In this paper, we consider weighted digraphs and prove that homotopic morphisms between weighted digraphs induce the identical homomorphisms on weighted path homology groups with field coefficients.
Citation: Chong Wang. Homotopic morphisms between weighted digraphs[J]. AIMS Mathematics, 2023, 8(11): 26070-26080. doi: 10.3934/math.20231328
In this paper, we consider weighted digraphs and prove that homotopic morphisms between weighted digraphs induce the identical homomorphisms on weighted path homology groups with field coefficients.
[1] | A. Grigor'yan, Y. Lin, Y. Muranov, S. T. Yau, Homologies of path complexes and digraphs, Preprint arXiv: 1207. 2834v4, 2013. |
[2] | A. Grigor'yan, Y. Lin, Y. Muranov, S. T. Yau, Cohomology of digraphs and (undirected) graphs, Asian J. Math., 19 (2015), 887–932. https://doi.org/10.4310/AJM.2015.v19.n5.a5 doi: 10.4310/AJM.2015.v19.n5.a5 |
[3] | A. Grigor'yan, Y. Lin, Y. Muranov, S. T. Yau, Path complexes and their homologies, Journal of Mathematical Sciences, 248 (2020), 564–599. https://doi.org/10.1007/s10958-020-04897-9 doi: 10.1007/s10958-020-04897-9 |
[4] | A. Grigor'yan, Y. Muranov, S. T. Yau, Homologies of digraphs and K$\ddot{u}$nneth formulas, Commun. Anal. Geom., 25 (2017), 969–1018. https://doi.org/10.4310/CAG.2017.v25.n5.a4 doi: 10.4310/CAG.2017.v25.n5.a4 |
[5] | A. Grigor'yan, Y. Muranov, V. Vershinin, S. T. Yau, Path homology theory of multigraphs and quivers, Forum Math., 30 (2018), 1319–1337. https://doi.org/10.1515/forum-2018-0015 doi: 10.1515/forum-2018-0015 |
[6] | A. Grigor'yan, R. Jimenez, Y. Muranov, S. T. Yau, Homology of path complexes and hypergraphs, Topol. Appl., 267 (2019), 106877. https://doi.org/10.1016/j.topol.2019.106877 doi: 10.1016/j.topol.2019.106877 |
[7] | A. Grigor'yan, Y. Lin, Y. Muranov, S. T. Yau, Homotopy theory for digraphs, Pure Appl. Math. Q., 10 (2014), 619–674. https://doi.org/10.4310/PAMQ.2014.v10.n4.a2 doi: 10.4310/PAMQ.2014.v10.n4.a2 |
[8] | A. Grigor'yan, R. Jimenez, Y. Muranov, Fundamental groupoids of digraphs and graphs, Czech. Math. J., 68 (2018), 35–65. https://doi.org/10.21136/CMJ.2018.0683-15 doi: 10.21136/CMJ.2018.0683-15 |
[9] | Ch. Wang, S.-Q. Ren, Y. Lin, Persistent Homology of Vertex-Weighted Digraphs, Adv. Math. (CHINA), 49 (2020), 737–755. |
[10] | S. Bressan, J. Li, S. Ren, J. Wu, The embedded homology of hypergraphs and applications, Asian J. Math., 23 (2019), 479–500. https://doi.org/10.4310/AJM.2019.v23.n3.a6 doi: 10.4310/AJM.2019.v23.n3.a6 |
[11] | S. MacLane, Homology, Die Grundlehren der mathematischen Wissenschaften. Bd. 114. Berlin-G$\ddot{o}$ttingen-Heidelberg: Springer-Verlag, 1963. |