [54]. The extension to the k → ∞ case is similar to the j→ ∞ case in Lemma 3.2.
�
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3.4. Summary of existence and uniqueness

Combining the arguments Sections 3.1 to 3.3, we have proved Theorem 1.1.

Corollary 3.2. Suppose that 0 < 2θ < α and K is any lateral inhibition kernel. Then independent of the
value of

∫ 0

−∞
|x|K(x) dx, there exists a unique traveling wave front to (1.1) as described by Theorem 1.1.

Proof. For lateral inhibition kernels, it is well known (see [56]) that the argument for existence of
at least one front solution to (1.1) is independent of the value of

∫ 0

−∞
|x|K(x) dx. By Corollary 3.1,

uniqueness of wave speed is established. �

See Figure 5 for plots of U(z) with kernels K1, K2, and K3.

Figure 5. Plots of U(z) for kernels K1 (left), K2 (center), and K3 (right).

4. Spectral stability

We have shown that a physiologically motivated model permits traveling wave solutions. However,
in order for our analysis to be biologically useful, our solutions should ideally be stable. By stable,
we mean that global solutions P(x, t) to (1.1) that are close to U(x + µ0t) (for some t) stay close to a
translate of the front U(x + µ0t + h) as t → ∞. Therefore, fronts are stable under perturbations.

Motivated by the pioneering work of Evans [18–21] on the Hodgkin-Huxley model and Jones [30]
on the Fitzhugh-Nagumo model, stability of traveling wave solutions has also been well developed for
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nonlocal equations. In particular, Zhang [55] studied spectral stability of (6.1)-(6.2) in the case where
c0 = ∞ (no delay); he formulated a closed form Evans function and used it to solve the linear eigenvalue
problem. The problem came full circle when Sandstede [48] proved that in appropriate function spaces,
spectral stability implies nonlinear stability. Interestingly, when there is delay, a rigorous proof of a
similar connection has not been given and is still an open problem. The main difficulty is the fact that
the eigenvalue problem becomes nonlinear in λ.

Some partial results have been made: Zhang [56] studied the spectral stability of wave front solu-
tions to (1.1) arising from pure excitation, lateral inhibition, and lateral excitation kernels. Coombes
and Owen [10] analyzed and discussed the spectral stability in a more general setting (such as in (1.3))
using similar techniques to Zhang. We remark that stability was not considered at all in [41,42,53,54],
some of the main references that motivate this work.

In an effort to view the front as a stationary solution, we convert the coordinate system (x, t) →
(z, t) = (x + µ0t, t). We write a system involving (1.1) as

Pt + µ0Pz + P = α

∫
R

K (z − y) H(P
(
y −

µ0

c0
|z − y|, t −

1
c0
|z − y|

)
− θ) dy, (4.1)

µ0Uz + U = α

∫
R

K (z − y) H(U
(
y −

µ0

c0
|z − y|

)
− θ) dy. (4.2)

Letting p(z, t) = P(z, t) − U(z), we subtract (4.2) from (4.1) and apply linearization to the right hand
side, yielding

pt + µ0 pz + p =
αc0

U′(0)(c0 + sgn(z)µ0)
K

(
c0

c0 + sgn(z)µ0
z
)

p
(
0, t −

|z|
c0 + sgn(z)µ0

)
. (4.3)

The main technique is utilizing the fact that the Fréchet derivative of the Heaviside function is the delta
distribution.

Setting p(z, t) = exp (λt)ψ(z), we produce a nonlinear eigenvalue problem L(λ)ψ = λψ, where the
family of operators L(λ) : C1(R) ∩ L∞(R)→ C0(R) ∩ L∞(R) are defined by

L(λ)ψ = − µ0ψ
′ − ψ +

αc0

U′(0)(c0 + sgn(z)µ0)
K

(
c0

c0 + sgn(z)µ0
z
)

× exp
(
−

λ|z|
c0 + sgn(z)µ0

)
ψ(0).

(4.4)

Using standard notation, we denote by σ(L) the spectrum ofL, which is made up of the point spectrum
and essential spectrum; the point spectrum is made up of eigenvalues. We use the following important
definition.

Definition 4.1. A traveling wave solution to (1.1) is spectrally stable if the following conditions hold:

(i) The essential spectrum σessential(L) lies entirely to the left of the imaginary axis.
(ii) The eigenvalue λ = 0 is algebraically simple.

(iii) There exists a positive constant κ0 > 0 such that max{Re λ | λ ∈ σpoint(λ), λ , 0} ≤ −κ0.
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Essential spectrum

The essential spectrum ofL(λ) is easily determined by the intermediate eigenvalue problemL∞ψ =

λψ, where
L∞ψ := −µ0ψ

′ − ψ, (4.5)

which is linear in ψ and λ. A trivial calculation shows the intermediate eigenvalue problem is solved
by

ψ0(λ, z) = C(λ) exp
(
−
λ + 1
µ0

z
)
. (4.6)

Assuming C(λ) , 0, the solution ψ0(λ, z) blows up as z → −∞ when Re(λ) > −1 and as z → ∞ when
Re(λ) < −1. Thus, the essential spectrum is the vertical line

σessential = {λ ∈ C | Re(λ) = −1}, (4.7)

which safely stays entirely on the left half plane so Definition 4.1 (i) is satisfied. Hence, on the domain

Ω = {λ ∈ C | Re(λ) > −1},

the stability is determined by σpoint, which notably depends on K.

Point spectrum

Through a series of calculations [10, 56], the eigenvalue problem is solved by

ψ(λ, z) =C(λ) exp
(
−
λ + 1
µ0

z
)

+
αψ(λ, 0)
µ0U′(0)

∫ z

−∞

c0

c0 + sgn(x)µ0
(4.8)

× exp
(
λ + 1
µ0

(x − z)
)

exp
(
−

λ|x|
c0 + sgn(x)µ0

)
K

(
c0x

c0 + sgn(x)µ0

)
dx.

Since ψ(λ, 0) appears on the right hand side in (4), we must plug in z = 0 and solve for C(λ) to
ensure ψ is well-defined. For λ ∈ Ω, nontrivial solutions ψ(λ, z) do not blow up as z → ±∞ if and
only if C(λ) = 0. We obtain an Evans function whose zeros entirely determine σpoint. By translation
invariance, λ = 0 is an eigenvalue with eigenfunction U′(z). Hence, the Evan’s function, written in
terms of the speed index function φ, is given explicitly by

E(λ) := 1 −
φ( µ0

λ+1 )
φ(µ0)

. (1.6)

Since the formulation of E is not a new result, we present the following lemma without proof. See [55]
for the details.

Lemma 4.1.

(i) The Evans function is complex analytic on Ω and real if λ is real.
(ii) The complex number λ0 ∈ σpoint if and only if E(λ0) = 0.

(iii) The algebraic multiplicity of eigenvalues of L(λ) is exactly equal to the multiplicity of zeros of
E(λ).

(iv) In the domain Ω, the Evans function has the asymptotic behavior lim
|λ|→∞
E(λ) = 1.
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Point spectrum λ ∈ R+ ∪ {0}

We already know λ = 0 is an eigenvalue of multiplicity at least one. Moreover,

E′(λ) =
µ0

(λ + 1)2

φ′( µ0
λ+1 )

φ(µ0)
, (4.9)

which implies E′(0) = µ0
φ′(µ0)
φ(µ0) > 0 for all K in classesA j,k, B j,k, and C j,k. By Lemma 4.1 (iii), it follows

that λ = 0 is a simple eigenvalue so Definition 4.1 (ii) is satisfied.
We now consider the behavior of E(λ) for λ on the positive real axis. For such λ, by uniqueness of

the wave speed, φ( µ0
λ+1 ) , φ(µ0). Therefore, E(λ) , 0 so λ cannot be an eigenvalue.

Point spectrum Re(λ) ≥ 0, Im(λ) , 0

We are finally brought to the most difficult part of the stability analysis: if any, where are the zeros
of E(λ) when Re(λ) ≥ 0 and Im(λ) , 0 ? We recall from Section 1.2.1 that in its fullest generality, this
problem is still open.

In pursuit of a meaningful stability result, we now exploit uniqueness and prove Theorem 1.2. As
evident from the analysis above, the following lemma completes the proof.

Lemma 4.2. Suppose that 0 < 2θ < α, K is in classA j,k, B j,k, or C j,k for some integers j and k, and U
is a unique solution described in Theorem 1.1. If the Laplace transform of K satisfies∫ 0

−∞

exp (sx)K(x) dx =
p(s)
q(s)

, (4.10)

where p and q are polynomials of degree at most two, then E(λ) , 0 when Re(λ) ≥ 0, Im(λ) , 0.

Proof. By the definition of E, any roots satisfy φ
(
µ0
λ+1

)
= φ(µ0) = 1

2 −
θ
α

so

1
2
−
θ

α
=

p
(
λ+1
µ0

)
q
(
λ+1
µ0

) ,
which means

p(λ) :=
(
1
2
−
θ

α

)
q
(
λ + 1
µ0

)
− p

(
λ + 1
µ0

)
is a polynomial of degree at most two and p(λ) = 0 if and only if E(λ) = 0. Therefore, p(0) = E(0) = 0
so if p is of degree one, then we are done. Otherwise, by simplicity, p must have one other distinct real
root, say λ∗. If λ∗ > 0, then φ

(
µ0
λ∗+1

)
= 1

2 −
θ
α
, contradicting the uniqueness of µ0. Therefore, λ∗ < 0 and

the claim follows. �

Proof of Theorem 1.2

By combining the results in this section, we see that Definition 4.1 (i)-(iii) are satisfied and the proof
of spectral stability is complete. Finally, if c0 = ∞, the result in [48] shows the equivalence of spectral,
linear and nonlinear stability, completing the proof of Theorem 1.2.
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Corollary 4.1. Suppose that 0 < 2θ < α, K is in classA j,k, B j,k, or C j,k for some integers j and k, and
U is a unique solution described in Theorem 1.1 with K of the form

K(x) = exp (−a|x|)(b cos(cx + d) + e sin(cx + f )).

Then U is spectrally stable.

Corollary 4.2. Suppose that 0 < 2θ < α and K(x) = exp (−a|x|)(−b|x| + c) with a, b, c positive and K
normalized. Then there exists unique and stable front solutions to Eq. (1.1).

Computational methods

Since E is complex analytic, there are a number of options at our disposal. By Lemma 4.1 (iv) and
the fact that zeros of E must be isolated, the number of zeros on the right half plane is a finite number
and contained in the region

Bδ,R = {λ ∈ Ω | Re(λ) ≥ 0 and δ ≤ |λ| ≤ R}

for some R � 0, δ > 0. Common tools like maximum principle or argument principle can be applied.
For example, it is certainly true that |1−E(λ)| < 1 when |λ| = R. If we can show |1−E(λ)| < 1 along

the imaginary axis when δ ≤ |λ| ≤ R, then |1 − E(λ)| < 1 on Bδ,R by the maximum principle. Hence
|E(λ)| > 0 on Bδ,R and stability follows.

Finally, when specific kernels are given, we can use mathematical software to look at real and
imaginary contour plots of E(λ) (as was done in [10]) or surface plots of |E(λ)| on the right half plane.
In the examples given in Figure 6, we have chosen the latter option.

Figure 6. Surface plot of |E(λ)| with kernels K1 (left), K2, (center), and K3 (right) when
Re(λ) ≥ 0. In all cases, |E(λ)| > 0 except at λ = 0, showing spectral stability.

5. Classifying example K2 with varying thresholds

In this section, we look further at the one parameter, symmetric kernel type discussed in [14]:

K(x; a) := C(a) exp (−a|x|)(a sin(|x|) + cos(x)), (5.1)

where a > 0 and C(a) is chosen as a normalizing constant. Our goal is to use the assumptions in
Section 2 to fully classify existence, uniqueness, and stability of fronts by class. Throughout this
section, assume c0 = ∞, α = 1, and 0 < θ < 1

2 .
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Wave speed conditions (An) and (Bn)

Define

f (a) :=
∫ 0

∞

|x|K(x; a) dx.

For fixed a > 0, it is clear from the definition of wave speed conditions in Section 2.1, the requirements
(i): f (a) ≥ 0 and (ii): f (a) ≤ 0 are necessary in order for K to satisfy (An) and (Bm) for some n and m
respectively.

Regarding (5.1), we see from Figure 7 that there exists a unique a∗ > 0 such that f (a) ≤ 0 for a ≤ a∗

and f (a) ≥ 0 for a ≥ a∗. We omit the details, but it can be shown that for a , a∗, requirements (i) and
(ii) are also sufficient. Indeed, K satisfies (A2) for a ≥ a∗ and (B2) for a < a∗.

Figure 7. Plot of f (a). When f (a∗) = 0, the kernel changes from satisfying wave speed
condition (B2) to (A2). A numerical calculation shows a∗ = .5774.

Unique wave speed

We recall that the wave speed is determined by solutions to φ(µ) = 1
2 − θ. By the definition of φ and

using K from (5.1), a series of calculations reveals 1
µ

is obtained as roots to the quadratic equation

c2x2 + c1x + c0 = 0, (5.2)

where

c2(a, θ) = 2a(1 − 2θ),
c1(a, θ) = 3a2 − 8a2θ − 1,
c0(a, θ) = 4aθ(a2 − 1).

From above, we know K satisfies either (A2) or (B2) so we should obtain a unique positive wave speed.
Hence, it follows that (5.2) has two real solutions, x+ > 0 and x− < 0. Then µ(a, θ) = 1

x+(a,θ) .
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Threshold analysis

First of all, since K is symmetric,

∫ 0

−M2 j

K(x; a) dx =

∫ N2 j

0
K(x; a) dx

so if K satisfies L∞, then for all j ≥ 1,

∫ N2 j

0
K(x; a) dx =

∫ 0

−M2 j

K(x; a) dx >
1
2
− θ > θ −

1
2

and R∞ is also satisfied. Therefore, we only need to confirm L∞. On that note, we observe that for all
a, the zeros of K on the left half plane are defined by −M j(a) := −(arctan

(
1
a

)
+ ( j − 1)π). Clearly

∫ −M2 j

−M2( j+1)

K(x; a) dx > C(a) exp
(
−aM2 j+1

) ∫ −M2 j

−M2( j+1)

−a sin(x) + cos(x) dx = 0.

Therefore, the minimum value of
∫ 0

−M2 j

K(x) dx occurs when j = 1 and recalling L∞ requires

∫ 0

−M2 j

K(x; a) dx >
1
2
− θ for j ≥ 1,

it follows that L∞ is satisfied if and only if g(a) < θ, where

g(a) :=
1
2
−

∫ 0

−M2(a)
K(x; a) dx. (5.3)

Existence, Uniqueness, and Stability

By Theorem 1.1, we have demonstrated the existence and uniqueness of fronts in the region

R = {(a, θ) ∈ R+ ×

(
0,

1
2

)
| g(a) < θ}. (5.4)

Finally, it is clear from the wave speed calculation that solutions are stable by Corollary 4.1. See Figure
8.

Remark 5.1. There may be pairs (a, θ) < R where L∞ is not satisfied, but fronts still exist. Such fronts
will be unique and stable by the analysis above.
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Figure 8. Inside the dark lines: plot of region R on the aθ plane. All pairs (a, θ) ∈ R lead to
unique, stable traveling fronts. When f (a∗) = 0, the kernel changes from class B∞,∞ to class
A∞,∞.

6. Existence of traveling pulses

With some exceptions, traveling wave fronts alone are typically of somewhat incomplete value since
they unrealistically ignore metabolic processes that generate negative feedback. Their main value
comes from their close connection with traveling pulses; studying the existence and stability of the
front is the preparation for studying the existence and stability of pulses. Since the methodology is
more unclear for multiple pulses, we will only focus on single pulses.

Mathematically, pulses can be categorized as slow or fast based on the wave speed. Slow pulses
are unstable perturbations of standing pulses, while fast stable pulses have a singular structure par-
tially comprised of stable fronts and backs. For simplicity, we will ignore slow pulses since they are
biologically less important.

