Research article Special Issues

Improved Otsu and Kapur approach for white blood cells segmentation based on LebTLBO optimization for the detection of Leukemia


  • Received: 17 September 2021 Accepted: 09 December 2021 Published: 23 December 2021
  • The diagnosis of leukemia involves the detection of the abnormal characteristics of blood cells by a trained pathologist. Currently, this is done manually by observing the morphological characteristics of white blood cells in the microscopic images. Though there are some equipment- based and chemical-based tests available, the use and adaptation of the automated computer vision-based system is still an issue. There are certain software frameworks available in the literature; however, they are still not being adopted commercially. So there is a need for an automated and software- based framework for the detection of leukemia. In software-based detection, segmentation is the first critical stage that outputs the region of interest for further accurate diagnosis. Therefore, this paper explores an efficient and hybrid segmentation that proposes a more efficient and effective system for leukemia diagnosis. A very popular publicly available database, the acute lymphoblastic leukemia image database (ALL-IDB), is used in this research. First, the images are pre-processed and segmentation is done using Multilevel thresholding with Otsu and Kapur methods. To further optimize the segmentation performance, the Learning enthusiasm-based teaching-learning-based optimization (LebTLBO) algorithm is employed. Different metrics are used for measuring the system performance. A comparative analysis of the proposed methodology is done with existing benchmarks methods. The proposed approach has proven to be better than earlier techniques with measuring parameters of PSNR and Similarity index. The result shows a significant improvement in the performance measures with optimizing threshold algorithms and the LebTLBO technique.

    Citation: Nilkanth Mukund Deshpande, Shilpa Gite, Biswajeet Pradhan, Ketan Kotecha, Abdullah Alamri. Improved Otsu and Kapur approach for white blood cells segmentation based on LebTLBO optimization for the detection of Leukemia[J]. Mathematical Biosciences and Engineering, 2022, 19(2): 1970-2001. doi: 10.3934/mbe.2022093

    Related Papers:

  • The diagnosis of leukemia involves the detection of the abnormal characteristics of blood cells by a trained pathologist. Currently, this is done manually by observing the morphological characteristics of white blood cells in the microscopic images. Though there are some equipment- based and chemical-based tests available, the use and adaptation of the automated computer vision-based system is still an issue. There are certain software frameworks available in the literature; however, they are still not being adopted commercially. So there is a need for an automated and software- based framework for the detection of leukemia. In software-based detection, segmentation is the first critical stage that outputs the region of interest for further accurate diagnosis. Therefore, this paper explores an efficient and hybrid segmentation that proposes a more efficient and effective system for leukemia diagnosis. A very popular publicly available database, the acute lymphoblastic leukemia image database (ALL-IDB), is used in this research. First, the images are pre-processed and segmentation is done using Multilevel thresholding with Otsu and Kapur methods. To further optimize the segmentation performance, the Learning enthusiasm-based teaching-learning-based optimization (LebTLBO) algorithm is employed. Different metrics are used for measuring the system performance. A comparative analysis of the proposed methodology is done with existing benchmarks methods. The proposed approach has proven to be better than earlier techniques with measuring parameters of PSNR and Similarity index. The result shows a significant improvement in the performance measures with optimizing threshold algorithms and the LebTLBO technique.



    加载中


    [1] N. M. Deshpande, S. S. Gite, R. Aluvalu, A brief bibliometric survey of leukemia detection by machine learning and deep learning approaches, Lib. Philo. Pract., 4569 (2020).
    [2] S. Shafique, S. Tehsin, S. Anas, F. Masud, Computer-assisted acute lymphoblastic leukemia detection and diagnosis, in 2nd International Conference on Communication, Computing and Digital Systems, (2019), 184–189.
    [3] H. Singh, G. Kaur, Automatic detection of blood cancer in microscopic images: a review, Int. J. Innovations. Adv. Comput. Sci., 6 (2017), 40–43.
    [4] G. Biji, S. Hariharan, White blood cell segmentation techniques in microscopic images for leukemia detection, IOSR J. Dental Med. Sci., 15 (2016), 45–51.
    [5] E. U. Alam, S. Banik, L. Chowdhury. A statistical approach to classify the leukemia patients from generic gene features, in 2020 International Conference on Computer Communication and Informatics, (2020), 1–6.
