This article examines the joint impacts of microtemperature, nonlinear structural damping, along with nonlinear time-varying delay term, and time-varying coefficient on a thermoelastic laminated beam, where, the equation representing the dynamics of slip is affected by the last three mentioned terms. A general decay result was established regarding the system concerned given equal wave speeds and particular assumptions related to nonlinear terms.
Citation: Fatima Siham Djeradi, Fares Yazid, Svetlin G. Georgiev, Zayd Hajjej, Khaled Zennir. On the time decay for a thermoelastic laminated beam with microtemperature effects, nonlinear weight, and nonlinear time-varying delay[J]. AIMS Mathematics, 2023, 8(11): 26096-26114. doi: 10.3934/math.20231330
This article examines the joint impacts of microtemperature, nonlinear structural damping, along with nonlinear time-varying delay term, and time-varying coefficient on a thermoelastic laminated beam, where, the equation representing the dynamics of slip is affected by the last three mentioned terms. A general decay result was established regarding the system concerned given equal wave speeds and particular assumptions related to nonlinear terms.
[1] | H. Suh, Z. Bien, Use of time-delay actions in the controller design, IEEE Trans. Automat. Contr., 25 (1980), 600–603. https://doi.org/10.1109/TAC.1980.1102347 doi: 10.1109/TAC.1980.1102347 |
[2] | S. E. Mukiawa, C. D. Enyi, S. A. Messaoudi, Stability of thermoelastic Timoshenko beam with suspenders and time-varying feedback, Adv. Contin. Discret. Models, 2023 (2023), 7. https://doi.org/10.1186/s13662-023-03752-w doi: 10.1186/s13662-023-03752-w |
[3] | J. M. Wang, G. Q. Xu, S. P. Yung, Exponential stabilization of laminated beams with structural damping and boundary feedback controls, SIAM J. Control Optim., 44 (2005), 1575–1597. https://doi.org/10.1137/040610003 doi: 10.1137/040610003 |
[4] | N. E. Tatar, Stabilization of a laminated beam with interfacial slip by boundary controls, Bound. Value Probl., 2015 (2015), 169. https://doi.org/10.1186/s13661-015-0432-3 doi: 10.1186/s13661-015-0432-3 |
[5] | H. E. Khochemane, Exponential stability for a thermoelastic porous system with microtemperature effects, Acta Appl. Math., 173 (2021), 8. https://doi.org/10.1007/s10440-021-00418-1 doi: 10.1007/s10440-021-00418-1 |
[6] | D. Fayssal, Well posedness and stability result for a thermoelastic laminated beam with structural damping, Ric. Mat., 2022. |
[7] | A. Benaissa, A. Benaissa, S. A. Messaoudi, Global existence and energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks, J. Math. Phys., 53 (2012), 123514. https://doi.org/10.1063/1.4765046 doi: 10.1063/1.4765046 |
[8] | L. Djilali, A. Benaissa, A. Benaissa, Global existence and energy decay of solutions to a viscoelastic Timoshenko beam system with a nonlinear delay term, Appl. Anal., 95 (2016), 2637–2660. https://doi.org/10.1080/00036811.2015.1105961 doi: 10.1080/00036811.2015.1105961 |
[9] | K. Mpungu, T. A. Apalara, Asymptotic behavior of a laminated beam with nonlinear delay and nonlinear structural damping, Hacet. J. Math. Stat., 51 (2022), 1517–1534. https://doi.org/10.15672/hujms.947131 doi: 10.15672/hujms.947131 |
[10] | I. Lasiecka, D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Diff. Integ. Equ., 6 (1993), 507–533. |
[11] | S. Nicaise, C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561–1585. https://doi.org/10.1137/060648891 doi: 10.1137/060648891 |
[12] | T. A. Apalara, A. Soufyane, Energy decay for a weakly nonlinear damped porous system with a nonlinear delay, Appl. Anal., 101 (2022), 6113–6135. https://doi.org/10.1080/00036811.2021.1919642 doi: 10.1080/00036811.2021.1919642 |
[13] | V. I. Arnol'd, Mathematical methods of classical mechanics, New York: Springer, 1989. |
[14] | A. Benaissa, M. Bahlil, Global existence and energy decay of solutions to a nonlinear Timoshenko beam system with a delay term, Taiwanese J. Math., 18 (2014), 1411–1437. https://doi.org/10.11650/tjm.18.2014.3586 doi: 10.11650/tjm.18.2014.3586 |
[15] | C. S. Zhu, X. Q. Fang, J. X. Liu, H. Y. Li, Surface energy effect on nonlinear free vibration behavior of orthotropic piezoelectric cylindrical nano-shells, Eur. J. Mech. A-Solid., 66 (2017), 423–432. https://doi.org/10.1016/j.euromechsol.2017.08.001 doi: 10.1016/j.euromechsol.2017.08.001 |
[16] | J. Xie, Z. Zhang, The high-order multistep ADI solver for two-dimensional nonlinear delayed reaction-diffusion equations with variable coefficients, Comput. Math. Appl., 75 (2018), 3558–3570. https://doi.org/10.1016/j.camwa.2018.02.017 doi: 10.1016/j.camwa.2018.02.017 |
[17] | J. Xie, X. Yan, M. Aamir Ali, Z. Hammouch, A linear decoupled physical-property-preserving difference method for fractional-order generalized Zakharov system, J. Comput. Appl. Math., 426 (2023), 115044. https://doi.org/10.1016/j.cam.2022.115044 doi: 10.1016/j.cam.2022.115044 |
[18] | X. Q. Fang, H. W. Ma, C. S. Zhu, Non-local multi-fields coupling response of a piezoelectric semiconductor nanofiber under shear force, Mech. Adv. Mater. Struc., 2023. https://doi.org/10.1080/15376494.2022.2158503 doi: 10.1080/15376494.2022.2158503 |