Citation: Xiangyun Shi, Qi Zheng, Jiaoyan Yao, Jiaxu Li, Xueyong Zhou. Analysis of a stochastic IVGTT glucose-insulin model with time delay[J]. Mathematical Biosciences and Engineering, 2020, 17(3): 2310-2329. doi: 10.3934/mbe.2020123
[1] | R. A. DeFronzo, J. D. Tobin, R. Andres, Glucose clamp technique: A method for quantifying insulin secretion and resistance, Am. J. Physiol. Endocrinol. Metab., 237 (1979), 214-223. |
[2] | R. N. Bergman, Y. Z. Ider, C. R. Bowden, Quantitative estimation of insulin sensitivity, Am. J. Physiol. Endocrinol. Metab., 236 (1979), E667-677. |
[3] | G. Toffolo, R. N. Bergman, D. T. Finegood, C. R.Bowden, C. Cobelli, Quantitative estimation of beta cell sensitivity to glucose in the intact organism: A minimal model of insulin kinetics in the dog, Diabetes, 29 (1980), 979-990. |
[4] | A. De Gaetano, O. Arino, Mathematical modelling of the intravenous glucose tolerance test, J. Math. Biol., 40 (2000), 136-168. |
[5] | J. Li, Y. Kuang, B. Li, Analysis of IVGTT glucose-insulin interaction models with time delay, Discrete Contin. Dyn. Syst. Ser. B, 1 (2001), 103-124. |
[6] | G. Toffolo, C. Cobelli, The hot IVGTT two-compartment minimal model: An improved version, Am. J. Physiol. Endocrinol. Metab., 284 (2003), 317-321. |
[7] | A. Mukhopadhyay, A. De Gaetano, O. Arino, Modeling the intra-venous glucose tolerance test: A global study for a single-distributed-delay model, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 407-418. |
[8] | S. Panunzi, P. Palumbo, A. De Gaetano, A discrete single delay model for the intra-venous glucose tolerance test, Theor. Biol. Med. Modell., 4 (2007), 35. |
[9] | S. Panunzi, A. De Gaetano, G. Mingrone, Advantages of the single delay model for the assessment of insulin sensitivity from the intravenous glucose tolerance test, Theor. Biol. Med. Modell., 7 (2010), 9. |
[10] | J. Li, M. H. Wang, A. De Gaetano, P. Palumbo, S. Panunzi, The range of time delay and the global stability of the equilibrium for an IVGTT model, Math. Biosci., 235 (2012), 128-137. |
[11] | M. Pitchaimani, P. Krishnapriya, C. Monica, Mathematical modeling of intra-venous glucose tolerance test model with two discrete delays, J. Biol. Syst., 23 (2015), 1-30. |
[12] | X. Y. Shi, Y. Kuang, A. Makroglou, S. Mokshagundam, J. Li, Oscillatory dynamics of an intravenous glucose tolerance test model with delay interval, Chaos: Interdiscip. J. Nonlinear Sci., 27 (2017), 114324. |
[13] | Y. Zhang, T. A. Holt, N. Khovanova, A data driven nonlinear stochastic model for blood glucose dynamics, Comput. Methods Programs Biomed., 125 (2016), 18-25. |
[14] | A. K. Duun-Henriksen, S. Schmidt, R. R. Meldgaard, J. B. Moller, K. Norgaard, J. B. Jorgensen, et al., Model identification using stochastic differential equation grey-box models in diabetes, J. Diabetes Sci. Technol., 7 (2013), 431-440. |
[15] | B. Benyó, B. Paláncz, Á. Szlávecz, K. Stewart, J. Homlok, C. G. Pretty, et al., Analysis of stochastic noise of blood-glucose dynamics, IFAC Pap. OnLine, 50 (2017), 15157-15162. |
[16] | M. De la Sen, On positivity of singular regular linear time-delay time-invariant systems subject to multiple internal and external incommensurate point delays, Appl. Math. Comput., 190 (2007), 382-401. |
[17] | M. De la Sen, Absolute stability of feedback systems independent of internal point delays, IEE Proc. Control Theory Appl., 152 (2005), 567-574. |
[18] | A. L. Murillo, J. Li, C. Castillo-Chavez, Modeling the dynamics of glucose, insulin, and free fatty acids with time delay: The impact of bariatric surgery on type 2 diabetes mellitus, Math. Biosci. Eng., 16 (2019), 5765. |
[19] | P. Palumbo, P. Pepe, S. Panunzi, A. De Gaetano, Time-delay model-based control of the glucoseCinsulin system, by means of a state observer, Eur. J. Control, 18 (2012), 591-606. |
[20] | J. Sturis, K. S. Polonsky, E. Mosekilde, E. Van Cauter, Computer model for mechanisms underlying ultradian oscillations of insulin and glucose, Am. J. Physiol. Endocrinol. Metab., 260 (1991), 801-809. |
[21] | J. Li, Y. Kuang, C. C. Mason, Modeling the glucose-insulin regulatory system and ultradian insulin secretory oscillations with two explicit time delays, J. Theor. Biol., 242 (2006), 722-735. |
[22] | J. Li, Y. Kuang, Analysis of a model of the glucose-insulin regulatory system with two delays, SIAM J. Appl. Math., 67 (2007), 757-776. |
[23] | X. R. Mao, Stochastic Differential Equations and Applications, 2nd edition, Woodhead Publishing, Chichester, 2008. |
[24] | J. L. Lv, K. Wang, Almost sure permanence of stochastic single species models, Osaka J. Math., 422 (2015), 675-683. |
[25] | R. Liptser, A. N. Shiryayev, Theory of Martingales, Springer, 1989. |
[26] | K. Bahlali, Backward stochastic differential equations with locally Lipschitz coefficient, C. R. Acad. Sci., Ser. I: Math., 333 (2001), 481-486. |
[27] | N. Ikeda, S. Watanabe, A comparison theorem for solutions of stochastic differential equations and its applications, Osaka J. Math., 14 (1977), 619-633. |
[28] | E. L. Lehmann, G. Casella, Theory of Point Estimation, Springer, 2006. |
[29] | P. E. Greenwood, L. F. Gordillo, Stochastic epidemic modeling, in Mathematical and Statistical Estimation Approaches in Epidemiology (eds. G. Chowell, J. M. Hyman, L. M. A. Bettencourt, C. Castillo-Chavez), Springer, (2009), 31-52. |