    [6] H. M. Amin, Y. Yang, Y. Shen, E. H. Estey, F. J. Giles, S. A. Pierce, et al., Having a higher blast percentage in circulation than bone marrow: clinical implications in myelodysplastic syndrome and acute lymphoid and myeloid leukemias., Leukemia, 19 (2005), 1567–1572. doi: 10.1038/sj.leu.2403876. doi: 10.1038/sj.leu.2403876
    [7] C. Matek, S. Schwarz, K. Spiekermann, C. Marr, Human-level recognition of blast cells in acute myeloid leukaemia with convolutional neural networks, Nat. Mach. Intell., 1 (2019), 538–544. doi: 10.1038/s42256-019-0101-9. doi: 10.1038/s42256-019-0101-9
    [8] N. M. Deshpande, S. S. Gite, R. Aluvalu, Microscopic analysis of blood cells for disease detection: a review, Tracking. Pre. Dis. Artif. Intell., 206 (2022), 125–151. doi: 10.1007/978-3-030-76732-7-6. doi: 10.1007/978-3-030-76732-7-6
    [9] Leukemic-versus-normal-blood, 2021. Available from: https://www.shutterstock.com/image-illustration/leukemic-versus-normal-blood-73621156.
    [10] F. Al-Tahhan, A. A. Sakr, D. A. Aladle, M. Fares, Improved image segmentation algorithms for detecting types of acute lymphatic leukemia, IET Image Process., 13 (2019), 2595–2603.
    [11] S. Mohapatra, D. Patra, S. Satpathi, Image analysis of blood microscopic images for acute leukemia detection, in 2010 International Conference on Industrial Electronics, Control and Robotics IEEE, (2010), 215–219.
    [12] N. M. Deshpande, S. S. Gite, A brief bibliometric survey of explainable ai in medical field, Lib. Philo. Pract., (2021), 1–27.
    [13] A. Khashman, E. Al-Zgoul, Image segmentation of blood cells in leukemia patients, Rec. Adv. Comput. Eng. Appl., 2 (2010), 104-109.
    [14] B. Houwen, Blood film preparation and staining procedures, Clin. Lab. Med., 22 (2002), 1–14.
    [15] B. Nwogoh, A. Adewoyin, Peripheral blood film: a review, Ann. Ib. Postgrad. Med., 12 (2014), 71–79.
    [16] N. M. Deshpande, S. S. Gite, R. Aluvalu, A review of microscopic analysis of blood cells for disease detection with ai perspective, PeerJ Comput. Sci., 7 (2021), e460. doi: 10.7717/peerj-cs.460. doi: 10.7717/peerj-cs.460
    [17] M. Makem, A. Tiedeu, An efficient algorithm for detection of white blood cell nuclei using adaptive three stage PCA-based fusion, Inform. Med. Unlocked, 20 (2020), 100416. doi: 10.1016/j.imu.2020.100416. doi: 10.1016/j.imu.2020.100416
    [18] P. Guruprasad, Overview of different thresholding methods in image processing, in TEQIP Sponsored 3rd National Conference on ETACC, (2020).
    [19] S. K. Dubey, S. Vijay, A review of image segmentation using clustering methods, Int. J. Appl. Eng. Res., 13 (2018), 2484-2489.
    [20] H. G. Kaganami, Z. Beiji, Region-based segmentation versus edge detection, in Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, (2009), 1217-1221. doi: 10.1109/IIH-MSP.2009.13.
    [21] M. Mueller, K. Segl, H. Kaufmann, Edge-and region-based segmentation technique for the extraction of large, man-made objects in high-resolution satellite imagery, Pattern Recognit., 37 (2004), 1619-1628. doi: 10.1016/j.patcog.2004.03.001. doi: 10.1016/j.patcog.2004.03.001
    [22] C. Amza, A review on neural network-based image segmentation techniques, 2012. Available from: https://www.researchgate.net/profile/Catalin-Gheorghe-Amza-2/publication/228873725.
    [23] J. Rogowska, Overview and fundamentals of medical image segmentation, Academic Press, (2009), 73–90.
    [24] A. Singh, S. Sawan, M. Hanmandlu, V. K. Madasu, B.C. Lovell, An abandoned object detection system based on dual background segmentation, in Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance, (2009), 352-357.
