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Abstract: Diabetes mellituse has been one of the major diseases in the world due to the high
percentage of diabetics in the global population and the increasing growth rate of its onset. Identifying
individual physiological characteristics, e.g., insulin sensitivity and glucose effectiveness and others,
is extremely important in developing effective drugs and investigating genetic pathways causing the
defects in these physiological responses. Intravenous glucose tolerance test (IVGTT) is such a protocol
to determine an individual insulin sensitivity and glucose effectiveness indices. In this paper, we
propose a stochastic delay differential equation model for the IVGTT protocol attempting to develop a
method to increase the accuracy of parameter estimation. We first study the existence and uniqueness
of the global positive solution and its asymptotic behavior of the stochastic path close to the steady
state of the corresponding deterministic model. Then we develop a maximum likelihood estimation
method to estimate the parameters involved in the proposed model. Our simulation studies numerically
confirm our theoretical findings and demonstrate that the proposed model with estimated parameters
can improve the fitness of clinical data.
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1. Introduction

Diabetes mellituse has been one of the major diseases in the world due to the high percentage of
diabetics in the whole population and the increasing growth rate of its onset. It is estimated that
415 million people are living with diabetes in the world, or 1 in 11 of the world adult population. In
addition, 46% of people with diabetes are not diagnosed yet. The number of diabetics is expected to
rise to 642 million by 2040 (https://www.diabetes.co.uk/diabetes-prevalence.html). Insulin sensitivity
(IS) and glucose effectiveness (GE) are two most important physiological characteristic factors, which
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are not only used to assess the onset of type 2 diabetes mellituse (T2DM) in research laboratories to
investigate the pathways to T2DM, but also evaluating the effectiveness of new drugs that increase the
insulin sensitivity and/or glucose effectiveness in research laboratories and pharmaceutical
manufacturers. To determine one’s insulin sensitivity and glucose effectiveness, Glucose Clamp Test
developed by DeFronzo et al. [1] is the gold standard for quantifying insulin sensitivity and further
glucose effectiveness. However, the rigorousness for performing a clamp test and the sufferings of the
subjects during and after the test enfeeble its applications. To mitigate the experiment process,
intravenous glucose tolerance test (IVGTT) was developed and became a popular protocol used by
research laboratories to estimate the insulin sensitivity and glucose effectiveness, in which,
experimental data is fitted with a differential equation model and the resulting model parameters are
used to quantify the ind ices of IS and GE. The most well known differential equation model is
minimal model developed by Bergman, Cobelli and their colleagues [2, 3], which was latter pointed
out by De Gaetano and Arino [4] that the model is not well-post and fitting would fail in certain cases.
This implies that suitable models and better parameter estimation methods are in demand
(see [4–12]).

In real life, approximately forty two factors affect the glucose-insulin metabolic system, such as
carbohydrates, medication, intense of activities, environments, and behaviors
(https://diatribe.org/42factors). Many of these factors, for example, stress level and hormone cycle,
are stochastic behavior. Stochastic differential equation (SDE) models are known as a powerful tool,
which not only accounts for the white noise in a system of differential equations, but also is able to
predict the future dynamics based on the corresponding deterministic system. There has been growing
interest in utilizing SDE to model the blood sugar levels. For instance, Zhang et al. [13] developed a
stochastic nonlinear second order differential equation with a Bayesian learning scheme to describe
the blood sugar levels. Duun-Henriksen et al. applied SDE to improve the prediction and uncorrelated
errors in a glucoregulatory system for type 1 diabetes mellitus [14]. While most studies introduced
stochastic noise in modeling with the assumption that the noise process is stationary Gaussian
process, interestingly, Benyó et al. [15] found that this stochastic term is Gaussian process but not
stationary.

In the modeling of biological systems, time delay is often an important factor to be considered.
The types of time delay can be divided into discrete delay, distributed delay, and internal (i.e. in the
state) or external (i.e. in the input or output), see [16]. Discrete delay and distributed delay are found
in many models, and we won’t list them here. Particllarly, De la Sen [17] proposed a time-delay
systems with non-commensurate internal point delays and discussed it’s absolute stability.
De la Sen [16] discussed the positivity properties of singular regular linear time-delay time-invariant
systems subject to multiple internal and external incommensurate constant point delays. In the
endocrine regulation system of blood glucose and insulin, there is a time delay for pancreatic cells to
secrete insulin according to the change of blood glucose concentration. Many glucose-insulin models
represent this delay in terms of discrete delays, see [10, 18, 19]. In 2017, Shi et al. [12] proposed a
novel approach to model the insulin secretion time delay on the basis of model (1.1), which used two
parameters to simulate both discrete time delay and distributed time delay.

In this paper, we propose a novel stochastic IVGTT model with a discrete time delay on basis of
the work in [10]. We show that our model permits a unique global positive solution. Besides, we
prove that although the proposed model doesn’t have a positive equilibrium point, its solution perturbs
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around a point near the positive equilibrium point of the corresponding deterministic system without
stochastic components. Moreover, we develop a maximum likelihood estimation (MLE) method to
estimate the parameters involved in the model. Our numerical studies show that the proposed model
with suitable parameters provided by the MLE method could improve the fitness of real data as
compared to the corresponding deterministic system.

The paper is organized as follows. Section 2 presents our proposed stochastic IVGTT model with a
time delay. In section 3, we prove the existence and uniqueness of the global positive solution of the
proposed model and examine the asymptotic behavior of the solution. Moreover, We also discuss how
the proposed model can be identified from the data. In section 4, we present a series of numerical
simulations to verify our theoretical findings in the paper and reveal some intriguing dynamics of our
stochastic model with respect to different noise disturbances. A brief discussion of the implications of
our results is presented in the last section.

