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Abstract: The role of free fatty acids (FFA) on Type 2 diabetes mellitus (T2DM) progression has
been studied extensively with prior studies suggesting that individuals with shared familial genetic
predisposition to metabolic-related diseases may be vulnerable to dysfunctional plasma FFA
regulation. A harmful cycle arises when FFA are not properly regulated by insulin contributing to the
development of insulin resistance, a key indicator for T2DM, since prolonged insulin resistance may
lead to hyperglycemia. We introduce a hypothesis-driven dynamical model and use it to evaluate the
role of FFA on insulin resistance progression that is mathematically constructed within the context of
individuals that have genetic predisposition to dysfunctional plasma FFA. The dynamics of the
nonlinear interactions that involve glucose, insulin, and FFA are modeled by incorporating a
fixed-time delay with the corresponding delay-differential equations being studied numerically. The
results of computational studies, that is, extensive simulations, are compared to the known minimal
ordinary differential equations model. Parameter estimation and model validation are carried out
using clinical data of patients who underwent bariatric surgery. These estimates provide a quantitative
measure that is used to evaluate the regulation of lipolysis by insulin action measured by insulin
sensitivity, within a metabolically heterogeneous population (non-diabetic to diabetic). Results show
that key metabolic factors improve after surgery, such as the effect of insulin inhibition of FFA on
insulin and glucose regulation, results that do match prior clinical studies. These findings indicate that
the reduction in weight or body mass due to surgery improve insulin action for the regulation of

http://http://www.aimspress.com/journal/MBE
http://dx.doi.org/10.3934/mbe.2019288


5766

glucose, FFA, and insulin levels. This reinforces what we know, namely, that insulin action is
essential for regulating FFA and glucose levels and is a robust effect that can be observed not only in
the long-term, but also in the short-term; thereby preventing the manifestation of T2DM.

Keywords: type 2 diabetes; mathematical model; free fatty acids

1. Introduction

According to the CDC, nearly 9.4% of the U.S. population has diabetes (30.3 million) including
individuals with type 1, type 2 and gestational diabetes [1]. Type 2 diabetes mellitus (T2DM) is usually
diagnosed in adulthood when the body cannot regulate glucose levels properly without medication or
treatment. T2DM accounts for 90–95% of diabetes cases (29.1 million) and manifests in 15–30%
of pre-diabetes cases (86 million), a population where 9 out of 10 individuals do not know that they
are pre-diabetic [2]. In 2017, an estimated 84.1 million adults had prediabetes, a condition defined
by higher than average blood glucose levels but not high enough to be diagnosed with diabetes [1].
Individuals with prediabetes have a higher risk of developing T2DM and other cardiovascular diseases
[1]. In fact, an estimated 15–30% of the U.S. population with prediabetes are more likely to develop
T2DM within 5 years. This is sobering information that must be understood by a subpopulation where
9 out of 10 individuals are unaware of their pre-diabetic status [3, 4].

Since T2DM is a chronic disease, the quality of life of patients with diabetes decreases in the
long-term depending on severity and other co-existing health conditions. Diabetes increases risk for
blindness, kidney failure, high blood pressure, heart disease, stroke, amputations, dental disease,
depression, and pregnancy complications [2]. Prevalence levels are high among American Indians and
Alaska Natives (15.9%), Non-Hispanic blacks (13.2%), and Hispanics (12.8%) when compared to its
prevalence among Non-Hispanic whites (7.6%) and Asian Americans (9.0%) [5]. Diabetes is
unfortunately also correlated with increases in individuals’ economic and health burdens, thereby
increasing mortality and morbidity risks. The annual costs of diabetes has been estimated to be about
245 billion dollars, 176 billion attributed to direct and 69 billion costs that include (disability,
premature death, and work absenteeism) [2]. Among diagnosed diabetes cases seeking treatment,
14% use insulin only (2.9 million adults), 56.9% use oral medication only (11.9 million adults),
14.7% use both insulin and oral medication (3.1 million adults), and 14.4% use neither insulin nor
oral medication (3 million adults) [2].

1.1. The role of free fatty acids on the progression of diabetes

The clinical manifestation of T2DM is characterized by hyperglycemia (prolonged blood glucose
level above normal), hyperinsulinaemia (a condition in which there are excess levels of insulin
circulating in the blood) along with insulin resistance. Insulin resistance (IR) is considered an
indicator of the inability of cells in muscle, fat, or liver tissue to respond to insulin, which in turn,
limits the ability of the individual take up glucose from the blood easily. Hence, the pancreas must
produce and secrete additional insulin, which is needed to bring glucose levels back to the normal
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range. IR can also develop in the liver, known as hepatic insulin resistance, which is defined as
impaired insulin signalling affecting the liver. Clinical studies show that insulin resistance in skeletal
muscle and adipose tissue are common in individuals with T2DM [6–9], and thus IR is considered a
strong predictor for the development of T2DM.

Several studies support the hypothesis that prolonged presence of free fatty acids (FFA) circulating
in the bloodstream or in organs (e.g., skeletal muscle, pancreas, or liver) contributes to the
development of T2DM by impacting insulin signalling, glucose transport, insulin secretory function,
or other mechanisms leading to disruptions in glucose-insulin regulation [10–12]. FFA is used as fuel
for the liver, resting skeletal muscle, renal cortex, and myocardium [10]. During starvation or
exercise, the demand for FFA as a fuel source increases, where after an overnight fast lipid oxidation
can account for over 70% of total body energy expenditure [10]. When FFA is needed as a source of
energy, then triglycerides (TG) are broken down into FFA and released into the bloodstream via
lipolysis. Hence, FFA can be approximated by TG. Since TG is associated with cardiovascular
diseases [13], then high TG levels coexisting with normal or impaired fasting glucose further increase
risk of metabolic-related diseases, such as T2DM. FFA is stored in adipocytes (adipose cells) from
TG which are made up of three FFA molecules and one glycerol molecule. As of today, several
hypotheses have been proposed characterizing the mechanistic role of FFA on the progression of
insulin resistance (summarized in Table 1). It is widely accepted that elevated FFA levels promote
insulin resistance in skeletal muscle and liver [10, 14, 15] and yet the mechanisms underlying the
progression of T2DM based on obesity levels are not well understood. Here we formulate a
mathematical framework based on what is currently known about the role of FFA on IR progression
as a starting point, or baseline model, to be expanded upon in future work to test different hypotheses
through computational studies.

1.2. Bariatric surgery as a treatment strategy

Obesity, characterized by excessive body fat, is considered a risk factor for diabetes since among
those individuals diagnosed, 84.7% turned out to be overweight, with 56.9% obese [1]. In many cases,
patients with severe obesity and diagnosed with T2DM can have improved metabolic health following
bariatric surgery, which is a treatment strategy for patients with severe obesity. These procedures may
include: gastric banding (such as adjustable and nonadjustable bands), gastric bypass (such as Roux-
en-Y variations or any other procedure combined with gastric bypass), gastroplasty (such as vertical
banded gastriplasty), biliopancreatic diversion or duodenal switch (such as various modifications),
or a combination of these methods [24]. In a review of 134 studies [24], it was found that 76.8%
patients who underwent bariatric surgery improved diabetes-related outcomes, and a total of 85.4%
patients had either resolved or improved diabetes-related outcomes. Bariatric surgery patients with
diabetes have demonstrated recovery of acute insulin response, also referred to as the “first phase”
of insulin secretion [25], decreases of inflammatory indicators (C-reactive protein and interleukin 6)
which are associated with cardiovascular and metabolic health [26], improvement in insulin sensitivity
[27, 28], significant changes in the response of enteroglucagon, defined as a peptide hormone that
helps to facilitate the absorption of nutrients in the presence of glucose and fats, to glucose levels
[29], significant reduction in ghrelin, also referred to as the “hunger hormone” which triggers appetite
[30], and significant improvement in beta-cell function [31]. Hence, a reduction of body fat following
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bariatric surgery leads to improvements in the patient’s metabolic health.
In this paper, we consider the case of a prototypic individual with genetic susceptibility to T2DM,

that is, an individual who self-identified as having a family member with T2DM or other metabolic-
associated diseases, and thus, could be susceptible defined by its inability to regulate FFA or by a
disruption on the regulation of FFA. We refer to this process as the “harmful cycle hypothesis” and
define the mechanism as follows. A dysfunctional regulation of FFA that leads to an increase demand
for insulin, a demand that is stimulated by both glucose and FFA, which in turn, puts the individuals at
higher risk of hyperglycemia when beta-cell compensation fails. In the long-term, insulin resistance is
observed when insulin does not effectively regulate plasma glucose and FFA. We introduce a model,
a hypothesis-driven model, built off of models previously used to study the joint dynamics of insulin,
glucose, and FFA. These dynamics are studied quantitatively and qualitatively within a framework
that includes model validation. Parameters are fitted to data obtained from a heterogeneous sample
of patients ranging from non-diabetic and non-obese to diabetic and obese so that the model results
to may provide insights into the physiological factors that govern glucose homeostasis. By fitting
the model to clinical data of patients who underwent bariatric surgery, we explore to what extent
does a reduction of body fat following surgery alter a patient’s metabolic health by recovering insulin
sensitivity, beta-cell function, and other related parameters. This paper is organized as follows: In
section 2 the mathematical models are described including the classic minimal model (in section 2.1)
of insulin, glucose, and FFA as described in the work of [32] and an explicit time-delay model of
insulin, glucose, and FFA dynamics (in section 2.2) incorporating the harmful cycle hypothesis with
corresponding analytical results, in section 4 the results of the model validation and parameter estimates
are shown to compare both the minimal model and explicit time delay model, and in section 5 the
conclusions and future work is described.

Table 1. Evidence supporting the mechanistic role of FFA on diabetes progression.

Organ Observation [Reference]
Skeletal Muscle High FFA disrupt the insulin signaling process [11, 16–18]

Higher FFA interfere with the action of insulin to skeletal muscle or
hinder insulin signaling, and reduce glucose transport [14, 19, 20]

Liver High FFA levels increase hepatic glucose production in diabetes [18, 21]
Excessive endogenous glucose production increase when FFA levels
influx rise in the liver from lipolysis of visceral adipose depots [10, 14, 18, 22]

Pancreas Prolonged high FFA levels impair insulin secretory function and have
toxic effects (e.g., “lipotoxicity hypothesis”) on pancreatic beta-cells [12, 14]

Adipose Suppressed inhibitory effect of insulin on lipolysis increases FFA levels [18, 21]
Increased release of FFA from adipocytes can induce IR [18]
Imbalanced production of adipokines (or cell signalling proteins secreted
by adipose tissue) promote IR [18, 23]
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2. Mathematical modeling framework

The insulin sensitivity is defined through the clamp protocol. Although the clamp protocol is the
gold standard for assessing insulin sensitivity, not only do the subjects suffer pain from the procedure,
but also the test is labor-intensive and financially expensive. The intravenous glucose tolerance test
(IVGTT) has been clinically considered the most accurate protocol next to the clamp protocol to
determine insulin sensitivity and glucose effectiveness through the approach of mathematical
modeling with curve-fitting [34–38]. The data provided through an IVGTT offer rich information and
offer a more realistic picture of a subjects metabolic portrait of insulin sensitivity and glucose
effectiveness by differentiating glucose production from the liver and the exogenous glucose
administered during the study protocol [39]. Furthermore, the IVGTT protocol has been extended to
gain a better understanding of the dynamical regulations underlying FFA, insulin and glucose [32,40],
in which, as the original IVGTT, subjects fast overnight and then are given a bolus of glucose infusion
intravenously (e.g., 0.33 g/kg of body weight or 0.3 g/kg body weight of a 50% solution), which is
administered into the antecubital vein in approximately 2 minutes [39, 41]. FFA, plasma glucose and
insulin levels are sampled over the duration of the test.

The short dynamics captured by the mathematical model begins with a rise in plasma glucose due
to bolus infusion, which triggers pancreatic beta-cells to quickly secrete insulin into the bloodstream.
Insulin mediates glucose removal, also referred to as insulin-dependent removal, which in turn, lowers
plasma glucose to basal level and then the demand for insulin is inhibited, i.e. negative feedback.
Meanwhile, FFA production is inhibited by insulin when glucose supply is high (see Figure 1). On the
other hand, some prior studies suggest that insulin inhibition of FFA is weak in individuals genetically
predisposed to metabolic-related diseases. Furthermore, it is known that FFA may enhance basal and
glucose-stimulated insulin secretion among individuals including those with diabetes [10]. We
hypothesize and validate that insulin ineffectively regulates FFA and higher FFA may reduce glucose
transport, which leads to a harmful cycle promoting hyperglycemia and developing insulin resistance
in the long-term.

2.1. Minimal model of glucose, insulin, and FFA

The minimal model was introduced in 1979 and 1980 by Bergman, Cobelli and their colleagues. It
was the first model to define two significant indices, the glucose effectiveness index and the insulin
sensitivity index, which quantify two clinically and physiologically relevant features [34, 35], and to
date, continues to be used in clinical settings or improved in modeling studies. Insulin kinetics,
including both first phase and second phase insulin secretion, reflects pancreatic responsiveness.
Insight into an individual’s glucose tolerance or intolerance are obtained via the estimation of
pancreatic responsiveness, glucose disappearance, and insulin sensitivity. The minimal model has
been extended and is now widely used in various experimental settings. The software MINMOD
based on the minimal model is used by clinicians and researchers who are interested in quantifying
insulin sensitivity and beta-cell responsiveness [42]. However, fewer mathematical models have been
proposed that link insulin, glucose, and FFA [32, 40, 43, 44]. The model developed by Chow and his
colleagues [40] captures the interactions between remote insulin X(t), glucose G(t), and FFA F(t).
Glucose enters the body intravenously and then it is removed from immediate use by other tissues at a
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Figure 1. A schematic diagram illustrating insulin, glucose, and FFA regulation after a meal.
Adapted from [33].

constant glucose effectiveness rate S G or via insulin-mediated removal modeled by the interaction
term S IXG, where S I represents insulin sensitivity. A proportion of insulin is available for use at rate
cX, while the remainder is removed either by natural degradation or by the kidney and liver. The
maximal lipolysis rate is given by l0 + l2. Insulin inhibition of lipolysis is denoted by X2 with the
exponent A, and the clearance rate of FFA is denoted by c f . The system of equations describing these
dynamics is given by

G′(t) = S GGb − (S G + S IX)G,
X′(t) = cX[I(t) − X − Ib], (2.1)

F′(t) = l0 +
l2

1 +
(

X
X2

)A − c f F,

where I(t) represents the insulin concentration in the body over the time t. In minimal model and its
siblings in ordinary differential equation systems, the known physiological delay of insulin secretion
into the body in response to the rise of glucose level is incorporated using compartment-split
techniques, where the insulin compartment is split into two equations I(t) and X′(t) leading to higher
dimensional systems of ordinary differential equations [34, 35, 41, 45–47]. The Model (2.1) is next
modified via the incorporation of an explicit fixed time-delay that is explicitly linked to insulin
secretion.

2.2. Explicit time delay model of glucose, insulin, and FFA

A time delay for the insulin secretion in the body is a key physiological factor in the endocrine
regulation of insulin, glucose and FFA, since without insulin is essential for lowering glucose levels and
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suppressing the production of FFA during the hyperglycemic state [7]. This delay can be incorporated
explicitly in a system of delay differential equations in order to investigate more realistic intrinsic
phenomena in the biological process [39,41]. More recent models incorporating an explicit time delay
provide more accurate quantification of insulin sensitivity and glucose effectiveness since these models
are more robust [39,41]. Mathematical analysis and numerical simulations [39,48,49] show that these
models generate results that can match the observations generated by clinical studies [50, 51, 55], both
in the short- and long-term dynamics (see work by [39, 48, 52–54]). The above model is an extension
of the insulin and glucose model studied in [39] and the equation representing FFA was adapted from
the work in [40]. We hypothesize that when insulin ineffectively regulates FFA, then higher FFA may
reduce glucose transport, leading to a harmful cycle promoting hyperglycemia and thus contributing to
the development of insulin resistance in the long-term.

Next, we consider the interplay of glucose denoted by G(t), insulin denoted by I(t), and FFA denoted
by F(t). The parameter (S iIb + S g)Gb represents the rate of constant average hepatic glucose input in
the short dynamics, that is, in the beginning of the IVGTT protocol. The elevated glucose is either
immediately used from other cells at a rate S g or by insulin-mediated removal by the interaction term
S iGI at the rate S i representing insulin sensitivity. Both glucose-stimulated and FFA-stimulated insulin
production follow the dynamics of Hill’s function, σ1G(t−τ)γ

αγ+G(t−τ)γ and σ2F(t)β

σβ+F(t)β , respectively. Here τ represents
the explicit time delay for glucose-stimulated insulin secretion. Insulin has a natural degradation rate
di. For FFA, g0 + g1 represents the maximal lipolysis rate. The concentration of insulin inhibition of
lipolysis is I2 with the exponent κ, and the FFA clearance rate is denoted d f . The model is illustrated
in Figure 2.

Hence, this system is given by

G′(t) = (S iIb + S g)Gb − S iG(t)I(t) − S gG(t),

I′(t) =
σ1G(t − τ)γ

αγ + G(t − τ)γ
+

σ2F(t)β

σβ + F(t)β
− diI(t), (2.2)

F′(t) = g0 +
g1

1 +
(

I(t)
I2

)κ − d f F(t),

with positive initial conditions, where the parameters β and γ represent the Hills function coefficient
and σ and α represent the values of half-saturation, respectively. The descriptions of the parameters
for Model (2.2) are shown in Table 3.
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Table 2. Description of the minimal model parameters corresponding to the system of
equations in Model (2.1).

Parameter Unit Description
Gb

mg
dl Basal glucose levels

Ib
µU
ml Basal insulin levels

S G
1

min Glucose effectiveness
S I

ml
µU·min Insulin sensitivity

cX
1

min Rate of available remote insulin
l0

µM
min Baseline nonsupressible lipolysis rate

l2
µM
min Difference between maximum and nonsuppressible lipolysis rate

X2
µU
ml The activation threshold for the effect of insulin on FFA

A unitless Hill function coefficient
c f

1
min Free fatty acid degradation rate

Figure 2. A schematic diagram illustrating the mathematical model of glucose, insulin, and
FFA adapted from previous work shown in [40].

3. Mathematical treatment of explicit time delay model

Basic properties of the model. In this paper we only show some biologically relevant results of
Model (2.2). First we show that the basal levels of glucose, insulin and FFA are the only equilibrium
point of the model.

Theorem 3.1. Model (2.2) assumes a unique steady state Eb = (Gb, Ib, Fb), where Gb, Ib and Fb are
basal levels of glucose, insulin and FFA, respectively.
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Proof. In fact, it is obvious that (Gb, Ib, Fb) is a steady state of Model (2.2). Suppose Model (2.2) has
another steady state (G∗, I∗, F∗), a solution of the following system

(S iIb + S g)Gb − S iG∗I∗ − S gG∗ = 0 (3.1)

σ1(G∗)γ

αγ + (G∗)γ
+

σ2(F∗)β

σβ + (F∗)β
− diI∗ = 0 (3.2)

g0 +
g1

1 +
(

I∗
I2

)κ − d f F∗ = 0 (3.3)

We will show that G∗ = Gb, I∗ = Ib and F∗ = Fb. If G∗ > Gb, then (3.1) implies that I∗ < Ib, and thus
F∗ > Fb by (3.3). Therefore G∗ > Gb, F∗ > Fb and (3.2) lead to a contradiction I∗ > Ib.

If G∗ < Gb, then (3.1) implies that I∗ > Ib, and (3.3) implies that F∗ < Fb. Again G∗ < Gb, F∗ < Fb

and (3.2) lead to a contradiction I∗ < Ib. �

Theorem 3.2. All solutions of Model (2.2) with positive initial conditions are positive and bounded.

Proof. Let (G(t), I(t), F(t)) be a solution of Model (2.2) with G(0) > 0, I(0) > 0 and F(0) > 0. Assume
that G(t) is non-positive for some t, then there must exist a t0 > 0 such that G(t0) = 0 and G(t) > 0 for
0 ≤ t < t0. Moreover, then dG(t0)

dt ≤ 0, which contradicts the following

dG(t0)
dt

= (S iIb + S g)Gb − S iG(t0)I(t0) − S gG(t0)

= (S iIb + S g)Gb > 0. (3.4)

Therefore G(t) > 0 for all t > 0. Similarly, for I(t), assume that ∃ t1 > 0 such that I(t1) = 0 and I(t) > 0
for 0 ≤ t < t1. Then, dI(t1)

dt ≤ 0, which is a contradiction to

dI(t1)
dt

= σ1 f1(G(t1)) + σ2 f2((F1)) − diI(t1) = σ1 f1(G(t1)) + σ2 f2((F(t1))) > 0. (3.5)

Therefore I(t) is positive for t > 0. Finally, the similar and standard approach as above ensures
F(t) > 0 for t > 0.

For the boundedness, clearly G′(t) ≤ (S iIb + S g)Gb − S gG, and thus 0 ≤ G ≤ (S iIb + S g)Gb/S g.

Similarly, it can be shown that F ≤ g0+g1
d f

, and I(t) < (σ1 + σ2)/di for t > 0 by standard treatments.
�

Remark 1. Theorems 1 and 2 assure that the system of equations in Model (2.2) is well posed, that is,
it supports positive bounded solutions under any positive initial condition.
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3.1. Equilibria and local stability

The steady state is obtained by setting equations in Model 2.2 equal to 0 shown in Eqs (3.1)–(3.3).
Rearranging terms and substituting G∗ and F∗ into Eq (3.2), yields the equilibrium point implicitly in
terms of I∗:

0 =
σ1

( (S iIb+S g)Gb

S iI∗+S g

)γ
αγ +

( (S iIb+S g)Gb

S iI∗+S g

)γ +

σ2

 1
d f

g0 +
g1

1+

(
I∗
I2

)κ
β

σβ +

 1
d f

g0 +
g1

1+

(
I∗
I2

)κ
β
− diI∗ (3.6)

In order to determine the number of roots in the system, let us consider:

y1(I∗) =
σ1

( (S iIb+S g)Gb

S iI∗+S g

)γ
αγ +

( (S iIb+S g)Gb

S iI∗+S g

)γ +

σ2

 1
d f

g0 +
g1

1+

(
I∗
I2

)κ
β

σβ +

 1
d f

g0 +
g1

1+

(
I∗
I2

)κ
β

y2(I∗) = diI∗

It is easy to see that y1(I∗) and y2(I∗) must intersect once, which indicates that (3.6) has at least one
positive root. Further, we can show that y1(I∗) < 0, and therefore the system (2.2) has a unique steady

state. Let us define z1(I∗) =
( (S iIb+S g)Gb

S iI∗+S g

)γ
and z2(I∗) =

 1
d f

g0 +
g1

1+

(
I∗
I2

)κ
β. Substituting z1(I∗) and z2(I∗)

into (3.6) yields,

y1(I∗) =
σ1z1(I∗)
αγ + z1(I∗)

+
σ2z2(I∗)
σβ + z2(I∗)

.

Next, obtaining d
dI∗ y1(I∗) gives,

d
dI∗

y1(I∗) =
σ1z′1(I∗)αγ

(αγ + z1(I∗))2 +
σ2z′2(I∗)σβ

(σβ + z2(I∗))2 ,

where

z′1(I∗) = γ

(
(S iIb + S g)Gb

S iI∗ + S g

)γ−1

·
(
−(S iIb + S g)Gb(S iI∗ + S g)−2S i

)
and

z′2(I∗) = β

 1
d f

g0 +
g1

1 +
(

I∗
I2

)k



β−1

·

−g1

d f

1 +

(
I∗

I2

)k−2 .
It is easy to see that d

dI∗ y1(I∗) < 0, and since σ2 << σ1, then this statement is true and there is one
unique steady state. This conclusion is consistent with findings of other glucose-insulin regulation
models in the literature and demonstrate that our model is well-posed [32, 34, 35, 39–41, 43, 44].
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We now turn to study the stability of the unique steady state. It is straightforward that the
characteristic equation of Model (2.2) is given by

∆(λ) = λ3 + λ2(b1 + b2) + λ(b1b2 + b3) − λb4e−λτ + b1b3 − b4d f e−λτ (3.7)

where b1 = S iIb + S g, b2 = di + d f , b3 = did f − B̂Ĉ, b4 = S iGbÂ,

Â = −
αγγσ1Gγ−1

b
(αγ+Gγ

b)2 , B̂ = −
σ2βFβ−1

b σβ

(σβ+Fβ
b )2 , and Ĉ =

g1κ
(

Ib
I2

)κ−1

I2

(
1+

(
Ib
I2

)κ)2 .

Case with no delay. We analyze the local stability of a positive equilibrium point Eb for our system
with no time delay by evaluating Eq (3.7) with τ = 0, which gives

∆(λ) = λ3 + λ2(b1 + b2) + λ(b1b2 + b3 − b4) + b1b3 − d f b4 (3.8)

Applying Routh-Hurwitz Stability Criterion [59] for a cubic polynomial, that is, for the cubic
polynomial:

a0s3 + a1s2 + a2s + a3 = 0,

where all ai are positive. The Routh array is
s3 a0 a2

s2 a1 a3

s1 a1a2−a0a3
a1

s0 a3


so the condition that all roots have negative real parts is a1a2 > a0a3. Therefore, in this case, the
equilibrium point is asymptotically stable if

(b1 + b2)(b1b2 + b3 − b4) > b1b3 − d f b4.

Case with delay. Next, we investigate the stability for the case τ > 0. Notice that the equilibrium
point Eb is stable for τ = 0. If there is some τ > 0 such that Eb is unstable, then the characteristic Eq
(3.7) must have a pair of pure imaginary roots ±ωi with ω > 0 [48, 49, 56, 57]. Thus the characteristic
equation becomes

∆(ωi) = (ωi)3 + (b1 + b2)(ωi)2 + (b1b2 + b3)ωi − b4ωie−ωiτ

+b1b3 − b4d f e−ωiτ

= −ω3i − (b1 + b2)ω2 + (b1b2 + b3)ωi + b1b3 − b4h cosωτ
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+b4d f i sinωτ − b4ωi cosωτ − b4ω sinωτ
= 0

After algebraic rearrangement,

−(b1 + b2)ω2 + b1b3 − b4d f cosωτ − b4ω sinωτ
= i(−ω3 + (b1b2 + b3)ω + b4d f sinωτ − b4ω cosωτ).

Then we have,

−(b1 + b2)ω2 + b1b3 = b4d f cosωτ + b4ω sinωτ
−ω3 + (b1b2 + b3)ω = −b4d f sinωτ + b4ω cosωτ)

(3.9)

which leads to

ω6 + ω4[(b1 + b2)2 − 2(b1b2 + b3)] + ω2[(b1b2 + b3)2

−2b1b3(b1 + b2) − b2
4] + [(b1b3)2 − (b4d f )2] = 0

Let u = ω2 > 0, then

p(u) = u3 + c2u2 + c1u + c0 = 0, (3.10)

where c2 = [(b1 + b2)2 − 2(b1b2 + b3)], c1 = [(b1b2 + b3)2 − 2b1b3(b1 + b2) − b2
4], and

c0 = [(b1b3)2 − (b4d f )2].

According to Descartes’ Rules, Eq (3.10) has no positive root if c2, c1, c0 > 0. Numerically, we test
these conditions and observe that the conditions are met for all groups (see Table 4). Therefore we
summarize the above results in the following.

Theorem 3.3. If c2, c1, c0 > 0, the unique equilibrium point Eb is asymptotically stable.
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Table 3. Summary of the definitions of the explicit time delay model parameters
corresponding to the system of equations in Model (2.2).

Parameter Unit Description
S i

ml
µU·min Insulin sensitivity

(S iIb + S g)Gb
mg

dl·min Average rate of glucose input
di

1
min Insulin degradation rate

σ1
µU

mg·min Secretion rate stimulated by glucose with time delay τ
S g

1
min Glucose effectiveness rate

σ2
1

min Secretion rate stimulated by FFA
g0

µM
min Baseline nonsupressible lipolysis rate

g1
µM
min Difference between maximum and nonsuppressible lipolysis rate

I2
µU
ml The activation threshold for the effect of insulin on FFA

d f
1

min Free fatty acid degradation rate
κ unitless Hills function coefficient
β unitless Hills function coefficient
γ unitless Hills function coefficient
α mg

dl Half-saturation
σ µM Half-saturation
τ min Delay constant

Table 4. The constants of p(u) are calculated numerically for each group pre- and post-
surgery using model parameters to prove Theorem 3.3. It is observed that there is no solution
for the characteristic equation with time delay under these conditions and the parameter
values used in our analyses in Table 5.

Group Time c2 c1 c0

Control Pre 0.0226 8.8352e-05 1.8503e-08
Post 0.0170 5.3361e-05 8.4283e-09

NFG Pre 0.7534 0.0024 1.5065e-07
Post 0.2103 0.0026 1.2182e-06

IFG Pre 0.2033 4.2060e-04 1.4666e-08
Post 0.1302 5.8821e-04 9.2784e-08

T2DM Pre 0.0151 1.7324e-05 6.1817e-10
Post 0.0305 7.4847e-05 7.6775e-09

4. Results of model validation and parameter estimation

To determine whether Model (2.2) could capture the metabolic profile of an individual, we fit the
model to the clinical data in order to estimate the physiologically relevant parameters. Data were
obtained from a study [58], where an IVGTT was given to N = 38 patients (14 men and 24 women)
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with severe obesity who underwent bariatric surgery and varied metabolically. The control group was
neither obese nor diabetic and did not undergo bariatric surgery. It consisted of 6 men and 6 women
(N = 12). The treatment group consisted of 14 men and 24 women (N = 38) and included severely
obese individuals divided into 3 groups: First, the normal fasting glucose (NFG) tolerance group (N
= 9); second, the impaired fasting glucose (IFG) group (N = 17); and third, the T2DM group (N =

12). Participants in the control and NFG groups were in similar age groups: 36.7 ± 1.9 and 35.9 ± 3.4
years, respectively. Similarly, the IFG and T2DM groups were closer in age: 45.2 ± 2.5 and 44.6 ± 2.4,
respectively. The body mass index (BMI) calculated as weight divided by height squared (kg/m2) were
significantly reduced post-surgery. The control group had an average BMI of 23.1 ± 0.7 at baseline.
Participants in the NFG, IFG, and T2DM groups underwent bariatric surgery and were considered to
have severe obesity (BMI > 40kg/m2). The average BMI decreased from baseline levels in the: NFG
group from 48.6 ± 1.7 to 32.4 ± 1.4, IFG group from 58.1 ± 1.4 to 39.6 ± 1.4, and T2DM group from
53.9 ± 1.7 to 39.6 ± 1.5 after surgery.

Plasma glucose, insulin, and FFA levels were measured by the IVGTT before and seven months
after undergoing bariatric surgery (N = 38). The control group did not undergo bariatric surgery and
were sampled at baseline and at follow-up in seven months. The IVGTT study protocol was performed
after a 10 to 12 hours fast. Baseline blood samples were obtained before glucose administration at
15, 10, and 5 min time marks. At time 0 glucose was administered (50% dextrose; 11.4 g/m2 body
surface area) in less than one min. Blood samples were obtained after 2, 3, 4, 5, 6, 8, 10, 12, 14,
16, 19, 22, 25, 30, 40, 50, 60, 70, 80, 100, 120, 140, 160, and 180 min to measure glucose, insulin,
and FFA concentration levels [58]. Here the minimal model (Model (2.1)) and the explicit time delay
model (Model (2.2)) are fit to a dataset [58] and model parameters were estimated using the function
fmincon for nonlinear programming in MATLAB R2019a. The data are the average values of multiple
individual data. The data was extracted from the paper using “Plot Digitizer.” Initial conditions from
the data are considered for time t = 0.

4.1. Validation of the explicit time delay model

The performance of each model on predicting the qualitative trends of the clinical data were
determined through many computational studies and numerical simulations. The estimated model
parameters for the explicit time delay model is shown in Table 5 and simulations are shown in
Figure 3. Qualitatively, comparing the plasma glucose levels pre- and post-bariatric surgery, show a
significant improvement, where the NFG, IFG, and T2DM data nearly resembles the glucose trends of
the control group. The overall glucose trends for each group pre- and post-surgery were captured by
Model (2.2) (shown in Figure 3). The constant rate of glucose effectiveness (S g) and constant insulin
sensitivity rate (S i) had insignificant changes in the control group but significantly improved (e.g.
increased) for the NFG, IFG, and T2DM groups.

The plasma insulin levels significantly improved comparing pre- and post-bariatric surgery results,
where the NFG, IFG, and T2DM data closely match the overall trends of the control group.
Model (2.2) captures the overall trends for insulin (shown in Figure 3). The constant insulin
degradation rate (di) decreased from post- compared to pre-surgery for all groups and remained
constant for the control group. The maximum secretion rate (σ1) decreased post-surgery for IFG and
T2DM but not for NFG nor control groups. The constant rate of FFA-stimulated insulin secretion (σ2)
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increased for all groups except for T2DM.
We also evaluated changes in the estimated explicit time delay parameter τ. As expected, the time

delay in the control group pre- and post-surgery were similar since they did not have surgery. The
estimated time delay decreased after surgery in the NFG and IFG groups, which supports prior
findings that have observed improvements in acute insulin response and beta-cell function after
bariatric surgery [25, 31]. In contrast, an overall increased time delay was observed in patients with
T2DM. One possible explanation is that the treatment strategy implemented for changes and/or the
presence of other clinical health factors may explain variations in these metabolic parameters.

The variance for plasma FFA levels significantly reduced comparing pre- and post-bariatric
surgery results, where the NFG, IFG, and T2DM data nearly overlap. The model results qualitatively
match the overall trends, except for the NFG group (shown in Figure 3). The maximal lipolysis rate
(g0 + g1) reduced significantly from pre- to post-surgery for the IFG and T2DM groups. The insulin
inhibition (I2) rate also decreased post-surgery compared to pre-surgery in the NFG, IFG, and T2DM
groups, whereas no changes in FFA clearance rate (d f ) were observed.

Table 5. Parameter estimates for Model (2.2).

Control NFG IFG T2DM
Parameter Pre Post Pre Post Pre Post Pre Post
S i 1.06e-7 1.06e-7 1.2e-4 2.5e-6 1.8e-4 4.06e-5 5.06e-6 4.06e-5
(S iIb + S g)Gb 2.16 2.16 2.16 2.16 4.16 2.16 3.15 2.16
di 0.072 0.072 0.8 0.3 0.4 0.3 0.1 0.12
σ1 10.434 10.434 12.434 12.434 20.11 12.434 25.11 12.434
S g 0.04 0.04 0.013 0.04 0.01 0.0315 0.022 0.0236
α 250 250 150 165 119 150 215 150
γ 1.45 1.45 3.18 3.5 3.4 2.45 4.5 2.45
τ 8.25 8.25 3.8 1.2 15.24 4.2 6.25 8.25
g0 2.5 1.5 0.65 10.5 1.5 0.5 1.5 0.5
g1 30.5 18.5 28.85 35.5 30.85 19.85 24 18.85
I2 10.5 9.5 31.10 20.10 33.025 18.10 30.5 24.1025
κ 2.68 2.68 3.2 10.5 6.2 4.5 2.8 3.68
d f 5.8 5.8 0.08 0.08 0.08 0.08 0.08 0.08
β 4.6 4.6 4.6 4.6 12.6 4.6 12.6 4.6
σ 650 650 150 150 150 150 150 150
σ2 0.1 0.1 0.2 0.5 0.001 0.1 1.093 0.09

4.2. Comparison of minimal model and explicit time delay model

Model validation and parameter estimation were completed for Model (2.1) and Model (2.2) with
the estimated model parameters for each model shown in Tables 5 and 6, respectively. The numerical
results are shown in Figure 3. Both models qualitatively predicted the overall trends for the control,
NFG, IFG, and T2DM groups of plasma glucose. In this case, both models fit the data well. Overall,
both Model (2.1) and (2.2) fit the insulin data adequately well for all groups. However, the steady
state values produced by Model (2.1) underestimated solutions in comparison to the actual data for
the control, NFG, IFG, and T2DM groups both pre- and post-surgery. In the control, NFG, and T2DM
groups, the solutions of Model (2.1) falls below the actual data; and the results of Model (2.2) matches
the data much better. For the IFG group, Model (2.2) performs much better with describing the insulin
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Figure 3. Numerical simulations for Model (2.1) and (2.2) are fit to the data for parameters
summarized in Tables 2 and 3, respectively. A description of estimated values for both
models can be found in Table 6. Simulations for Model (2.1) are presented (in pink) and
Model (2.2) glucose (in red), insulin (in blue), and FFA (in green) for all clinical data.
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dynamics pre- and post-surgery, whereas Model (2.1) does not closely match the data. Qualitatively,
the trends were not closely matched by Model (2.1) pre-surgery for the NFG, IFG, and T2DM groups.
In this case, Model (2.2) approximated the overall trends more accurately than Model (2.1).

Model validation for plasma FFA levels indicate that the overall trends for FFA were captured
slightly better using Model (2.2) for the Control, NFG, IFG and T2DM groups. It also appears that,
qualitatively, the FFA dynamics vary more in the transient phase for Model (2.1) compared to
Model (2.2). For the control group, Model (2.1) reached the true steady states better compared to
Model (2.2). In the NFG group, Model (2.1) fitted the overall trends better than the Model (2.2).
However, for the IFG group, Model (2.2) fitted the data better than Model (2.1). Similarly, in the
T2DM group, Model (2.2) also fitted the data better than Model (2.1).

Table 6. Parameter estimates for Model (2.1).

Control NFG IFG T2DM
Parameter Pre Post Pre Post Pre Post Pre Post
S G 0.042 0.042 0.04 0.09 0.03 0.038 0.023 0.023
S I 2.07e-5 2.07e-5 0.07e-5 5.07e-5 5.07e-5 5.07e-6 5.07e-6 1.07e-7
cX 3.5 4.2 0.08 0.25 2.1 0.075 0.105 0.12
l0 0.95 2.2 5.2 10.02 20.2 16.2 40.2 34.2
l2 12.85 12.85 16.85 33.5 46.85 44.5 34.85 60.5
X2 4.25 3.25 20.25 5.2 41.25 4.2 12.25 14.2
A 4.2 2.5 3.5 3.5 2.5 2.5 3.5 6.5
c f 0.0295 0.031 0.038 0.065 0.12 0.099 0.09 0.15

To determine the overall goodness of fit, the Akaike information criterion (AIC) was calculated (see
Table 7). The AIC allows us to determine the overall quality of the statistical model for a given set
of data and estimated parameter values. The delay model performed better for the NFG (Total AIC
= 1014.47), IFG (Total AIC = 811.09), and T2D (Total AIC = 799.56) group settings in comparison
to the minimal model (see Table 7). In summary, the AIC for all groups combined was lower for the
delay model (AIC = 2625.12) than in the minimal model (AIC = 2910.85).

5. Discussion

We investigated the efficacy of insulin suppression on lipolysis and assessed the hypothesis that
FFA-stimulated insulin secretion might play a vital role on the progression of insulin resistance.
While the role of FFA-stimulated insulin secretion on the progression of insulin resistance is known,
we formulated a mathematical model that incorporates FFA-stimulated insulin secretion explicitly and
were able to quantify differences in this effect pre- and post-surgery. In Table 5, we found that σ1 and
β estimated pre-surgery is much greater than the estimated values post-surgery in the impaired fasting
glucose (IFG) and T2DM settings. Hence, our findings indicate that the effect of FFA-stimulated
insulin secretion on insulin and glucose levels in patients with IFG and T2DM resembled the
estimates obtained for the control group indicating that the bariatric surgery patients could recover
moderate insulin secretion activity stimulated by FFA. Similarly, the efficacy of insulin inhibition of
FFA. Similarly, I2, which represents the efficacy of insulin inhibition of FFA production, on the
regulation of FFA, insulin and glucose in patients with NFG, IFG, or T2DM resembled the control
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Table 7. AIC values for the each model estimate pre and post surgery.

Glucose Insulin FFA Total
Pre Post Pre Post Pre Post

NFG Group
Delay Model 116.20 162.42 200.73 162.95 149.76 222.41 1014.47
Minimal Model 146.89 139.13 212.02 178.92 111.34 228.86 1017.16
IFG Group
Delay Model 125.53 110.10 161.72 107.56 122.97 183.21 811.09
Minimal Model 134.33 57.85 241.19 90.24 149.86 231.29 904.58
T2D Group
Delay Model 96.38 138.10 175.56 99.76 96.64 182.12 799.56
Minimal Model 106.99 138.94 235.86 130.30 132.58 244.44 989.11
Total
Delay Model 338.11 410.62 538.01 370.27 369.37 587.74
Minimal Model 390.21 538.01 689.07 399.46 393.78 704.59

group after surgery. These findings indicate that the reduction in weight or body mass due to surgery
improve insulin action. This reinforces what we know, that insulin action is essential for regulating
plasma FFA and glucose levels. Our results highlight the robust effect of insulin, that is, it can be
observed not only in the short-term dynamics during an IVGTT protocol but also in the long-term in
longitudinal epidemiological studies.

Overall, it seems that the inclusion of the explicit time delay in Model (2.2) was able to capture the
overall qualitative trends well except for the NFG group when compared to Model (2.1). Particularly,
Models (2.1) and (2.2) captured the peak and steady states for glucose concentration levels pre- and
post-surgery in all groups. Both models captured the initial peak in insulin levels as well as the steady
states for the control group. Though the steady states and rapid decline of insulin levels predicted by
the models were not exactly equivalent to the averaged data for the NFG group, both models were
able to predict the rise and decline in insulin with (Model (2.1)) and without (Model (2.2)) time delay.
As shown for the IFG group, the explicit time delay in Model (2.2) captured the two peaks in insulin,
which has been shown in previous studies [39,41]. Further, both models captured overall rise, decline,
and steady state for insulin levels in the IFG and T2D groups. In contrast, the models fit FFA levels
over time less precisely. Among the control group, the initial high basal levels and decrease in FFA
were predicted by both models. Among the IFG, NFG, and T2D groups the fit to the FFA data were
less precise. However, both models had an initial decline and rise of FFA levels until reaching steady
states. Overall, obtaining the final steady states for FFA were difficult to compute across all groups
due to the complexity of the model as well as large variance in study participants that could be driven
by several biological factors, such as age, gender, stage of diabetes or diabetes-related conditions, and
other factors.

The results show that the incorporation of an explicit time delay in the model led to better
approximations of the qualitative dynamics when compared to those generated by the minimal model.
In previous studies [22, 38], a key feature of τ is not only the biological interpretation given by
quantitatively estimating the fixed time delays across patients and comparing their differences, but

Mathematical Biosciences and Engineering Volume 16, Issue 5, 5765–5787.



5783

also its ability to capture different qualitative behaviors (or peaks) that may give insight into beta-cell
function among patients with and without impaired fasting glucose. In this study, it was shown that
the explicit time delay model could capture the two peaks for the averaged data of the impaired
fasting glucose group, but the interpretation of τ for a sample average of this group and between
groups is limited due to the data being averaged since the proposed model is intended to model the
dynamics of a single person, and not a group of individuals. In our future work, we plan to analyze
individual patient data and explore the heterogeneity in estimates of τ across different groups based
on metabolic health, gender, and age.

The novelty of our work is proposing a dynamic model of glucose, insulin, and FFA with the
inclusion of an explicit fixed time delay. Additionally, our model was constructed to directly study the
harmful cycle that is activated when FFA is not regulated properly by insulin and, in turn, FFA
continues to circulate in the bloodstream, eventually promoting insulin resistance. Though we used
averaged data for our model validation, our computational studies demonstrated that the model
qualitatively captured the glucose, insulin, and FFA levels trends over time after an IVGTT protocol.
However, the use of average data instead of individual patient data limits the conclusions of this
model, and hindered our ability to measure insulin sensitivity for each individual, which is needed to
understand and assess insulin suppression by FFA. Individual patient data is needed to better assess
models’ results since the use of averages eliminates the variance that needs to be quantified in each
group. Further work is needed to fit more data to evaluate this observation in depth at the patient level.
That is, the variabilities in glucose effectiveness, insulin suppression, and insulin sensitivity cannot be
assessed at the individual level using average data between groups, and therefore, patient level data is
needed. More specifically, the dynamics of insulin, glucose, and FFA need to be better understood for
individuals within and across metabolic groups (e.g., nondiabetic or prediabetic, type 2 diabetic) in
order to understand the conditions in which FFA is suppressed effectively and in which cases it is not,
and how bariatric surgery impacts the FFA dynamics. Lastly, the physiological parameters adjusted to
fit the data matched findings from the literature on bariatric surgery, an indicator that the model
captures some of the observed phenomena. Future work would require individual patient data and
possibly a new model that better captures the impact of bariatric surgery on insulin regulation of
glucose and FFA. Furthermore, while the results of our analyses were similar to the work shown
in [40], our work provided new insight by the inclusion of τ in our model as well as other terms to
explore the effect of FFA on insulin action. Additionally, models modified to include specific
mechanisms corresponding to different bariatric surgery types would also provide greater insight into
the roles of FFA and how it is impacted by bariatric surgery.
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