Citation: Anarina L. Murillo, Jiaxu Li, Carlos Castillo-Chavez. Modeling the dynamics of glucose, insulin, and free fatty acids with time delay: The impact of bariatric surgery on type 2 diabetes mellitus[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 5765-5787. doi: 10.3934/mbe.2019288
[1] | Centers for Disease Control and Prevention (CDC), National Diabetes Statistics Report, 2017. Atlanta, GA: Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services, 2017. |
[2] | Centers for Disease Control and Prevention (CDC), National diabetes statistics report: Estimates of diabetes and its burden in the united states, 2014. Atlanta, GA: U.S. Department of Health and Human Services, 2014. |
[3] | Diabetes Prevention Program Research Group, Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin, New England J. Med., 346 (2002), 393–403. |
[4] | J. Tuomilehto, J. Lindström, J. G. Eriksson, et al., Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance, New England J. Med., 344 (2001), 1343–1350. |
[5] | Centers for Disease Control and Prevention (CDC), Diabetes Public Health Resource, 2013. Available from: http://www.cdc.gov/diabetes/statistics/prev/national/figbyage.htm. |
[6] | American Diabetes Association (ADA), Blood Glucose Tests, 1998. Available from: http://www.nlm.nih.gov/medlineplus/ency/article/003482.htm. |
[7] | R. A. DeFronzo, The triumvirate: β-cell, muscle, liver. a collusion responsible for niddm, Diabetes, 37 (1988), 667–687. |
[8] | S. M. Haffner, L. Mykkänen, A. Festa, et al., Insulin-resistant prediabetic subjects have more atherogenic risk factors than insulin-sensitive prediabetic subjects implications for preventing coronary heart disease during the prediabetic state, Circulation, 101 (2000), 975–980. |
[9] | K. F. Petersen, S. Dufour, D. B. Savage, et al., The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome, Proc. Natl. Acad. Sci., 104 (2007), 12587–12594. |
[10] | G. Boden and G. I. Shulman, Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and β-cell dysfunction, Eur. J. Clin. Invest., 32 (2002), 14–23. |
[11] | G. I. Shulman, Cellular mechanisms of insulin resistance, J. Clin. Invest., 106 (2000), 171–176. |
[12] | R. H. Unger, Lipotoxicity in the pathogenesis of obesity-dependent niddm: genetic and clinical implications, Diabetes, 44 (1995), 863–870. |
[13] | R. Bitzur, H. Cohen, Y. Kamari, et al., Triglycerides and HDL cholesterol: Stars or second leads in diabetes? Diabetes Care, 32 (2009), S373–S377. |
[14] | R. N. Bergman and M. Ader, Free fatty acids and pathogenesis of type 2 diabetes mellitus, Trends Endocrinol. & Metab., 11 (2000), 351–356. |
[15] | J. S. Pankow, B. B. Duncan, M. I. Schmidt, et al., Fasting plasma free fatty acids and risk of type 2 diabetes the atherosclerosis risk in communities study, Diabetes Care, 27 (2004):77–82. |
[16] | G. Boden, X. Chen, J. Ruiz, et al., Mechanisms of fatty acid-induced inhibition of glucose uptake, J. Clin. Invest., 93 (1994), 2438–2446. |
[17] | D. B. Savage, K. F. Petersen and G. I. Shulman, Mechanisms of insulin resistance in humans and possible links with inflammation, Hypertension, 45 (2005), 828–833. |
[18] | A. M. J. Wassink, J. K. Olijhoek and F. L. J. Visseren, The metabolic syndrome: Metabolic changes with vascular consequences, Eur. J. Clin. Invest., 37 (2007), 8–17. |
[19] | L. C. Groop, N. Barzilai, K. Ratheiser, et al., Dose-dependent effects of glyburide on insulin secretion and glucose uptake in humans, Diabetes Care, 14 (1991), 724–727. |
[20] | P. J. Randle, Regulatory interactions between lipids and carbohydrates: The glucose fatty acid cycle after 35 years, Diabetes/Metab. Rev., 14 (1998), 263–283. |
[21] | G. Boden, X. Chen, E. Capulong and M. Mozzoli, Effects of free fatty acids on gluconeogenesis and autoregulation of glucose production in type 2 diabetes, Diabetes, 50 (2001), 810–816. |
[22] | K. Rebrin, G. M. Steil, L. Getty, et al., Free fatty acid as a link in the regulation of hepatic glucose output by peripheral insulin. Diabetes, 44 (1995), 1038–1045. |
[23] | A. S. Greenberg and M. L. McDaniel, Identifying the links between obesity, insulin resistance and β-cell function: potential role of adipocyte-derived cytokines in the pathogenesis of type 2 diabetes. Eur. J. Clin. Invest., 32 (2002), 24–34. |
[24] | H. Buchwald, Y. Avidor, E. Braunwald, et al., Bariatric surgery: a systematic review and meta-analysis, Jama, 292 (2004), 1724–1737. |
[25] | E. V. Polyzogopoulou, F. Kalfarentzos, A. G. Vagenakis, et al., Restoration of euglycemia and normal acute insulin response to glucose in obese subjects with type 2 diabetes following bariatric surgery, Diabetes, 52 (2003), 1098–1103. |
[26] | H. P. Kopp, C.W. Kopp, A. Festa, et al., Impact of weight loss on inflammatory proteins and their association with the insulin resistance syndrome in morbidly obese patients, Arteriosclerosis Thrombosis Vascular Biol., 23 (2003), 1042–1047. |
[27] | M. Faraj, P. J. Havel, S. Phlis, et al., Plasma acylation-stimulating protein, adiponectin, leptin, and ghrelin before and after weight loss induced by gastric bypass surgery in morbidly obese subjects, J. Clin. Endocrinology & Metabolism, 88 (2003), 1594–1602. |
[28] | B. Geloneze, J. Pereira, J. Pareja, et al., Circulating concentrations of adiponectin increase in parallel with enhancement of insulin sensitivity during weight loss in humans, Diabetes, 52 (2003), A393–A393. |
[29] | J. M. Kellum, J. F. Kuemmerle, T. M. O'Dorisio, et al., Gastrointestinal hormone responses to meals before and after gastric bypass and vertical banded gastroplasty, Ann. Surg., 211 (1990), 763–771. |
[30] | D. E. Cummings, D. S. Weigle, R S. Frayo, et al., Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery, New England J. Med., 346 (2002), 1623–1630. |
[31] | J. B. Dixon, A. F. Dixon and P. E. O'Brien, Improvements in insulin sensitivity and β-cell function (homa) with weight loss in the severely obese, Diabetic Med., 20 (2003), 127–134. |
[32] | V. Periwal, C. C. Chow, R. N. Bergman, et al., Evaluation of quantitative models of the effect of insulin on lipolysis and glucose disposal, Am. J. Physiol. Regul. Integr. Comp. Physiol., 295 (2008), R1089–R1096. |
[33] | Texas Higher Education Coordinating Board. Available from: http://www.austincc.edu/apreview/EmphasisItems/Glucose regluation.html. |
[34] | R. N. Bergman and C. Cobelli, Minimal modeling, partition analysis, and the estimation of insulin sensitivity, Federation Proc., 39 (1980), 110–115. |
[35] | R. N. Bergman, Y. Ziya Ider, C. R. Bowden, et al., Quantitative estimation of insulin sensitivity, Am. J. Physiol. Endocrinology Metabolism, 236 (1979), E667–677. |
[36] | A. Caumo, R. N. Bergman and C. Cobelli, Insulin sensitivity from meal tolerance tests in normal subjects: a minimal model index, J. Clin. Endocrinology & Metabolism, 85 (2000), 4396–4402. |
[37] | T. A. Gresl, R. J. Colman, T. C. Havighurst, et al., Insulin sensitivity and glucose effectiveness from three minimal models: effects of energy restriction and body fat in adult male rhesus monkeys, Am. J. Physiol. Regul. Integr. Comp. Physiol., 285 (2003), R1340–R1354. |
[38] | G. M. Steil, A. Volund, S. E. Kahn, et al., Reduced sample number for calculation of insulin sensitivity and glucose effectiveness from the minimal model: suitability for use in population studies, Diabetes, 42 (1993), 250–256. |
[39] | J. Li, M. Wang, A. De Gaetano, et al., The range of time delay and the global stability of the equilibrium for an ivgtt model, Math. Biosci., 235 (2012), 128–137. |
[40] | C. C. Chow, V. Periwal, G. Csako, et al., Higher acute insulin response to glucose may determine greater free fatty acid clearance in african-american women, J. Clin. Endocrinology & Metabolism, 96 (2011), 2456–2463. |
[41] | A. De Gaetano and O. Arino, Mathematical modelling of the intravenous glucose tolerance test, J. Math. Biol., 40 (2000), 136–168. |
[42] | R. C. Boston, D. Stefanovski, P. J. Moate, et al., Minmod millennium: a computer program to calculate glucose effectiveness and insulin sensitivity from the frequently sampled intravenous glucose tolerance test, Diabetes Technology & Therapeutics, 5 (2003), 1003–1015. |
[43] | R. C. Boston and P. J. Moate, A novel minimal model to describe nefa kinetics following an intravenous glucose challenge, Am. J. Physiol. Regul. Integr. Comp. Physiol., 294 (2008), R1140–R1147. |
[44] | A. Roy and R. S. Parker, Dynamic modeling of free fatty acid, glucose, and insulin: An extended" minimal model", Diabetes Technology & Therapeutics, 8 (2006), 617–626. |
[45] | A. Roy and R. S. Parker, Dynamic modeling of exercise effects on plasma glucose and insulin levels, J. Diabetes Sci. Technol., 1 (2007), 338–347. |
[46] | A. Mukhopadhyay, A. De Gaetano, and O. Arino, Modeling the intra-venous glucose tolerance test: a global study for a single-distributed-delay model, Discrete Continuous Dyn. Sys. Series B, 4 (2004), 407–418. |
[47] | G. Toffolo, R. N. Bergman, D. T. Finegood, et al., Quantitative estimation of beta cell sensitivity to glucose in the intact organism: a minimal model of insulin kinetics in the dog, Diabetes, 29 (1980), 979–990. |
[48] | J. Li and Y. Kuang, Analysis of a model of the glucose-insulin regulatory system with two delays, SIAM J. Appl. Math., 67 (2007), 757–776. |
[49] | J. Li, Y. Kuang and B. Li, Analysis of ivgtt glucose-insulin interaction models with time delay, Discrete Continuous Dyn. Sys. Series B, 1 (2001), 103–124. |
[50] | N. Pørksen, M. Hollingdal, C. Juhl, et al., Pulsatile insulin secretion: detection, regulation, and role in diabetes, Diabetes, 51 (2002), S245–S254. |
[51] | J. Sturis, K. S. Polonsky, E. Mosekilde, et al., Computer model for mechanisms underlying ultradian oscillations of insulin and glucose, Am. J. Physiol. Endocrinology Metabolism, 260 (1991), E801–E809. |
[52] | P. Palumbo, S. Panunzi and A. De Gaetano, Qualitative behavior of a family of delay-differential models of the glucose-insulin system, Discrete Continuous Dyn. Sys. Series B, 7 (2007), 399–424. |
[53] | D. V. Giang, Y. Lenbury, A. De Gaetano, et al., Delay model of glucose–insulin systems: global stability and oscillated solutions conditional on delays, J. Math. Analy. Appl., 343 (2008), 996–1006. |
[54] | S. Panunzi, P. Palumbo and A. De Gaetano, A discrete single delay model for the intra-venous glucose tolerance test, Theor. Biol. Med. Model., 4 (2007), 35–50. |
[55] | J. Li, Y. Kuang and C. C. Mason, Modeling the glucose–insulin regulatory system and ultradian insulin secretory oscillations with two explicit time delays, J. Theor. Biol., 242 (2006), 722–735. |
[56] | F. Brauer, Absolute stability in delay equations, J. Differential Eq., 69 (1987), 185–191. |
[57] | H. L. Smith, An Introduction To Delay Differential Equations With Applications To The Life Sciences, Springer, New York, 2011. |
[58] | F. Soriguer, S. García-Serrano, J. M. García-Almeida, et al., Changes in the serum composition of free-fatty acids during an intravenous glucose tolerance test, Obesity, 17 (2009), 10–15. |
[59] | L. J. S. Allen, Introduction to Mathematical Biology, Pearson, 2007. |