2. A stochastic IVGTT model with a time delay

In IVGTT, after an overnight fasting so that both glucose and insulin remain to be at their vasal
levels, the subject is injected with a bolus of glucose (300 mL/kg) into a subject’s vein and then the
blood is immediately sampled at the time mark 2’, 4’, 6’, 8’, 10’, 12’, 15’, 20’, 25’, 30’, 35’, 40’, 50’,
60’, 80’, 100’, 120’, 140’, 160’ and 180’ to measure the glucose and insulin concentrations. Among
the aforementioned literature, Shi et al. [12] uses two parameters to simulate the insulin secretion delay
and investigated impact of delay interval in the past. Li et al. [10] proposed a deterministic dynamic
model and an approach to identify the length of time delay, which can be applied to reduce the number
of parameters in fitting data.

The deterministic dynamic model studied by [10] is given as follows,
dG(t)

dt
= G′(t) = b − S gG(t) − S iG(t)I(t),

dI(t)
dt

= I′(t) = σ f (G(t − τ)) − diI(t),

(2.1)

with initial condition G(θ) = φ(θ) > 0 and I(θ) = ψ(θ) > 0 for θ ∈ [−τ, 0], where G(t) > 0 and I(t) > 0
denote the glucose and insulin concentrations at time t, respectively; b > 0 is the rate constant of the
hepatic glucose production; S g > 0 is the consumption rate of the non-insulin-dependent glucose, also
known as glucose effectiveness index; S i > 0 is the consumption rate of the insulin-dependent glucose
per unit of insulin concentration, also known as insulin sensitivity index; σ > 0 is the maximum insulin
release rate; di > 0 is the constant insulin degradation rate, and σ f (G(t − τ)) represents the insulin
secretion response to glucose stimulation with time delay τ > 0. According to physiology [10,20–22],
f (·) is in sigmoidal shape and takes the form as in [10]:

f (x) =
xr

ar + xr ,

with a > 0 as the half−saturation and r ≥ 2. Our novel stochastic model is built upon the system (2.1)
proposed by Li et al. [10], in which, we only consider the stochastic disturbance on the glucose
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effectiveness index S g and insulin degradation rate di for the sake of simplicity. More specifically, at a
given time t, the glucose effectiveness index S g and insulin degradation rate di are perturbed as

S g + α1
dB1(t)

dt
and di + α2

dB2(t)
dt

,

respectively, where Bi(t), i = 1, 2, are two independent standard Brownian motions, and αi(i = 1, 2) are
positive constants with α2

i representing the intensity of the white noise Bi(t). As a result, we formulate
following stochastic system

dG(t) = (b − S gG(t) − S iG(t)I(t))dt + α1G(t)dB1(t),

dI(t) = (σ f (G(t − τ)) − diI(t))dt + α2I(t)dB2(t),
(2.2)

with the same initial condition as that in the system (2.1)

G(θ) = φ(θ) > 0 and I(θ) = ψ(θ) > 0 for θ ∈ [−τ, 0], (2.3)

and the parameters b, S g, S i, σ and di have the same meaning as the system (2.1).
We shall investigate the influences of random disturbance on system dynamics, and use the proposed

model to fit the IVGTT data sets.

3. Theoretical properties

In this section, we study the theoretical properties of the proposed stochastic system (2.2), which
show that the system (2.2) is well-post. We start with introducing some necessary notations, definition
and lemmas which will be used to prove our main results.

Let (Ω,F , {Ft}t≥0, P) be a complete probability space with a filtration {Ft}t≥0 satisfying the usual
conditions that F0 contains all P null sets and Ft1 ⊆ Ft2 if t1 ≤ t2. Let Bi(t), i = 1, 2 denote two
scalar Brownian motions defined on the complete probability space Ω. Also let Y(t)=(G(t), I(t))T and
R2

+ = R+ × R+, where R+ is the collection of all positive real numbers.
Lemma 3.1 (Itô ’s formula [23]) Let

dY(t) = f (t)dt + g(t)dB(t)

be a d-dimensional Itô process, where f ∈ L1(R+;Rd), g(t) ∈ L2(R+;Rd×m). Let V(X, t) ∈ C2,1(Rd ×

R+;R). Then the process V(X, t) is again an Itô process, whose differential equation is given by

dVk(x, t) =

(
Vt(X, t) + VX(X, t) f (t) +

1
2

trace[gT(t)VXX(X, t)g(t)]
)

dt

+ VX(X, t)g(t)dB(t) a.s.

Definition 3.1 (Lv and Wang [24]) A stochastic system is said to be almost surely stochastically
permanent if for any initial value x0 ∈ R

n
+, the solution x(t) = (x1(t), x2(t), ..., xn(t)) satisfies

0 < lim inf
t→∞

xi(t) ≤ lim sup
t→∞

xi(t) < ∞, a.s. i = 1, 2, ...n.
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Lemma 3.2 (Lipster and Shiryayev [25]) Let A(t) and U(t) be two continuous adapted increasing
process on t ≥ 0 with A(0) = U(0) = 0 a.s. Let M(t) be a real-valued continuous local martingale with
M(0) = 0 a.s. Let X0 be a nonnegative F0 -measurable random variable such that EX0 < ∞. Define
X(t) = X0 + A(t) − U(t) + M(t) for all t ≥ 0. If X(t) is nonnegative, then

{lim
t→∞

A(t) < ∞} ⊂ {lim
t→∞

U(t) < ∞} ∩ {lim
t→∞

X(t) < ∞} a.s.

Lemma 3.3 For the linear stochastic differential equation

dx(t) = (m − nx(t))dt + ρx(t)dB(t). (3.1)

Let x(0) = x0 > 0, Eq (3.1) is almost surely stochastically permanent, i.e, x(t) to Eq (3.1) satisfies

0 < lim inf
t→∞

x(t) ≤ lim sup
t→∞

x(t) < ∞. (3.2)

Proof. Applying Itô’s formula to Eq (3.1) leads to

d(ectx(t)) = cectx(t)dt + ect(m − nx(t))dt + ectρx(t)dB(t).

Integrating both sides from 0 to t gives

ectx(t) = x0 +

∫ t

0
ecs(m − (n − c)x(s))ds +

∫ t

0
ρecsx(s)dB(s).

If we choose sufficiently small positive constant c and find a suitable positive constant C1, we can get
that

ectx(t) ≤ x0 + C1(ect − 1)ds +

∫ t

0
ρecsx(s)dB(s).

Hence

x(t) ≤ x0 + C1 +

∫ t

0
ρe[c(s−t)]x(s)dB(s).

Denote Z1(t) = x0 + C1 +
∫ t

0
ρe[c(s−t)]x(s)dB(s). It follows from Lemma 3.2 that

lim sup
t→∞

x(t) < lim
t→∞

Z1(t) < ∞ a.s. (3.3)

On the other hand, by Itô’s formula, we obtain

d(etx−1(t)) = etx−1(t)dt − etx−2(m − nx(t))dt + etρ2x−1(t)dt − etρx−1(t)dB(t)
= [et(1 + n + ρ2)x−1(t) − etmx−2(t)]dt − etρx−1(t)dB(t).

Setting y(t) = x−1(t), we can rewrite the above equations as

d(ety(t)) = [et(1 + n + ρ2)y(t) − etmy2(t)]dt − etρy(t)dB(t).

We deduce

ety(t) = y0 +

∫ t

0
es[(1 + n + ρ2)y(s) − my2(s)]ds −

∫ t

0
esρy(s)dB(s).
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Then,

y(t) = y0e−t +

∫ t

0
e(s−t)[(1 + n + ρ2)y(s) − my2(s)]ds −

∫ t

0
e(s−t)ρy(s)dB(s).

We can choose suitable constant C2 such that

y(t) ≤ y0 + C2 −

∫ t

0
e(s−t)ρy(s)dB(s).

Denote Z2(t) = y0 + C2 −
∫ t

0
e(s−t)ρy(s)dB(s). By Lemma 3.2 , we have

lim sup
t→∞

x−1(t) = lim sup
t→∞

y(t) < lim
t→∞

Z2(t) < ∞ a.s.

Consquently
1

lim inf
t→∞

x(t)
= lim sup

t→∞
x−1(t) < ∞ a.s.

Namely
lim inf

t→∞
x(t) > 0 a.s. (3.4)

From (3.3) and (3.4) we know that Eq (3.1) is almost surely stochastically permanent. The lemma is
completed. �

3.1. The existence and uniqueness of the global positive solution

We first demonstrate that under some mild conditions, there exists a unique global positive solution
Y(t) of system (2.2) on time t ≥ 0 almost surely.

Theorem 3.1. For any given initial value (2.3), there exists a unique global positive solution Y(t) ∈ R2
+

of system (2.2) on time t ≥ 0 almost surely, that is, the solution will remain in R2
+ with probability 1.

Proof. As the system (2.2) has locally Lipschitz continuous coefficients, for any given initial
value (2.3), the system (2.2) admits a unique maximal local solution Y(t) on t ∈ [−τ, τe), where τe is
the explosion time [26]. Since

G(t) = G(0)e−(S g+S iI(s)+
α2

1
2 )t+α1B1(t) +

∫ t

0
be−(S g++S iI(s)+

α2
1

2 )(t−s)+α1(B1(t)−B1(s))ds, t ∈ [−τ, τe)

and

I(t) = I(0)e−(di+
α2

2
2 )t+α2B2(t) +

∫ t

0
σ f (G(t − τ))e−(di+

α2
2

2 )(t−s)+α2(B2(t)−B2(s))ds, t ∈ [−τ, τe),

it is easy to know that G(t) > 0, I(t) > 0 for the given initial value (2.3). i.e. the system (2.2) has a
unique positive local solution Y(t) on t ∈ [−τ, τe).

In order to verify the solution is global, we only need to prove that τe = ∞ a.s.
From the first equation of system (2.2), we have

dG(t) ≤ (b − S gG(t))dt + α1G(t)dB1(t).
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Let

Φ(t) = G(0)e−(S g+
α2

1
2 )t+α1B1(t) +

∫ t

0
be−(S g+

α2
1

2 )(t−s)+α1(B1(t)−B1(s))ds.

Thus, Φ(t) is the solution of the following system{
dΦ(t) = (b − S gΦ(t))dt + α1Φ(t)dB1(t),
Φ(0) = G(0).

(3.5)

By comparison principle for stochastic differential equations [27], we obtain that

G(t) ≤ Φ(t), t ∈ [−τ, τe) a.s.

Lemma 3.2 indicates the system (3.5) is is almost surely stochastically permanent. Hence there exists
a positive constant ΦM satisfied Φ(t) ≤ ΦM for all t ≥ 0 a.s.

Similarly, from the second equation of (2.2), we can get

dI(t) ≤ (σ f (ΦM) − diI(t))dt + α2dB2(t).

Then
I(t) ≤ Ψ(t) ≤ ΨM, t ∈ [−τ, τe) a.s.

where ΨM is a positive constant and

Ψ(t) = I(0)e−(di+
α2

2
2 )t+α2B2(t) +

∫ t

0
σ f (ΦM)e−(di+

α2
2

2 )(t−s)+α2(B2(t)−B2(s))ds.

On the other hand,
G(t) ≥ (b − (S g + S iΨM)G(t))dt + α1G(t)dB(t),

then
G(t) ≥ ϕ(t) ≥ ϕm, t ∈ [−τ, τe) a.s.

where ϕm is a positive constant and

ϕ(t) = G(0)e−(S g+S iΨM+
α2

1
2 )+α1B1(t) +

∫ t

0
be−(S g+S iΨM+

α2
1

2 )(t−s)+α1(B1(t)−B1(s))ds.

dI(t) ≥ (σ f (ϕm) − diI(t))dt + α2I(t)dB2(t)

Then,
I(t) ≥ ψ(t) > ψm t ∈ [−τ, τe) a.s.

where ψm is a positive constant and

ψ(t) = I(0)e−(di+
α2
2 )t+α2B2(t) +

∫ 2

0
σ f (ϕm)e−(di+

α2
2 )(t−s)+α2(B2(t)−B2(s))ds.

From above, we have

ϕ(t) ≤ G(t) ≤ Φ(t), ψ(t) ≤ I(t) ≤ Ψ(t), t ∈ [−τ, τe) a.s.

Notice that ϕ(t),Φ(t), ψ(t) and Ψ(t) are the solution of linear stochastic differential equation, and they
all exist for t ≥ 0. Hence, for the given initial value (2.3), the system (2.2) has a unique positive global
solution Y(t) on t ≥ 0. This completes the proof of Theorem 3.1. �
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From the above argument, we know that

ϕ(t) ≤ G(t) ≤ Φ(t), ψ(t) ≤ I(t) ≤ Ψ(t), t ≥ 0 a.s.

and Lemma 3.2 admits that the linear stochastic differential system is almost surely stochastically
permanent, we can also get the following theorem:

Theorem 3.2. System (2.2) is almost surely stochastically permanent, i.e, Y(t) to Eq (2.2) satisfies

0 < lim inf
t→∞

Y(t) ≤ lim sup
t→∞

Y(t) < ∞. (3.6)

Let Γ = {Y(t) ∈ R2
+ : 0 < G(t), I(t) 6 N, t ≥ 0} denote the the positive invariant set of the

system (2.1), where N = max{ΦM,ΨM}, where ΦM,ΨM is defined as Theorem 3.1. From Theorem 3.2,
it’s easy to know that Γ is also a positive invariant set of the stochastic delayed model (2.2) almost
surely, i.e., if Y(0) ∈ Γ, then P (Y(t) ∈ Γ) = 1, t > 0.

3.2. Analysis of asymptotic behavior

According to [10], there is a positive equilibrium state E+(G∗, I∗) in the deterministic system (2.1).
However, it is no longer the equilibrium point of the corresponding stochastic system (2.2). In this
section, we will study the asymptotic behavior of the solution of system (2.2) around the point
E+(G∗, I∗).

Noting that f ′(x) = rar xr−1

(ar+xr)2 , it is easy to get M′, the maximum value of f ′(x), as follows

sup
x→∞

f ′(x) =
(r + 1)2

4ra

(
r − 1
r + 1

) r−1
r

, M′,

by the extremum theorem.

Theorem 3.3. If there exist u > 0 and ε > 0 such that

1
2
σM′(S g + S iI∗)τ +

1
2

uα2
1 < uS g + uS iI∗ −

ε

2
Mu

and
1
2
σM′(2S iΦM + S g + S iI∗)τ +

1
2
α2

2 < di −
1
2ε

Mu,

then for any Y(0) ∈ Γ, the following results holds:

lim
t→∞

sup
1
t
E

∫ t

0


G(s) −

uS g + uS iI∗ − ε
2 Mu −

σM′
2 (S g + S iI∗)τ

uS g + uS iI∗ − ε
2 Mu −

σM′
2 (S g + S iI∗)τ − 1

2uα2
1

G∗
2

×I(s) −
di −

1
2εMu −

σM′
2 (2S iΦM + S g + S iI∗)τ

di −
1
2εMu −

σM′
2 (2S iΦM + S g + S iI∗)τ − 1

2α
2
2

I∗
2 ds 6

H1

H2
. (3.7)

where Mu = max{σM′, uS iΦM}, and

H1 =

(
uS g + uS iI∗ − ε

2 Mu −
σM′

2 (S g + S iI∗)τ
)

1
2uα2

1

uS g + uS iI∗ − ε
2 Mu −

σM′
2 (S g + S iI∗)τ − 1

2uα2
1

G∗2
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+

(
di −

1
2εMu −

σM′
2 (2S iΦM + S g + S iI∗)τ

)
1
2α

2
2

di −
1
2εMu −

σM′
2 (2S iΦM + S g + S iI∗)τ − 1

2α
2
2

I∗2, (3.8)

and

H2 = min
{

uS g + uS iI∗ −
ε

2
Mu −

σM′

2
(S g + S iI∗)τ −

1
2

uα2
1 ,

di −
1
2ε

Mu −
σM′

2
(2S iΦM + S g + S iI∗)τ −

1
2
α2

2

}
. (3.9)

Proof. Define

W(Y(t)) =
1
2

u(G(t) −G∗)2 +
1
2

(I(t) − I∗)2, and

U(Y(t)) = C
∫ t

t−τ

∫ t

z
(G(s) −G∗)2dsdz + D

∫ t

t−τ

∫ t

z
(I(s) − I∗)2dsdz,

where C , RL/2, D , KL/2, L , σM′, R , S g + S iI∗, K , S iΦM.
Let V(Y(t)) = W(Y(t)) + U(Y(t)). It is straightforward to check that V(Y(t)) is a Liapunov function.

By the mean value theorem, we get

f (G(t − τ)) − f (G∗) = f ′(ξ) (G(t − τ) −G∗) = f ′(ξ) (G(t − τ) −G(t) + G(t) −G∗) ,

where the value ξ is between G(t − τ) and G∗. By the inequality 2ab 6 (a2 + b2), we deduce

(I(t) − I∗)(G(t) −G(t − τ)) = (I(t) − I∗)
∫ t

t−τ
dG(s)

=

{∫ t

t−τ

(
b − S gG(s) − S iG(s)I(s)

)
ds +

∫ t

t−τ
α1G(s)dB1(s)

}
(I(t) − I∗)

=

∫ t

t−τ

[
S g(G∗ −G(s))(I(t) − I∗) + S iG(s)(I∗ − I(s))(I(t) − I∗)

+ S iI∗(G∗ −G(s))(I(t) − I∗)
]
ds +

∫ t

t−τ
(I(t) − I∗)α1G(s)dB1(s)

=

∫ t

t−τ

[
(S g + S iI∗)(G∗ −G(s))(I(t) − I∗) + S iG(s)(I∗ − I(s))(I(t) − I∗)

]
ds

+

∫ t

t−τ
(I(t) − I∗)α1G(s)dB1(s)

6
1
2

[
R

∫ t

t−τ
(G(s) −G∗)2ds + K

∫ t

t−τ
(I(s) − I∗)2ds + τ(R + K)(I(t) − I∗)2

]
+

∫ t

t−τ
(I(t) − I∗)α1G(s)dB1(s).

Applying the Itô’s formula and the inequality ab ≤ ε
2a2 + 1

2εb2 for ε > 0, we obtain

dW =

{
u(G(t) −G∗)

(
S gG∗ + S iG∗I∗ − S gG(t) − S iG(t)I(t)

)
+

1
2

uα2
1G(t)2
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+(I(t) − I∗)
(
σ ( f (G(t − τ)) − f (G∗)) − di(I(t) − I∗)

)
+

1
2
α2

2I(t)2
}

dt

+ uα1(G(t) −G∗)G(t)dB1(t) + α2(I(t) − I∗)I(t)dB2(t)

=

{
u(G(t) −G∗)

(
− S g(G(t) −G∗) − S iI∗

(
G(t) −G∗

)
− S iG(t)

(
I(t) − I∗

))
+

1
2

uα2
1G

2(t) + (I(t) − I∗)
(
σ
(
f (G(t − τ)) − f (G∗)

)
− di

(
I(t) − I∗

))
+

1
2
α2

2I2(t)
}
dt + uα1(G(t) −G∗)GdB1(t) + α2(I(t) − I∗)IdB2(t)

=

{
−

(
uS g + uS iI∗

)
(G(t) −G∗)2 − uS iG(t)

(
G(t) −G∗

)(
I(t) − I∗

)
+ σ f ′(ξ)

(
I(t) − I∗

)(
G(t) −G∗

)
− di(I(t) − I∗)2

+σ f ′(ξ)
(
I(t) − I∗

)(
G(t − τ) −G(t)

)
+

1
2

uα2
1G

2(t) +
1
2
α2

2I2(t)
}

dt

+ uα1(G(t) −G∗)G(t)dB1(t) + α2(I(t) − I∗)I(t)dB2(t)

6
{
−

(
uS g + S iI∗

)
(G(t) −G∗)2 +

∣∣∣σ f ′(ξ) − uS iG(t)
∣∣∣∣∣∣G(t) −G∗

∣∣∣∣∣∣I(t) − I∗
∣∣∣

−di(I(t) − I∗)2 + L(I(t) − I∗)
(
G(t − τ) −G(t)

)
+

1
2

uα2
1G

2(t) +
1
2
α2

2I2(t)
}

dt

+ uα1(G(t) −G∗)G(t)dB1(t) + α2(I(t) − I∗)I(t)dB2(t)

6
{
−

(
uS g + uS iI∗

)
(G(t) −G∗)2 +

ε

2
Mu(G(t) −G∗)2 − di(I(t) − I∗)2

+
1
2ε

Mu
(
I(t) − I∗

)2
+ L

(
I(t) − I∗

)(
G(t − τ) −G(t)

)
+

1
2

uα2
1G

2(t)

+
1
2
α2

2I2(t)
}
dt + uα1(G(t) −G∗)G(t)dB1(t) + α2(I(t) − I∗)I(t)dB2(t)

6

{
−

(
uS g + uS iI∗ −

ε

2
Mu

)
(G(t) −G∗)2 −

(
di −

1
2ε

Mu −
L
2

(R + K)τ
)

(I(t) − I∗)2

+
1
2

uα2
1G

2(t) +
1
2
α2

2I2(t) + C
∫ t

t−τ
(G(s) −G∗)2ds

+D
∫ t

t−τ
(I(s) − I∗)2ds + L

∫ t

t−τ
(I(t) − I∗)α1G(s)dB1(s)

}
dt

+ uα1(G(t) −G∗)G(t)dB1(t) + α2(I(t) − I∗)I(t)dB2(t).

Besides,

dU = −C
∫ t

t−τ
(G(s) −G∗)2ds + Cτ(G(t) −G∗)2 − D

∫ t

t−τ
(I(s) − I∗)2ds + Dτ(I(t) − I∗)2,

Hence,

dV 6
{
−

(
uS g + uS iI∗ −

ε

2
Mu −Cτ

)
(G(t) −G∗)2 +

1
2

uα2
1G

2(t)
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−

(
di −

1
2ε

Mu −
L
2

(R + K)τ − Dτ
)

(I(t) − I∗)2 +
1
2
α2

2I2(t)

+L
∫ t

t−τ
(I(t) − I∗)α1G(s)dB1(s)

}
dt

+ uα1(G(t) −G∗)G(t)dB1(t) + α2(I(t) − I∗)I(t)dB2(t)

6

{
−

(
uS g + uS iI∗ −

ε

2
Mu −

σ

2
M′(S g + S iI∗)τ −

1
2

uα2
1

)
×

G(t) −
uS g + uS iI∗ − ε

2 Mu −
σ
2 M′(S g + S iI∗)τ

uS g + uS iI∗ − ε
2 Mu −

σ
2 M′(S g + S iI∗)τ − 1

2uα2
1

G∗
2

−

(
di −

1
2ε

Mu −
σM′

2
(R + K)τ −

1
2
σM′S iΦMτ −

1
2
α2

2

)
×

I(t) −
di −

1
2εMu −

σM′
2 (R + K)τ − 1

2σM′S iΦMτ

di −
1
2εMu −

σM′
2 (R + K)τ − 1

2σM′S iΦMτ −
1
2α

2
2

I∗
2

+

(
uS g + uS iI∗ − ε

2 Mu −
σ
2 M′(S g + S iI∗)τ

)
1
2uα2

1

uS g + uS iI∗ − ε
2 Mu −

σ
2 M′(S g + S iI∗)τ − 1

2uα2
1

G∗2

+

(
di −

1
2εMu −

σM′
2 (R + K)τ − 1

2σM′S iΦMτ
)

1
2α

2
2

di −
1
2εMu −

σM′
2 (R + K)τ − 1

2σM′S iΦMτ −
1
2α

2
2

I∗2

+σM′

∫ t

t−τ
(I(t) − I∗)α1G(s)dB1(s)

}
dt

+ uα1(G(t) −G∗)G(t)dB1(t) + α2(I(t) − I∗)I(t)dB2(t).

Taking integral from 0 to t and expectations, we get

E[V(Y(t))] = V(Y(0)) + E

∫ t

0
dV

6V(Y(0)) + E

∫ t

0

{
−

(
uS g + uS iI∗ −

ε

2
Mu −

σ

2
M′(S g + S iI∗)τ −

1
2

uα2
1

)
×

G(s) −
uS g + uS iI∗ − ε

2 Mu −
σ
2 M′(S g + S iI∗)τ

uS g + uS iI∗ − ε
2 Mu −

σ
2 M′(S g + S iI∗)τ − 1

2uα2
1

G∗
2

−

(
di −

1
2ε

Mu −
σM′

2
(R + K)τ −

1
2
σM′S iΦMτ −

1
2
α2

2

)
×

I(s) −
di −

1
2εMu −

σM′
2 (R + K)τ − 1

2σM′S iΦMτ

di −
1
2εMu −

σM′
2 (R + K)τ − 1

2σM′S iΦMτ −
1
2α

2
2

I∗
2 ds

+ H1t + E

∫ t

0
L
∫ z

z−τ
(I(z) − I∗)α1G(s)dB1(s)dz,

where

H1 =

(
uS g + uS iI∗ − ε

2 Mu −
1
2σM′(S g + S iI∗)τ

)
1
2uα2

1

uS g + uS iI∗ − ε
2 Mu −

1
2σM′(S g + S iI∗)τ − 1

2uα2
1

G∗2
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+

(
di −

1
2εMu −

1
2σM′(2S iΦM + S g + S iI∗)τ

)
1
2α

2
2

di −
1
2εMu −

1
2σM′(2S iΦM + S g + S iI∗)τ − 1

2α
2
2

I∗2.

Note that

E

∫ t

0

∫ z

z−τ
(I(z) − I∗)α1G(s)dB1(s)dz 6 E

∫ t

0

∫ z

z−τ
MdB1(s)dz

=E

∫ t

0
M(B1(z) − B1(z − τ))dz = M

∫ t

0
E
(
B1(z) − B1(z − τ)

)
dz = 0,

where M = max
{∣∣∣MI − I∗

∣∣∣α1ΦM,
∣∣∣I(0) − I∗

∣∣∣α1G(0)
}
.

Therefore,

E

∫ t

0

{(
uS g + uS iI∗ −

ε

2
Mu −

σ

2
M′(S g + S iI∗)τ −

1
2

uα2
1

)
×

G(s) −
uS g + uS iI∗ − ε

2 Mu −
σ
2 M′(S g + S iI∗)τ

uS g + uS iI∗ − ε
2 Mu −

σ
2 M′(S g + S iI∗)τ − 1

2uα2
1

G∗
2

+

(
di −

1
2ε

Mu −
σM′

2
(R + K)τ −

1
2
σM′S iΦMτ −

1
2
α2

2

)
×

I(s) −
di −

1
2εMu −

σM′
2 (R + K)τ − 1

2σM′S iΦMτ

di −
1
2εMu −

σM′
2 (R + K)τ − 1

2σM′S iΦMτ −
1
2α

2
2

I∗
2 ds

6 V(Y(0)) + H1t + σM′E

∫ t

0

∫ z

z−τ
(I(z) − I∗)α1G(s)dB1(s)dz

6 V(Y(0)) + H1t. (3.10)

Denote

H2 = min
{

uS g + uS iI∗ −
ε

2
Mu −

σ

2
M′(S g + S iI∗)τ −

1
2

uα2
1 ,

di −
1
2ε

Mu −
σM′

2
(R + K)τ −

1
2
σM′S iΦMτ −

1
2
α2

2

}
.

From the conditions of the theorem, it is easy to know H1 > 0 and H2 > 0. Taking the limit superior of
both sides of (3.10) leads to

lim
t→∞

sup
1
t
E

∫ t

0


G(s) −

uS g + uS iI∗ − ε
2 Mu −

σ
2 M′(S g + S iI∗)τ

uS g + uS iI∗ − ε
2 Mu −

σ
2 M′(S g + S iI∗)τ − 1

2uα2
1

G∗
2

I(s) −
di −

1
2εMu −

σM′
2 (R + K)τ − 1

2σM′S iΦMτ

di −
1
2εMu −

σM′
2 (R + K)τ − 1

2σM′S iΦMτ −
1
2α

2
2

I∗
2 ds 6

H1

H2
.

