Research article Special Issues

Incomplete exponential type of $ R $-matrix functions and their properties

  • Received: 22 June 2023 Revised: 14 August 2023 Accepted: 27 August 2023 Published: 11 September 2023
  • MSC : 15A60, 33C05, 33C25, 33C45, 33D15

  • In the present paper, we establish the incomplete exponential type (IEF) of $ R $-matrix functions and identify some properties of the incomplete exponential matrix functions including integral representation, some derivative formula and generating functions of the incomplete exponential of $ R $-matrix functions. Finally, special cases of the presented results are pointed out.

    Citation: Ahmed Bakhet, Mohra Zayed. Incomplete exponential type of $ R $-matrix functions and their properties[J]. AIMS Mathematics, 2023, 8(11): 26081-26095. doi: 10.3934/math.20231329

    Related Papers:

  • In the present paper, we establish the incomplete exponential type (IEF) of $ R $-matrix functions and identify some properties of the incomplete exponential matrix functions including integral representation, some derivative formula and generating functions of the incomplete exponential of $ R $-matrix functions. Finally, special cases of the presented results are pointed out.



    加载中


    [1] M. A. Chaudhry, A. Qadir, Incomplete exponential and hypergeometric functions with applications to the non central $\chi^{2}$ -distribution, Commun. Stat. Theor. M., 34 (2005), 525–535. https://doi.org/10.1081/STA-200052154 doi: 10.1081/STA-200052154
    [2] H. M. Srivastava, M. A. Chaudhry, R. P. Agarwal, The incomplete Pochhammer symbols and their applications tohypergeometric and related functions, Integr. Trans. Spec. Funct., 23 (2012), 659–683. https://doi.org/10.1080/10652469.2011.623350 doi: 10.1080/10652469.2011.623350
    [3] R. Desai, A. K. Shukla, Some results on function ${ }_{p} R_{q}(\alpha, \beta; z)$, J. Math. Anal. Appl., 448 (2017), 187–197. https://doi.org/10.1016/j.jmaa.2016.10.048 doi: 10.1016/j.jmaa.2016.10.048
    [4] L. Jódar, J. C. Cortés, Some properties of Gamma and Beta matrix functions, Appl. Math. Lett., 11 (1998), 89–93. https://doi.org/10.1016/S0893-9659(97)00139-0 doi: 10.1016/S0893-9659(97)00139-0
    [5] L. Jódar, J. C. Cortés, On the hypergeometric matrix function, J. Comput. Appl. Math., 99 (1998), 205–217. https://doi.org/10.1016/S0377-0427(98)00158-7 doi: 10.1016/S0377-0427(98)00158-7
    [6] L. Jódar, J. C. Cortés, Closed form general solution of the hypergeometric matrix differential equation, Math. Comput. Model., 32 (2000), 1017–1028. https://doi.org/10.1016/S0895-7177(00)00187-4 doi: 10.1016/S0895-7177(00)00187-4
    [7] F. He, A. Bakhet, M. Hidan, M. Abdalla, Two variables Shivley's matrix polynomials, Symmetry, 11 (2019), 151. https://doi.org/10.3390/sym11020151 doi: 10.3390/sym11020151
    [8] S. Khan, N. A. M. Hassan, 2-variables Laguerre matrix polynomials and Lie-algebraic techniques, J. Phys. A Math. Theor., 43 (2010), 235204. https://doi.org/10.1088/1751-8113/43/23/235204 doi: 10.1088/1751-8113/43/23/235204
    [9] R. S. Batahan, A new extension of Hermite matrix polynomials and its applications, Linear Algebra Appl., 419 (2006), 82–92. https://doi.org/10.1016/j.laa.2006.04.006 doi: 10.1016/j.laa.2006.04.006
    [10] H. M. Srivastava, W. A. Khan, H. Haroon, Some expansions for a class of generalized Humbert matrix polynomials, RACSAM, 113 (2019), 3619–3634. https://doi.org/10.1007/s13398-019-00720-6 doi: 10.1007/s13398-019-00720-6
    [11] S. Khan, N. Raza, 2-variable generalized Hermite matrix polynomials and Lie algebra representation, Rep. Math. Phys., 66 (2010), 159–174. https://doi.org/10.1016/S0034-4877(10)00024-8 doi: 10.1016/S0034-4877(10)00024-8
    [12] S. Khan, A. Al-Gonah, Multi-variable Hermite matrix polynomials: Properties and applications, J. Math. Anal. Appl., 412 (2014), 222–235. https://doi.org/10.1016/j.jmaa.2013.10.037 doi: 10.1016/j.jmaa.2013.10.037
    [13] G. S. Kahmmash, A study of a two variables Gegenbauer matrix polynomials and second order matrix partial differential equations, Int. J. Math. Anal., 2 (2008), 807–821.
    [14] L. Kargin, V. Kurt, Chebyshev-type matrix polynomials and integral transforms, Hacet. J. Math. Stat., 44 (2015), 341–350. https://doi.org/10.15672/HJMS.2015449102 doi: 10.15672/HJMS.2015449102
    [15] J. Sastre, L. Jódar, Asymptotics of the modified Bessel and incomplete gamma matrix functions, Appl. Math. Lett., 16 (2003), 815–820. https://doi.org/10.1016/S0893-9659(03)90001-2 doi: 10.1016/S0893-9659(03)90001-2
    [16] L. Jódar, R. Company, E. Navarro, Solving explicitly the Bessel matrix differential equation, without increasing problem dimension, Congr. Numer., 92 (1993), 261–276.
    [17] R. Dwivedi, R. Sanjhira, On the matrix function ${ }_{p} R_{q}(A, B; z)$ and its fractional calculus properties, Commun. Math., 31 (2023), 43–56. https://doi.org/10.46298/cm.10205 doi: 10.46298/cm.10205
    [18] A. Bakhet, F. He, On the matrix version of extended Struve function and its application on fractional calculus, Filomat, 36 (2022), 3381–3392. https://doi.org/10.2298/FIL2210381B doi: 10.2298/FIL2210381B
    [19] T. Cuchta, D. Growb, N. Wintz, Discrete matrix hypergeometric functions, J. Math. Anal. Appl., 518 (2023), 126716. https://doi.org/10.1016/j.jmaa.2022.126716 doi: 10.1016/j.jmaa.2022.126716
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(868) PDF downloads(82) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog