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1. Introduction

Digraph is an important topology model of complex networks. For example, taking Alipay users
as the vertices, we determine the directed edges by the relationship of paying, so the complex network
composed by Alipay users can be regarded as a digraph.

In 2012, A. Grigor’yan, Y. Lin, Y. Muranov and S.T. Yau first defined and studied the path homology
of digraphs [1]. Subsequently, there are many references about path (co)homology of digraphs [2–6]
and meanwhile homotopy of digraphs is developed [7, 8].

Weighted structure can provide more information about mathematical objects. We can take the
degree of each vertex in the digraph as the vertex weight. In the actual complex network, the weight of
nodes shows the importance of nodes in the entire digraph. For example, if we regard the urban traffic
network of a country as a digraph, the communication between each city and other cities reflects the
importance of its traffic hub to some extent.

In this paper, we mainly consider homotopy invariance of weighted digraphs in Theorem 3.1 based
on the definitions in [9].

2. Preliminaries

In this section, we review some relative definitions of path homology of vertex-weighted digraphs
in [9], and similar to [7], we give the notion of homotopy of morphisms between vertex-weighted
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digraphs. Let R be an integral domain with unit 1.

2.1. Weighted path homology and morphisms between weighted digraphs

A digraph G is a pair determined by a finite set V and an ordered binary subset E of V × V where V
is called the vertex set of G and E is called the directed edge set of G. For each n ≥ 0, an elementary
n-path (abbreviated as n-path ) on V is a sequence v0v1 · · · vn of vertices in V . If all pairs (vi, vi+1) ∈ E
where vi and vi+1 are assumed to be distinct for each 0 ≤ i ≤ n − 1, then the n-path is called allowed.
Let Λn(V) be the free R-module consisting of all the formal linear combinations of the n-paths on V .
LetAn(G) be the free R-module consisting of all the formal linear combinations of allowed elementary
n-paths on G. ThenAn(G) is a sub-R-module of Λn(V).

A weighted digraph is a digraph G with an R-valued weight function w : V −→ R, which is simply
denoted as G if there is no danger of confusion. The weighted boundary map ∂w

n : Λn(V) −→ Λn−1(V)
is defined as

∂w
n (v0v1 . . . vn) =

n∑
i=0

w(vi)(−1)idi(v0v1 . . . vn)

where di is the face map given by

di(v0v1 . . . vn) = v0v1 . . . v̂i . . . vn.

Note that ∂w
n is an R-linear map from Λn(V) to Λn−1(V) satisfying ∂w

n∂
w
n+1 = 0 for each n ≥ 0 (cf. [1–6]).

Hence {Λn(V), ∂w
n }n≥0 is a chain complex. We define

Ωw
n (G) = An(G) ∩ (∂w

n )−1An−1(G),
Γw

n (G) = An(G) + ∂w
n+1An+1(G).

Then as graded R-modules,

Ωw
∗ (G) ⊆ A∗(G) ⊆ Γw

∗ (G) ⊆ Λ∗(V).

And as chain complexes,

{Ωw
n (G), ∂w

n |Ωw
n (G)}n≥0 ⊆ {Γ

w
n (G), ∂w

n |Γw
n (G)}n≥0 ⊆ {Λn(V), ∂w

n }n≥0.

By [10], the canonical inclusion

ι : Ωw
n (G) −→ Γw

n (G), n ≥ 0

of chain complexes induces an isomorphism between the homology groups

ι∗ : Hm({Ωw
n (G), ∂w

n |Ωw
n (G)}n≥0)

�
−→ Hm({Γw

n (G), ∂w
n |Γw

n (G)}n≥0), m ≥ 0.

This isomorphism gives the weighted path homology of G, denoted as Hm(G,w; R), m ≥ 0.

Remark 2.1. When all weights are 1, the weighted path homology is the usual path homology.
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Definition 2.1. (cf. [7, Definition 2.2]) A morphism from a digraph G to a digraph G′ is a map f :
V(G) −→ V(G′) such that for any directed edge u → v on G we have f (u) →= f (v) on G′ (that is, either
f (u) → f (v) or f (u) = f (v)). We will refer to such morphisms also as digraphs maps (sometimes
simply maps) and denote them shortly by f : G −→ G′.

Let G = (V, E,w) and G′ = (V ′, E′,w′) be two weighted digraphs. A weighted morphism of
weighted digraphs from (G,w) to (G′,w′) is a morphism of digraphs f : G → G′ such that for any
vi ∈ V , w(vi) = w′( f (vi)).

2.2. Weighted homotopy

A line digraph In is a digraph with the vertex set {v0, v1, . . . , vn} and the directed edge set {vi →

vi+1 or vi+1 → vi, i = 0, 1, . . . , n − 1}(cf. [7, p. 632]). Note that a path is a special line digraph with all
the directed edges vi → vi+1. For 0 ≤ i ≤ n, we sometimes write vi as i for short.

The Cartesian product of vertex-weighted digraph G and line digraph I1 is a vertex-weighted di-
graph G × I1 such that

VG×I1 = {(v, 0) and (v, 1), v ∈ V(G)}and
EG×I1 = {(v, 0)→ (v, 1) or (v, 0)→ (u, 0) or (v, 1)→ (u, 1) | (v, u) ∈ E(G)},with
wG×I1 : VG×I1 → R such that wG×I1(v, 0) = wG×I1(v, 1) = w(v).

Here I1 is the digraph I1 = (0→ 1) (the case I−1 = (1→ 0) is similar).
Let f , g : (G,w) → (G′,w′) be two morphisms of weighted digraphs (G,w) and (G′,w′). Then f , g

are called one-step homotopic if there exists a digraph map

F : G × I1 → G′

such that
F |G×{0}= f and F|G×{1} = g

wG×I1(v, 0) = w′(F(v, 0)) = w′( f (v))
wG×I1(v, 1) = w′(F(v, 1)) = w′(g(v)).

For simplicity, we denote (v, 0) as v and (v, 1) as v′ respectively in this paper. Let R = F be a field.
Consider the case in which the weight is a non-vanishing function on the vertex set of G. For any

element x =
n∑

i=1
aiσi ∈ Ωp(G,w) where σi = vi

0 · · · v
i
j · · · v

i
p ∈ Ap. Define

x × I1 =

n∑
i=1

ai
p∑

m=0

(−1)p−m(w(vi
m)
)−1vi

0 · · · v
i
m(vi

m)′(vi
m+1)′ · · · (vi

p)′

x × {1} =
n∑

i=1

ai(vi
0)′...(vi

j)
′...(vi

p)′, x × {0} =
n∑

i=1

aivi
0...v

i
j...v

i
p

(2.1)

where w(vi
m) is the weight of vertex vi

mor (vi
m)′, ai ∈ F.
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3. Main theorem

In this section, we will give some auxiliary results for main theorem in this paper and prove the
main theorem.

Let F be a field. Firstly, by the definition (2.1), we can prove the following proposition.

Proposition 3.1. Let (G,w) be a vertex-weighted digraph where w : V(G) −→ F \ {0} is a weight
function on G. Then for any x ∈ Ωw

p (G), x × I1 ∈ Ω
w
p+1(G × I1).

Proof. Suppose x =
n∑

i=1
aiσi ∈ Ωw

p (G) where σi = vi
0 · · · v

i
p are allowed elementary p-paths on G.

Denote

σi
m = vi

0 · · · v
i
m(vi

m)′(vi
m+1)′ · · · (vi

p)′.

According to the action of weighted boundary operator ∂w, it is sufficient to consider the following
cases.

Case 1. j = m. If m = 0, then

d j(σi
m) = d0(σi

0) = (vi
0)′(vi

1)′ · · · (vi
p)′ ∈ Ap(G × I1);

If m ≥ 1, then for each

d j(σi
m) = vi

0 · · · v
i
m−1(vi

m)′ · · · (vi
p)′ < Ap(G × I1),

we have that

dm(σi
m−1) = dm(σi

m)

and the coefficient of d j(σi
m) in ∂w(σi × I1) is

(−1)p−(m−1)(w(vi
m−1)
)−1(−1)mw(vi

m−1) + (−1)p−m(w(vi
m)
)−1(−1)mw(vi

m) = 0.

Case 2. j = m + 1. If m = p, then

σi
p = vi

0 · · · v
i
p(vi

p)′,
d j(σi

p) = vi
0 · · · v

i
p ∈ Ap(G × I1);

If m < p, then for each

d j(σi
m) = vi

0 · · · v
i
m(vi

m+1)′ · · · (vi
p)′ < Ap(G × I1),

we have that

dm+1(σi
m+1) = dm+1(σi

m)

and the coefficient of d j(σi
m) in ∂w(σi × I1) is

(−1)p−(m+1)(w(vi
m+1)
)−1(−1)m+1w(vi

m+1) + (−1)p−m(w(vi
m)
)−1(−1)m+1w(vi

m) = 0.
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Case 3. j < m. The coefficient of d j(σi) in ∂wu is∑
{(k,l)|dl(σk)=d j(σi)}

ak(−1)lw(vk
l ) = 0.

On the other hand, the coefficient of d j(σi
m) in ∂w(x × I1) is∑

{(k,l,r)|dl(σk
r )=d j(σi

m)}

ak(−1)p−r(−1)l(w(vk
r))
−1w(vk

l )

=
∑

{(k,l)|dl(σk
m)=d j(σi

m)}

ak(−1)p−m(−1)l(w(vk
m))−1w(vk

l )

= (w(vi
m))−1

∑
{(k,l)|dl(σk

m)=d j(σi
m)}

ak(−1)p−m(−1)lw(vk
l )

= (−1)p−m(w(vi
m))−1

∑
{(k,l)|dl(σk)=d j(σi)}

ak(−1)lw(vk
l ).

Hence,

d j(σi
m) < Ap(G × I1)⇔ d j(σi) < Ap(G) for j < m.

Since x ∈ Ωw
p (G) and ∂wx ∈ Aw

p−1(G), it follows that if d j(σi
m) < Ap(G × I1), its coefficient in ∂w(x× I1)

is zero.
Case 4. j > m + 1. Similar to the analysis in Case 3, we have that

d j(σi
m) < Ap(G × I1)⇔ d j−1(σi) < Ap(G),

Then for d j(σi
m) < Ap(G × I1), d j−1(σi) < Ap(G). Since x ∈ Ωw

p (G) and ∂wx ∈ Aw
p−1(G), the coefficient

of d j−1(σi) in ∂wx is ∑
{(k,l)|dl−1(σk)=d j−1(σi)}

ak(−1)l−1w(vk
l−1) = 0.

Hence, the coefficient of d j(σi
m) in ∂w(x × I1) is∑

{(k,l,r)|dl(σk
r )=d j(σi

m)}

ak(−1)p−r(−1)l(w(vk
r)
)−1w(vk

l−1)

= (w(vi
m))−1

∑
{(k,l)|dl(σk

m)=d j(σi
m)}

ak(−1)p−m(−1)lw(vk
l−1)

= (−1)p−m(w(v(i)
m ))−1

∑
{(k,l)|dl−1(σk)=d j−1(σi)}

ak(−1)lw(vk
l−1)

= 0.

Combing Case 1-Case 4, we have that for any x ∈ Ωw
p (G), ∂w(x × I1) ∈ Ap(G × I1). Therefore,

x × I1 ∈ Ω
w
p+1(G × I1). □
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Remark 3.1. In Case 3 of the proof of Proposition 3.1, since dl(σk
r) = d j(σi

m), it follows that r = m
and (w(vi

m))−1 = (w(vk
m))−1.

Secondly, by Proposition 3.1, we have that

Proposition 3.2. (Weighted Product Rule)

∂w(x × I1) = (∂wx) × I1 + (−1)p(x × ∂I1) (3.1)

where x ∈ Ωw
p (G).

Proof. By Proposition 3.1, we have that x × I1 ∈ Ω
w
p+1(G × I1). By (2.1), it is sufficient to consider the

following cases.
Case 1. 0 < m < p.
Subcase 1.1. m ⩾ 1 and j < m. Then for each

d j(σi
m) = vi

0 · · · v̂
i
j · · · v

i
m(vi

m)′ · · · (vi
p)′ ∈ Ap(G × I1),

the coefficient of d j(σi
m) in ∂w(σi × I1) is

(−1)p−m(w(vi
m))−1(−1) jw(vi

j)a
i.

On the other hand, since d j(σi) = vi
0 · · · v

i
j−1v̂i

jv
i
j+1 · · · v

i
p, the coefficient of d j(σi

m) in ∂wσi × I1 is

(−1) jw(vi
j)(−1)(p−1)−(m−1)(w(vi

m))−1ai = (−1)p−m(w(vi
m))−1(−1) jw(vi

j)a
i.