Incorporating linear feedback into (1.1), we obtain the following system of integral equations [46,
47]:

ut + u + w = α

∫
R

K(x − y)H(u(y, t −
1
c0
|x − y|) − θ) dy, (6.1)

wt = ε(u − γw), (6.2)

where w is a slow leaking current and 0 < ε � 1 is a perturbation parameter. Biologically, w represents
phenomenon like spike frequency adaptation.
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By a fast pulse solution to (6.1)-(6.2), we mean a solution (u,w) = (Upulse(z),Wpulse(z)) such that
there exists a constant Z(ε) > 0 such that Upulse(0) = Upulse(Z(ε)) = θ,Upulse(z) > θ on (0,Z(ε)) ,
Upulse(z) < θ on (−∞, 0) ∪ (Z(ε),∞) , and lim

z→±∞
(Upulse(z),Wpulse(z)) = (0, 0). Here, z = x + µ(ε)t is the

traveling coordinate with unique fast wave speed µ(ε) = µ f ront + κ(ε), where κ(ε)→ 0 as ε → 0.
Since the system is singularly perturbed, we cannot simply set ε = 0 and obtain a solution that rea-

sonably approximates a pulse. However, we can construct singular homoclinical orbits in phase space
and argue that for 0 < ε � 1, real pulses are close to singular pulses. Such a singular homoclinical or-
bit is comprised of a front, back, and two space curves. The front and back (which have the same wave
speed) are understood to capture the fast dynamics, while the two space curves are where slow time
dynamics occur. Naturally, as pointed out in [46], the subject of geometric singular perturbation theory
may be a method for proving pulses exist. However, working out the details is quite nontrivial since
(6.1)-(6.2) is not necessarily autonomous; applying geometric singular perturbation theory rigorously
to (6.1)-(6.2) is still an open problem for general kernel functions.

We remark that many kernels presented in this paper (as evident by the examples given) allow us
to convert (6.1)-(6.2) into a system of real, nonlinear, autonomous PDEs. The dynamics then reside in
a more familiar setting to possibly apply techniques like the celebrated Exchange Lemma [31] in the
setting of center-stable and center-unstable manifold theory. The main setback in our problem is that
the Heaviside firing rate function creates phase space dynamics with discontinuities; it is important
that this issue is properly dealt with in order to apply such a technical result. Some promising partial
results have been obtained in [22, 23] for related models with smooth firing rate functions.

Pulses have also been proven to exist using more direct computational tools like implicit function
theorem, as was done in [47] when K(x) =

ρ

2 exp (−ρ|x|). Although this is a powerful result, the exact
structure of K played an important role. Again, it is not entirely clear how to rigorously prove the
existence of pulses to (6.1)-(6.2) for general kernel functions.

6.1. Numerically computed fast pulses

In this subsection, we first derive formulas for fast pulses formally and then calculate pulses with
example kernels K1,K2, and K3 respectively. Using phase space plots, we show that our solutions are
real pulses. To simplify the discussion, we assume c0 = ∞.

We wish to find traveling pulse solutions to (6.1)-(6.2) when 0 < 2θ < α < (1+γ)θ
γ

, 0 < ε � 1 and
K is a kernel such that a unique front is produced when ε = 0. Assuming a pulse exists with µ(ε) and
Z(ε) to be determined, (6.1)-(6.2) reduces to

µ(ε)U′ + U + W = α

∫ z

z−Z(ε)
K(x) dx, (6.3)

µ(ε)W ′ = ε(U − γW), (6.4)

which is easily solved using elementary techniques. The solution takes on the form

Upulse(z) =
αγ

1 + γ

∫ z

z−Z(ε)
K(x) dx

− α

∫ z

−∞

C(x − z, µ(ε), ε) [K(x) − K(x −Z(ε))] dx, (6.5)
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U′pulse(z) = α

∫ z

−∞

Cx(x − z, µ(ε), ε) [K(x) − K(x −Z(ε))] dx, (6.6)