    [25] N. Mittal, A. Garg, P. Singh, S. Singh, H. Singh, Improvement in learning enthusiasm-based TLBO algorithm with enhanced exploration and exploitation properties, Nat. Comput., 20 (2021), 577–609. doi: 10.1007/s11047-020-09811-5. doi: 10.1007/s11047-020-09811-5
    [26] S. Singh, N. Mittal, H. Singh, A multilevel thresholding algorithm using lebtlbo for image segmentation, Neural. Comput Appl., 32 (2020), 16681–16706. doi: 10.1007/s00521-020-04989-2. doi: 10.1007/s00521-020-04989-2
    [27] J. S. Chohan, N. Mittal, R. Kumar, Parametric optimization of fused deposition modeling using learning enthusiasm enabled teaching learning based algorithm, SN Appl. Sci., 2 (2020), 1–2. doi: 10.1007/s42452-020-03818-4. doi: 10.1007/s42452-020-03818-4
    [28] X. Chen, B. Xu, K. Yu, W. Du, Teaching learning-based optimization with learning enthusiasm mechanism and its application in chemical engineering, J. Appl. Math., 2018 (2018), 1806947. doi: 10.1155/2018/1806947. doi: 10.1155/2018/1806947
    [29] M. Yildirim, A. C. Cinar, Classification of white blood cells by deep learning methods for diagnosing disease, Rev. Artif. Intell., 33 (2019), 335–340. doi: 10.18280/ria.330502. doi: 10.18280/ria.330502
    [30] J. N. Kapur, P. K. Sahoo, A. K. Wong, A new method for gray level picture thresholding using the entropy of the histogram, Comput. Vis. Graphics. Image Process., 29 (1985), 273–285. doi: 10.1016/0734-189X(85)90125-2. doi: 10.1016/0734-189X(85)90125-2
    [31] A. S. Negm, O. A. Hassan, A. H. Kandil, A decision support system for acute leukaemia classification based on digital microscopic images, Alex. Eng. J., 57 (2018), 2319–2332. doi: 10.1016/j.aej.2017.08.025. doi: 10.1016/j.aej.2017.08.025
    [32] N. Pombo, P. Rebelo, P. Araxujo, J. Viana, Combining data imputation and statistics to design a clinical decision support system for postoperative pain monitoring, Procedia Comput. Sci., 64 (2015), 1018–1025. doi: 10.1016/j.procs.2015.08.621 doi: 10.1016/j.procs.2015.08.621
    [33] H. Miao, C. Xiao, Simultaneous segmentation of leukocyte and erythrocyte in microscopic images using a marker-controlled watershed algorithm, Comput. Math. Methods Med., (2018), 1-10. doi: 10.1155/2018/7235795. doi: 10.1155/2018/7235795
    [34] S. C. Neoh, W. Srisukkham, L. Zhang, S. Todryk, B. Greystoke, C. P. Lim, et al., An intelligent decision support system for leukaemia diagnosis using microscopic blood images, Sci. Rep., 5 (2015), 1–14. doi: 10.1038/srep14938. doi: 10.1038/srep14938
    [35] H. Miao, C. Xiao, Simultaneous segmentation of leukocyte and erythrocyte in microscopic images using a marker-controlled watershed algorithm, Comput. Math. Methods Med., 1 (2018), 1–10. doi: 10.1155/2018/7235795. doi: 10.1155/2018/7235795
    [36] P. P. Guan, H. Yan, Blood cell image segmentation based on the Hough transform and fuzzy curve tracing, Int. Conf. Mach. Learn. Cybern., 4 (2011), 1696–1701. doi: 10.1109/ICMLC.2011.6016961. doi: 10.1109/ICMLC.2011.6016961
    [37] S. Biswas, D. Ghoshal, Blood cell detection using thresholding estimation based watershed transformation with Sobel filter in frequency domain, Procedia Comput. Sci., 89 (2016), 651–657. doi: 10.1016/j.procs.2016.06.029. doi: 10.1016/j.procs.2016.06.029