Substituting R, K into (3.11), we can obtain the conclusion (3.7). This completes the proof of
Theorem 3.3. �
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Remark 3.1. The stochastic system (2.2) does not have a positive equilibrium point, but the
solutions of the system perturbs around a point near the positive equilibrium point of its
corresponding deterministic system. From the Theorem 3.3, we deduce that the smaller the stochastic
disturbance is, the closer the point is to the positive equilibrium point, and the vibration amplitude
decreases as the disturbance decreases.

3.3. The parameters estimation

Although the stochastic system (2.2) is constructed based on the deterministic system (2.1), it can
be identified directly from the data without the necessity of finding (2.1) in advance. We propose to
estimate the parameters in (2.2) by a maximum likelihood estimation (MLE) method. Let
θ = (b, S g, S i, di, a, r, σ, τ, α1, α2)> be the collection of parameters in the system (2.2). Recall that
Y(t)=(G(t), I(t))>. Let h(Y(t), θ) = (b − S gG(t) − S iG(t)I(t), σ f (G(t − τ)) − diI(t))>,
B(t) = (B1(t), B2(t)), and φ(Y(t), θ) = (α1G(t), α2I(t))>. Then the system (2.2) can be represented as

dY(t) = h(Y(t), θ)dt + φ(Y(t), θ)dB(t), t ≥ 0, Y(0) = y0.

As ∆t → 0, the Euler scheme produces the following discretization:

Y(t + ∆t) − Y(t) = h(Y(t), θ)∆t + φ(Y(t), θ) (B(t + ∆t) − B(t)) .

Since B1(t) and B2(t) are two independent Brownian motions, Y(t + ∆t) − Y(t) are a two-dimensional
Gaussian independent variables with mean h(Y(t), θ)∆t and covariance matrix

Σ(Y(t), θ)∆t =

(
α2

1G
2(t) 0

0 α2
2I2(t)

)
∆t.

Let δi(θ) = Y(ti) − Y(ti−1) − h(Y(ti−1), θ)(ti − ti−1) , where Y(t0) = y0. We obtain the following log-
likelihood function:

ln(θ|Y(t1), · · · ,Y(tn)) = −
1
2

n∑
i=1

(
δi(θ)>

(
Σ(Y(ti−1), θ)(ti − ti−1)

)−1
δi(θ)

+ ln
(
|Σ(Y(ti−1), θ)(ti − ti−1)|

))
.

By maximizing the above log-likelihood function with respect to θ, we can obtain a consistent
estimator, denoted by θ̂, under some mild conditions [28].

In fact, Li et al. [10] showed that the delay of insulin secretion can be estimated by observing
the second peak of insulin secretion. Physiological facts ensure that both glucose and insulin return
to their basal level after about three hours, which allows two parameters can be expressed by other
parameters. These will reduce the number of parameters in the parameter space θ and hence improves
the estimation accuracy of θ̂.

4. Simulations

In this section, in order to illustrate our theoretical findings, we provide some numerical simulations
of system (2.2) and the solution of the corresponding deterministic system (2.1). Simulations are
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performed by using Matlab Euler Maruyama method for SDE. We used experiment data listed in
Tables 1 and 2 in [10], which originated from [4] and [8]. We consider the typical data set from
subjects 6,7 and 27 .

In section 3.3, we proposed a MLE method to estimate the parameters in the system (2.2). However,
since the number of data points for each subject is relatively small (around 20) and the log-likelihood
function is considerably complicated, it is challenging to get a reasonable estimate of all parameters
in θ. Instead, we fix the values of (b, S g, S i, di, a, r, σ, τ) as suggested in [10] and maximize the log-
likelihood function with respect to (α1, α2) only. And we also consider the delay as approximating
the time between the primary insulin release and the trough in insulin concentration determined by
its secondary release. The values of (b, S g, S i, di, a, r, σ, τ) and the maximum likelihood estimates of
(α1, α2) for each subject are listed in Table 1.

Table 1. Model parameter values of subjects 6, 7 and 27 in [10] and the maximum likelihood
estimates of (α1, α2).

Subjects # 6 # 7 # 27
b 2.16826 1.24217 0.246901

S g 0.0221502 1.0081 × 10−6 5 × 10−5

S i 3.77371 × 10−5 0.000369212 6.37576 × 10−5

di 0.1125 0.18146 0.09
a 120.506 102.628 160
r 4.11393 3.31137 3.2
σ 35.8389 18.9992 32.3333
τ 8.25 10.1688 21.25
α̂1 0.012 0.015 0.023
α̂2 0.087 0.104 0.127

To fit the data from subject 6 with the system (2.2), we choose u = 9.2, ε = 1.3 in Theorem 3.3 and
consider three different sets of (α1, α2): (0.005, 0.005), (0.012, 0.087) and (0.07, 0.175), stimulating
very small, adequate, and too large stochastic disturbances, respectively. By calculation, it can be seen
that the conditions of Theorem 3.3 are satisfied by using these first two sets of (α1, α2) but not satisfied
by using the third set.

For each set of (α1, α2), we conducted 1000 Monte-Carlo simulations. In each simulation, we
compute the sum of the root mean square errors (RMSE) of glucose and insulin. We calculate the
percentage of simulations that reduce the sum of RMSEs of glucose and insulin as compared to the
system (2.1), and then compute the average reduction and the maximum reduction of those simulations.
Moreover, we calculate the ratios of the average reduction and the maximum reduction to the sum of
RMSEs of glucose and insulin in the system (2.1). The simulation results are reported in the following
table.

The simulation results suggest that the intensity of stochastic components in the system (2.2) needs
to be carefully chosen. On one hand, if the intensity is too small, the improvement of model fitness
is not sufficient. On the other hand, the over-large intensity may fail to improve the model fitness. In
addition, the simulation results also indicate that given a reasonable set of values of the parameters
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(b, S g, S i, di, a, r, σ, τ)>, the proposed MLE method can provide satisfactory estimates of (α1, α2) and
the solution of the proposed system (2.2) can significantly improve the model fitness with certain
probabilities.

Table 2. The results of 1000 Monte-Carlo simulations for subject 6.

(α1, α2) Percentage Average reduction (Ratio) Maximum reduction (Ratio)
(0.005, 0.005) 32.7% 0.733 (2.0%) 3.051 (8.3%)
(0.012, 0.087) 5.5% 2.433 (6.6%) 9.010 (24.4%)
(0.07, 0.175) 0% 0 0

Table 3. The results of 1000 Monte-Carlo simulations for subjects 7 and 27.

Subject # (α1, α2) Percentage Average reduction (Ratio) Maximum reduction (Ratio)
# 7 (0.015, 0.104) 3.7% 1.182 (5.0%) 5.200 (22.0%)

# 27 (0.023, 0.127) 4.8% 6.529 (6.8%) 25.320 (26.3%)

Figures 1–3 depict the solution curves of the system (2.2) from three simulation with
(α1, α2) = (0.005, 0.005), (0.012, 0.087) and (0.07, 0.175), respectively. By comparing the three
figures, we note that as the values of α1 and α2 get larger, the disturbance amplitudes of the solution
curves of the stochastic system (2.2) are enlarged and consequently depart further away from the
positive equilibrium point of system (2.1). This phenomena is expected as α2’s control the intensity of
disturbance, and confirms our theoretical findings in Theorem 3.3. In the process of IVGTT, there
may be many disturbance of human activity that are hard to control such as psychological pressure,
emotions, excessive morning exercises and so on. Our simulations also suggest that if the
disturbances of human activity are enough large, there may be larger error in diagnostic results
provided by a deterministic model.
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Figure 1. One simulation of profiles of subject 6 with α1 = 0.005, α2 = 0.005.

To fit the data from subjects 7 and 27 with the system (2.2), we conducted 1000 Monte-Carlo
simulations of the proposed system with the corresponding MLE estimates of (α1, α2). Figures 4 and 5
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display the solution curves from one simulation for subject 7 and one simulation for subject 27.
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Figure 2. One simulation of profiles of subject 6 with α1 = 0.012, α2 = 0.087.
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Figure 3. One simulation of profiles of subject 6 with α1 = 0.07, α2 = 0.175.

In each simulation, we also compare the resulting model fitness to that of the deterministic
system (2.1). The summary statistics for subjects 7 and 27 are presented in Table 3. The results again
show that with the (α1, α2) estimated by the MLE method, the solution of the proposed (2.2) can
significantly provide better data fitting than the deterministic model with certain probabilities. In fact,
we have used our model to the data from many other subjects who originally appeared in [4, 8] and
obtained similar observations. We speculate that if the number of data points is sufficiently large so
that all parameters in the system (2.2) can be estimated by the MLE method, the proposed stochastic
model and the associated deterministic model with the MLE estimates can provide better data fitting
than many existing models [4, 8, 10, 12]. We will explore this estimation of all parameters in θ in
future work.
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Figure 4. One simulation of profiles of subject 7 with α1 = 0.015, α2 = 0.104.

0 20 40 60 80 100 120 140 160 180

Time (min) 

0

50

100

150

200

250

300

350

G
lu

co
se

 (
m

g/
m

l)

Subject #27: glucose Profiles

data
Deterministic model
Stochastic model

0 20 40 60 80 100 120 140 160 180

Time (min)

0

200

400

600

800

1000

1200

In
su

lin
 (
7

U
/m

l)
Subject #27: insulin Profiles

data
Deterministic model
Stochastic model

Figure 5. One simulation of profiles of subject 27 with α1 = 0.023, α2 = 0.127.

5. Discussion

Our work in this paper is an initial investigation of the stochastic dynamic modeling for the data
from the protocol of intravenous glucose tolerance test. Our approach includes formulating a
well-post stochastic dynamic model (2.2) according to a deterministic model (2.2) and then
developing a maximum log-likelihood estimation method to improve the data fitting of the
deterministic model (2.1). In general, deterministic model and stochastic model are alternate
viewpoints on the same physiological metabolic phenomenon and offer complementary insights [29].
(More detail discussions regarding to the relations of deterministic models and stochastic models with
various examples can be found in [29].) The model (2.2) can be viewed as a more flexible platform
built upon the corresponding model (2.1) by allowing the stochastic rate of S g and di. The proposed
model can possibly improve the estimations of the parameters by the MLE method studied in
section 3.3. Our simulation studies numerically confirm our theoretical findings and demonstrate that
the proposed model with estimated parameters can improve the fitness of clinical data.

Parameter estimation for dynamical system models has been a challenging problem in fitting data for
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real life problems. Being able to estimate insulin sensitivity and glucose effectiveness for an individual
with great accuracy is extremely important for research in finding the pathways to T2DM and drug
development. We seemly improved the fitness of IVGTT data for this protocol. Nevertheless, due
to the number of each set of data points is relatively small for the number of parameters, and the
log-likelihood function is noticeably complicated, it is challenging to get a reasonable estimate of all
parameters in θ, even though it is possible to reduce the number of parameters to be estimated as shown
in [10]. We will continue to explore this approach for large set of parameters and/or reduced number
of parameters in future work to fulfill the demand of accuracy of parameter estimation.
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