Wpulse(z) =
α

1 + γ

∫ z

z−Z(ε)
K(x) dx

− εα

∫ z

−∞

D(x − z, µ(ε), ε) [K(x) − K(x −Z(ε))] dx, (6.7)

where

C(x, µ(ε), ε) =
1

ω1 − ω2

[
1 − ω2

ω1
exp

(
ω1

µ(ε)
x
)
−

1 − ω1

ω2
exp

(
ω2

µ(ε)
x
)]
,

D(x, µ(ε), ε) =
1

ω1 − ω2

[
−

1
ω1

exp
(
ω1

µ(ε)
x
)

+
1
ω2

exp
(
ω2

µ(ε)
x
)]
,

ω1(ε) =
1 + γε +

√
(1 − γε)2 − 4ε
2

,

ω2(ε) =
1 + γε −

√
(1 − γε)2 − 4ε
2

.

The parameters ω1(ε) and ω2(ε) are the eigenvalues associated with the coefficient matrix

A(ε) =

(
1 1
−ε γε

)
. We assume that ε and γ are sufficiently small so that both eigenvalues are positive.

Similar to the front, we must use the compatibility equations Upulse(0) = Upulse(Z(ε)) = θ to solve
for µ(ε) andZ(ε), provided they exist. Then we must verify that the formal solutions lead to real trav-
eling pulse solutions that satisfy the threshold requirements. As mentioned above, there are typically
two solution pairs, (µ f ast(ε),Z f ast(ε)) and (µslow(ε),Zslow(ε)), leading to stable and unstable pulses re-
spectively [46, 47]. Since it is not entirely clear how to rigorously prove the existence of pulses for all
kernels studied in this paper, we simply calculate (µ f ast(ε),Z f ast(ε)) numerically; then we compare the
solutions to the singular solutions and argue that real fast pulses exist.

In Figures 9, 10, and 11, we see evidence that fast pulses exist for our kernel classes.

Figure 9. Red: Phase space portrait of a fast traveling pulse with kernel K1, α = 1, θ = 0.4,
ε = γ = 0.001. Black: Corresponding singular homoclinical orbit when ε = 0.
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Figure 10. Red: Phase space portrait of a fast traveling pulse with kernel K2, α = 1, θ = 0.4,
ε = γ = 0.001. Black: Corresponding singular homoclinical orbit when ε = 0.

Figure 11. Red: Phase space portrait of a fast traveling pulse with kernel K3, α = 1, θ = 0.4,
ε = γ = 0.001. Black: Corresponding singular homoclinical orbit when ε = 0.

Note that all plots were constructed in Matlab. For the fast pulses, the parameters µ(ε) and Z(ε)
were computed using the Optimization Toolbox.

7. Discussion and conclusion

In this paper, we proved the existence and uniqueness of traveling front solutions to (1.1) for a
wide range of oscillatory kernel classes. To establish uniqueness, we used a new technique to show
speed index functions have at most one critical point. In order to make sure that the fronts crossed the
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threshold exactly once, we established left and right half plane conditions, following the techniques
in [41, 54]. In Section 4, we studied the spectral stability of our fronts using the Evans function
approach. Combining our results, we were able to fully classify the existence, uniqueness, and stability
of a well-studied one parameter kernel type that crosses the x-axis countably many times.

Our results have inspired some interesting open problems: How many of our kernel classes lead to
stable versus unstable fronts? Can a meaningful bifurcation criteria be formulated? What is the impact
of threshold noise? Can we obtain similar results for kernels with heterogeneities? If so, we would
make further mathematical advancements with a meaningful biological connection.

Lastly, in Section 6, we reviewed the connection between fronts and fast pulses that arise in singu-
larly perturbed integral differential equations. We derived pulses formally and numerically calculated
fast pulses for all three example kernels used throughout the paper. Phase space portraits show that
indeed, fast pulses are small perturbations of singular homoclinical orbits when 0 < ε � 1. We desire
a rigorous technique for proving the existence and uniqueness of fast pulses when K crosses the x-axis
at most countably many times. How often do fast pulses exist for kernels in this paper? Can we obtain
fronts for smoothed Heaviside firing rate functions? If so, we may be able to apply typical methods
from perturbation theory.
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