    [38] S. Mishra, B. Majhi, P. K. Sa, Texture feature based classification on microscopic blood smear for acute lymphoblastic leukemia detection, Biomed. Signal. Process. Control., 47 (2019), 303–311. doi: 10.1016/j.bspc.2018.08.012. doi: 10.1016/j.bspc.2018.08.012
    [39] Y. Duan, J. Wang, M. Hu, M. Zhou, Q. Li, L. Sun, et al., Leukocyte classification based on spatial and spectral features of microscopic hyperspectral images, Opt. Laser. Technol., 112 (2019), 530–538. doi: 10.1016/j.optlastec.2018.11.057. doi: 10.1016/j.optlastec.2018.11.057
    [40] N. Salem, N. M. Sobhy, M. El Dosoky, A comparative study of white blood cells segmentation using otsu threshold and watershed transformation, J. Biomed. Eng. Med. Imaging, 3 (2016), 15. doi: 10.14738/jbemi.33.2078. doi: 10.14738/jbemi.33.2078
    [41] M. Poostchi, I. Ersoy, K. McMenamin, E. Gordon, N. Palaniappan, S. Pierce, et al., Malaria parasite detection and cell counting for human and mouse using thin blood smear microscopy, J. Med. Imaging, 5 (2018), 1-13. doi: 10.1117/1.JMI.5.4.044506. doi: 10.1117/1.JMI.5.4.044506
    [42] M. Shahzad, A. I. Umar, M. A. Khan, S. H. Shirazi, Z. Khan, W. Yousaf, Robust method for semantic segmentation of whole-slide blood cell microscopic images, Comput. Math. Methods Med., 2020 (2020). doi: 10.1155/2020/4015323. doi: 10.1155/2020/4015323
    [43] T. G. Debelee, F. Schwenker, S. Rahimeto, D. Yohannes, Evaluation of modified adaptive k-means segmentation algorithm, Com. Vis. Med., 5 (2019), 347–361. doi: 10.1007/s41095-019-0151-2. doi: 10.1007/s41095-019-0151-2
    [44] M. Tuba, Multilevel image thresholding by nature inspired algorithms: A short review, Comput. Sci. J. Mold., 66 (2014), 318–338.
    [45] A. S. Dar, D. Padha, Medical image segmentation: A review of recent techniques, advancements and a comprehensive comparison, Int. J. Comput. Sci. Eng., (2019), 114-124. doi: 10.26438/ijcse/v7i7.114124. doi: 10.26438/ijcse/v7i7.114124
    [46] F. Sadeghian, Z. Seman, A. R. Ramli, B. H. Kahar, M. I. Saripan, A framework for white blood cell segmentation in microscopic blood images using digital image processing, Biol. Proced. Online, (2009), 196-206. doi: 10.1007/s12575-009-9011-2. doi: 10.1007/s12575-009-9011-2
    [47] J. Al-Muhairy, Y. Al-Assaf, Automatic white blood cell segmentation based on image processing, in 16th IFAC World Congress, (2005), 1-6.
    [48] Y. Yang, Y. Cao, W. Shi, A method of leukocyte segmentation based on S component and B component images, J. Innovative Opt. Health Sci., 7 (2014), 1-8. doi: 10.1142/S1793545814500072. doi: 10.1142/S1793545814500072
    [49] The truth that stares us in the face in our blood panels, 2021. Available from: http://extralymey.com/the-truth-that-stares-us-in-the-face-in-our-blood-panels.
    [50] N. Bakhashwain, A. Sagheer, Online tuning of hyperparameters in deep LSTM for time series applications, Int. J. Intell. Eng. Syst., 14 (2021), 212–220. doi: 10.22266/ijies2021.0228.21. doi: 10.22266/ijies2021.0228.21
    [51] Common-hematology-tests, 2021. Available from: https://askhematologist.com/common-hematology-tests/.
    [52] M. P. Starmans, S. R. van der Voort, J. M. C. Tovar, J. F. Veenland, S. Klein, W.J. Niessen, Radiomics: Data mining using quantitative medical image features, Academic Press, (2020), 429-456.
    [53] B. Panda, A survey on application of population based algorithm on hyperparameter selection, Department of Computer Science: Course 761: Semester 2, (2019), 1-9.
    [54] J. G. Barbedo, Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification, Comput. Electron. Agric., 153 (2018), 46–53. doi: 10.1016/j.compag.2018.08.013. doi: 10.1016/j.compag.2018.08.013
    [55] S. Christin, E. Hervet, N. Lecomte, Applications for deep learning in ecology, Methods Ecol. Evol., 10 (2019), 1632–1644. doi: 10.1111/2041-210X.13256. doi: 10.1111/2041-210X.13256
    [56] S.S. Khan, A. Ahmad, Cluster center initialization algorithm for K-means clustering, Pattern. Recognit. Lett., 25 (2004), 1293–302. doi: 10.1016/j.patrec.2004.04.007. doi: 10.1016/j.patrec.2004.04.007
    [57] E. Suganya, S. Sountharrajan, S. K. Shandilya, M. Karthiga, Iot in agriculture investigation on plant diseases and nutrient level using image analysis techniques, In Internet of Things in Biomedical Engineering, Academic Press, 2019 (2019), 117-130. doi: 10.1016/B978-0-12-817356-5.00007-3. doi: 10.1016/B978-0-12-817356-5.00007-3
    [58] W. Wang, L. Duan, Y. Wang, Fast image segmentation using two-dimensional Otsu based on estimation of distribution algorithm, J. Electr. Comput. Eng., 2017 (2017). doi: 10.1155/2017/1735176. doi: 10.1155/2017/1735176
    [59] C. Huang, X. Li, Y. Wen, An otsu image segmentation based on fruitfly optimization algorithm, Alexandria Comput. Vis. Graphics. Image Process., Eng. J., 60 (2021), 183-188. doi: 10.1016/j.aej.2020.06.054. doi: 10.1016/j.aej.2020.06.054
    [60] R. Rao, Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems, Int. J. Ind. Eng. Comput., 7 (2016), 19–34. doi: 10.5267/j.ijiec.2015.8.004. doi: 10.5267/j.ijiec.2015.8.004
    [61] R. V. Rao, V. Patel, Multi-objective optimization of heat exchangers using a modified teaching-learning based optimization algorithm, Appl. Math. Modell., 37 (2013), 1147–1162. doi: 10.1016/j.apm.2012.03.043. doi: 10.1016/j.apm.2012.03.043
    [62] R. Rao, V. Patel, An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems, Int. J. Ind. Eng. Comput., 3 (2012), 535–560. doi: 10.5267/j.ijiec.2012.03.007. doi: 10.5267/j.ijiec.2012.03.007
    [63] D. P. Kanungo, J. Nayak, B. Naik, H. S. Behera, Hybrid clustering using elitist teaching learning-based optimization: an improved hybrid approach of TLBO, Int. J. Rough Sets Data Anal., 3 (2016), 1–9. doi: 10.4018/IJRSDA.2016010101. doi: 10.4018/IJRSDA.2016010101
    [64] R. D. Labati, V. Piuri, F. Scotti. All-idb: The acute lymphoblastic leukemia image database for image processing, in 2011 18th IEEE International Conference on Image Processing, (2011), 2045–2048.
    [65] F. Scotti, Robust segmentation and measurements techniques of white cells in blood microscope images, in 2006 IEEE Instrumentation and Measurement Technology Conference Processdings, (2006), 43–48.
    [66] F. Scotti, Automatic morphological analysis for acute leukemia identification in peripheral blood microscope images, in CIMSA. 2005 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, (2005), 96–101.
    [67] K. G. Dhal, A. Das, S. Ray, J. Gxalvez, S. Das, Nature-inspired optimization algorithms and their application in multi-thresholding image segmentation, Arch. Comput. Methods Eng., 27 (2020), 855–888. doi: 10.1007/s11831-019-09334-y. doi: 10.1007/s11831-019-09334-y
    [68] N. Senthilkumaran, S. Vaithegi, Image segmentation by using thresholding techniques for medical images, Com. Sci. Eng: An Int. J., 6 (2016), 1-13.
    [69] S. Kotte, P. R. Kumar, S. K. Injeti, An efficient approach for optimal multilevel thresholding selection for gray scale images based on improved differential search algorithm, Ain Sha. Eng. Jo., 9 (2018), 1043–1067. doi: 10.1016/j.asej.2016.06.007. doi: 10.1016/j.asej.2016.06.007
    [70] N. Otsu, A threshold selection method from gray-level histograms, IEEE Trans. Syst., Man Cyber., 9 (1979), 62–66.
    [71] C. Wang, J. Yang, H. Lv, Otsu multi-threshold image segmentation algorithm based on improved particle swarm optimization, in IEEE 2nd International Conference on Information Communication and Signal Processing, (2019), 440–443.
    [72] P. Yang, W. Song, X. Zhao, R. Zheng, L. Qingge, An improved Otsu threshold segmentation algorithm, Int. J. Comput Sci. Eng., 22 (2020), 146–153.