Subcase 1.2. j > m + 1 and m < p. Then for any

d j(σi
m) = vi

0 · · · v
i
m(vi

m)′ · · ·̂(vi
j−1)′ · · · (vi

p)′ ∈ Ap(G × I1),

the coefficient of d j(σi
m) on the left side of (3.1) is

(−1)p−m(w(vi
m))−1(−1) jw(vi

j−1)

while its coefficient on the right side of (3.1) is

(−1) j−1w(vi
j−1)(−1)p−1−m(w(vi

m))−1 = (−1)p−m(w(vi
m))−1(−1) jw(vi

j−1).

Subcase 1.3. j = m and 0 < m < p. Then

d j(σi
m) = (−1) jw(vi

m)(−1)p−m(w(vi
m)
)−1vi

0 · · · v
i
m−1v̂i

m(vi
m)′ · · · (vi

p)′,

d j(σi
m−1) = (−1) jw(vi

m−1)(−1)p−(m−1)(w(vi
m−1)
)−1vi

0 · · · v
i
m−1
̂(vi

m−1)′(vi
m)′ · · · (vi

p)′.

Hence, d j(σi
m) can be cancelled out in ∂w(x × I1).

Subcase 1.4. j = m + 1 and 0 < m < p. Then

d j(σi
m) = (−1) jw(vi

m)(−1)p−m(w(vi
m)
)−1vi

0 · · · v
i
m(̂vi

m)′(vi
m+1)′ · · · (vi

p)′,

d j(σi
m+1) = (−1) jw(vi

m+1)(−1)p−(m+1)(wi
m+1
)−1vi

0 · · · v
i
m
̂(vi

m+1)(vi
m+1)′ · · · (vi

p)′.
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Hence, d j(σi
m) can be cancelled out in ∂w(x × I1).

Case 2. m = 0.
Subcase 2.1. j = 0. Then the coefficient of d0(σi

0) = (σi)′ = (vi
0)′ · · · (vi

p)′ in ∂w(σi × I1) is

(−1)p−0(w(vi
0))−1w(vi

0)(−1)0 = (−1)p

which consistents with the coefficient of (σi)′ in (−1)p(σi × ∂I1).
Subcase 2.2. j = 1. Then

d j(σi
0) = (−1)1w(vi

0)(−1)p−0(w(vi
0)
)−1vi

0(̂vi
0)′(vi

1)′ · · · (vi
p)′

d j(σi
1) = (−1)1w(vi

1)(−1)p−1(w(vi
1)
)−1vi

0v̂i
1(vi

1)′ · · · (vi
p)′

which implies that d1(σi
0) is cancalled out in ∂w(x × I1).

Subcase 2.3. j > 1. Then for any

d j(σi
0) = vi

0(vi
0)′ · · ·̂(vi

j−1)′ · · · (vi
p)′ ∈ Ap(G × I1),

its coefficients in ∂w(σi × I1) and ∂wσi × I1 are

(−1)p−0(w(vi
0))−1(−1) jw(vi

j−1)

and

(−1)p−1−0(w(vi
0))−1(−1) j−1w(vi

j−1)

respectively. Hence, they are the same.
For any

d j(σi
0) = vi

0(vi
0)′ · · ·̂(vi

j−1)′ · · · (vi
p)′ < Ap(G × I1),

by the proof of Proposition 3.1, it must be cancelled out in ∂w(x × I1).
Case 3. m = p.
Subcase 3.1. j = p + 1. Then the coefficient of dp+1(σi

p) = σi = vi
0 · · · v

i
p in ∂w(σi × I1) is

(−1)p−p(w(vi
p))−1w(vi

p)(−1)p+1 = (−1)p+1

which consistents with the coefficient of σi in (−1)p(σi × ∂I1).
Subcase 3.2. j = p. Then

d j(σi
p) = (−1)pw(vi

p)(−1)p−p(w(vi
p)
)−1vi

0 · · · v
i
p−1(̂vi

p)(vi
p)′

d j(σi
p−1) = (−1)pw(vi

p−1)(−1)p−(p−1)(w(vi
p−1)
)−1vi

0 · · · v
i
p−1
̂(vi

p−1)′(vi
p)′

which implies that dp(σi
p) is cancalled out in ∂w(x × I1).
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Subcase 3.3. j < p. Then for any

d j(σi
p) = vi

0 · · · v̂
i
j · · · v

i
p(vi

p)′ ∈ Ap(G × I1),

its coefficients in ∂w(σi × I1) and ∂wσi × I1 are

(−1)p−p(w(vi
p))−1(−1) jw(vi

j)

and

(−1) jw(vi
j)(−1)(p−1)−(p−1)(w(vi

p))−1

respectively. Obviously, they are the same.
For any

d j(σi
p) = vi

0 · · · v̂
i
j · · · v

i
p(vi

p)′ < Ap(G × I1),

by the proof of Proposition 3.1, it must be cancelled out in ∂w(x × I1).
Summarizing Case 1 to Case 3, the proposition follows. □

Finally, by Proposition 3.2, we can prove the main theorem of this paper.

Theorem 3.1. Let (G,w)(G′,w′) be two vertex weighted digraphs. Let f , g : G → G′ be two weighted
homotopic morphisms between G and G′. Then they can induce identical homomorphisms of weighted
homology groups of G and G′. More precisely, the following maps

( f∗)p : Hp(G,w)→ Hp(G′,w′) (g∗)p : Hp(G,w)→ Hp(G′,w′).

are identical for each p ≥ 0.

Proof. Suppose f and g are one-step weighted homotopic. Let F be a homotopy between f and
g. Denote the morphisms of chain complexes induced by f and g as f♯ and g♯, respectively. Let
F♯ : Ω∗(G × I1) → Ω∗(G′) be the morphism induced by F (cf. [7, Theorem 3.3]). By [11], it is
sufficient to construct a chain homotopy between the chain complexes Ωw

∗ (G) and Ωw′
∗ (G′), that is, an

F−linear mapping

Lp : Ωw
p (G)→ Ωw′

p+1(G′)

such that

∂wLp + Lp−1∂
w = g♯ − f♯.

Define Lp as follows

Lp(x) = F♯((−1)px × I1),

AIMS Mathematics Volume 8, Issue 8, 26070–26080.
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where x =
n∑

i=1
aiσi ∈ Ωw

p (G) and x × I1 ∈ Ω
w
p+1(G × I1). By the product rule in Proposition 3.2 and

∂wF♯ = F♯∂w in [7, Theorem 2.10], we obtain that

(∂wLp + Lp−1∂
w)(x) = ∂wF♯((−1)px × I1) + F♯((−1)p−1∂wx × I1)

= F♯
(
(−1)p∂w(x × I1) + (−1)p−1∂wx × I1

)
= F♯
(
(−1)p(∂wx × I1 + (−1)px × ∂I1

)
+ (−1)p−1∂wx × I1

)
= F♯(x × {1} − x × {0})

= F♯(
n∑

i=1

ai(σi)′ −
n∑

i=1

aiσi)

=

n∑
i=1

aig(σi) −
n∑

i=1

ai f (σi)

= g♯(x) − f♯(x).

(3.2)

Moreover, by the induction on the homotopic step of f and g, the theorem is proved. □

At last, we give an example to illustrate the main theorem above.

Example 3.1. Let G be a digraph with the vertex set V(G) = {v0, v1, v2} and the directed edge set
E(G) = {v0v1, v0v2, v1v2}. Let G′ be a digraph with the vertex set V(G′) = {w0,w2} and the directed
edge set E(G′) = {w0w2}. Let w,w′ be the non-vanished weighted functions on G and G′, respectively.
Suppose f , g1 are two weighted digraph maps from G to G′ such that f (v0) = f (v1) = w0, f (v2) = w2

and g1(v0) = w0, g1(v1) = g1(v2) = w2. Then w,w′ can induce a weighted function wG×I1 on G × I1 and
there exists a weighted digraph map F : G × I1 −→ G′ such that

F |G×0 = f

F |G×1 = g1

F(w(vi, 0)) = w′( f (vi))
F(w(vi, 1)) = w′(g1(vi)).

Specifically, for σ = v0v1v2 ∈ Ω(G), we have that

σ × I1 =
(
w(v0)

)−1v0v′0v′1v′2 −
(
w(v1)

)−1v0v1v′1v′2 +
(
w(v2)

)−1v0v1v2v′2
F(σ × I1) =

((
w(v0)

)−1
−
(
w(v1)

)−1
+
(
w(v2)

)−1
)
w0w2.

Moreover, let g2 : G −→ G′ such that g2(v0) = g2(v1) = g2(v2) = w2. Then f and g2 are two-step
weighted homotopic.

AIMS Mathematics Volume 8, Issue 8, 26070–26080.
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v′0

v′1

v′2

v0

v1

v2

v̂0

v̂1

v̂2

G × I2:

G × I1:

w0 w2G′:

Figure 1. Example 3.1.
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