    [73] Y. Zhan, G. Zhang, An improved OTSU algorithm using histogram accumulation moment for ore segmentation, Symmetry, 11 (2019), 431. doi: 10.3390/sym11030431. doi: 10.3390/sym11030431
    [74] W. Ji, X. He, Kapur's entropy for multilevel thresholding image segmentation based on moth-flame optimization, Math. Biosci. Eng., 18 (2021), 7110–7142. doi: 10.3934/mbe.2021353. doi: 10.3934/mbe.2021353
    [75] J. N. Kapur, P. K. Sahoo, A. K. Wong, A new method for gray-level picture thresholding using the entropy of the histogram, Comput. Vis. Graphics. Image Process., 29 (1985), 273–285. doi: 10.1016/0734-189X(85)90125-2. doi: 10.1016/0734-189X(85)90125-2
    [76] Z. Yan, J. Zhang, Z. Yang, J. Tang, Kapur's entropy for underwater multilevel thresholding image segmentation based on whale optimization algorithm, IEEE Access, 9 (2020), 41294–41319. doi: 10.1109/ACCESS.2020.3005452. doi: 10.1109/ACCESS.2020.3005452
    [77] J. N. Kapur, P. K. Sahoo, A. K. Wong, A new method for graylevel picture thresholding using the entropy of the histogram, Comput. Vis. Graphics. Image Process., 29 (1985), 273–285. doi: 10.1016/0734-189X(85)90125-2. doi: 10.1016/0734-189X(85)90125-2
    [78] D. Feng, S. Wenkang, C. Liangzhou, D. Yong, Z. Zhenfu, Infrared image segmentation with 2-d maximum entropy method based on particle swarm optimization (pso), Pattern. Recognit. Lett., 26 (2005), 597–603. doi: 10.1016/j.patrec.2004.11.002. doi: 10.1016/j.patrec.2004.11.002
    [79] H. Liang, H. Jia, Z. Xing, J. Ma, X. Peng, Modified grasshopper algorithm-based multilevel thresholding for color image segmentation, IEEE Access, 7 (2019), 11258–11295. doi: 10.1109/ACCESS.2019.2891673. doi: 10.1109/ACCESS.2019.2891673
    [80] M. Sánchez-Silva, C. Gómez, Risk assessment and management of civil infrastructure networks: a systems approach, Woodhead Publishing, (2013), 437-464.
    [81] C. Tan, Y. Sun, G. Li, B. Tao, S. Xu, F. Zeng, Image segmentation technology based on genetic algorithm, in Proceedings of the 3rd International Conference on Digital Signal Processing, (2019), 27-31. doi: 10.1145/3316551.3318229.
    [82] S. Ait-Aoudia, E. Guerrout, R. Mahiou, Medical image segmentation using particle swarm optimization, in 18th International Conference on Information Visualization, (2014), 287-291, doi: 10.1109/IV.2014.68.
    [83] E. Cuevas, F. Sención-Echauri, D. Zaldivar, M. Pérez, Image segmentation using artificial Bee colony optimization, Springer, (2013), 965-990.
    [84] S. C. Satapathy, A. Naik, Modified teaching-learning-based optimization algorithm for global numerical optimization-a comparative study, Swarm Evol. Comput., 16 (2014), 28–37. doi: 10.1016/j.swevo.2013.12.005. doi: 10.1016/j.swevo.2013.12.005
    [85] F. Zou, L. Wang, D. Chen, X. Hei, An improved teaching learning-based optimization with differential learning and its application, Math. Probl. Eng., 1 (2015), 1–20. doi: 10.1155/2015/754562. doi: 10.1155/2015/754562
    [86] Z. S. Wu, W. P. Fu, R. Xue, Nonlinear inertia weighted teaching learning-based optimization for solving global optimization problem, Comput. Intell. Neursci., 1 (2015), 1–15. doi: 10.1155/2015/292576. doi: 10.1155/2015/292576
    [87] F. Zou, L. Wang, X. Hei, D. Chen, Teaching-learning-based optimization with learning experience of other learners and its application, Appl. Soft Comput., 37 (2015), 725–736. doi: 10.1016/j.asoc.2015.08.047. doi: 10.1016/j.asoc.2015.08.047
    [88] X. Chen, K. Yu, W. Du, W. Zhao, G. Liu, Parameters identification of solar cell models using generalized oppositional teaching learning based optimization, Energy, 99 (2016), 170–180. doi: 10.1016/j.energy.2016.01.052. doi: 10.1016/j.energy.2016.01.052
    [89] A. Tiwari, M. K. Pradhan, Applications of TLBO algorithm on various manufacturing processes: A review, Mater. Today Proc., 4 (2017), 1644-1652. doi: 10.1016/j.matpr.2017.02.003. doi: 10.1016/j.matpr.2017.02.003
    [90] B. S. Khehra, A. S. Pharwaha, Image segmentation using teaching-learning-based optimization algorithm and fuzzy entropy, in 15th International Conference on Computational Science and Its Applications, (2015), 67-71. doi: 10.1109/ICCSA.2015.10.
    [91] V. Yeghiazaryan, I. Voiculescu, Family of boundary overlap metrics for the evaluation of medical image segmentation, J. Med. Imaing, 5 (2018), 015006. doi: 10.1117/1.JMI.5.1.015006. doi: 10.1117/1.JMI.5.1.015006
    [92] S. Yousefi, N. Kehtarnavaz, A. Gholipour, Improved labeling of subcortical brain structures in atlas-based segmentation of magnetic resonance images, IEEE Tran. Biomed. Eng., 59 (2011), 1808-1817. doi: 10.1109/TBME.2011.2122306. doi: 10.1109/TBME.2011.2122306
    [93] J. Bertels, T. Eelbode, M. Berman, D. Vandermeulen, F. Maes, R. Bisschops, M. B. Blaschko, Optimizing the dice score and jaccard index for medical image segmentation: Theory and practice, in International Conference on Medical Image Computing and Computer-Assisted Intervention, (2019), 92-100. doi: 10.1007/978-3-030-32245-8_11.
    [94] S. J. Jemila, A. B. Therese, Selection of suitable segmentation technique based on image quality metrics, Imaing Sci. J., 67 (2019), 475-480. doi: 10.1080/13682199.2020.1718298. doi: 10.1080/13682199.2020.1718298
    [95] A. Oulefki, S. Agaian, T. Trongtirakul, A. K. Laouar, Automatic COVID-19 lung infected region segmentation and measurement using CT-scans images, Pattern Recognit., 114 (2021). doi: 10.1016/j.patcog.2020.107747. doi: 10.1016/j.patcog.2020.107747
    [96] A. Rahman, Y. Wang, Optimizing intersection-over union in deep neural networks for image segmentation, in Proceedings of the International Symposium on Visual Computing, (2016), 234-244.
    [97] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612. doi: 10.1109/TIP.2003.819861. doi: 10.1109/TIP.2003.819861
    [98] D. Asamoah, E. Ofori, S. Opoku, J. Danso, Measuring the performance of image contrast enhancement technique, Int. J. Comput. Appl., 181 (2018), 6-13.
    [99] K. G. Dhal, J. Gálvez, S. Ray, A. Das, S. Das, Acute lymphoblastic leukemia image segmentation driven by stochastic fractal search, Multimed. Tools Appl., (2020), 1-29. doi: 10.1007/s11042-019-08417-z. doi: 10.1007/s11042-019-08417-z
    [100] C. Militello, L. Rundo, V. Conti, L. Minafra, F. P. Cammarata, G. Mauri, et al., Area-based cell colony surviving fraction evaluation: A novel fully automatic approach using general-purpose acquisition hardware, Comput. Biol. Med., 89 (2017), 454-465, doi: 10.1016/j.compbiomed.2017.08.005. doi: 10.1016/j.compbiomed.2017.08.005
    [101] A. U. M. Khan, A. Torelli, I. Wolf, N. Gretz, AutoCellSeg: robust automatic colony forming unit (CFU)/cell analysis using adaptive image segmentation and easy-to-use post-editing techniques, Sci. Rep., 8 (2018), 1-10. doi: 10.1038/s41598-018-24916-9. doi: 10.1038/s41598-018-24916-9
    [102] L. Rundo, A. Tangherloni, D. R. Tyson, R. Betta, C. Militello, S. Spolaor, et al., ACDC: Automated cell detection and counting for time-lapse fluorescence microscopy, Appl. Sci., 10 (2020), 1-22. doi: 10.3390/app10186187. doi: 10.3390/app10186187
    [103] G. Sergioli, C. Militello, L. Rundo, L. Minafra, F. Torrisi, G. Russo, et al., A quantum-inspired classifier for clonogenic assay evaluations, Sci. Rep., 11 (2021), 1–10. doi: 10.1038/s41598-021-82085-8. doi: 10.1038/s41598-021-82085-8
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2608) PDF downloads(182) Cited by(8)

Article outline

Figures and Tables

Figures(13)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog