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1. Introduction

The incomplete exponential functions (IEF) introduced by Chaudhry and Qadir [1] considered two

classes of functions: -
YO0 +n;x) 7"

e|(0; (x,2)| == — (1.1)
[ ] oy I'é+n) n!
and .
E[[6: (x.2)]| = Ho+my (1.2)
n=0

r@+n) n!’
such that the incomplete gamma functions y(6; x) and I'(6; x) defined by Srivastava, Chaudhry and
Agarwal [2] as
¥(6; x) = f e dt (1.3)
0

and

[(6; x) = f e dt, (1.4)


http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20231329

26082

respectively, and they achieved the following decomposition:
v(6; x) + I'(8; x) = T°(6). (1.5)
The ,R,(¢, ¢; z) function [3] is defined as:

6:,...,0
pRy(¢:#:2) :qu( 7711,"-,77[; ¢,90;Z)
1 (Ql)n --(Qp)n 7"
- — 1.6
Zo L(gn + @) Mi)n - .. (g)n 1! (1.6)

where p,g € Z7, ¢, ¢ € C and Re(¢), Re(¢), Re(6;),Re(n;) > 0, for Vi = 1,2,...,p,Vj=1,2,...,q,
and (0),, denotes the Pochhammer symbol which defined by:

re ° (1.7)

1, n=0.

(g)n:{9(6’+1)"'(9+”‘1): e !

Exploring the extension of classical matrix functions and matrix polynomials has recently become
a prominent topic. Special matrix functions such as Gamma, Beta were studied by J6dar and Cortes
who studied matrix analogues of gamma, beta and Gauss hypergeometric functions [4-6] and other
contributions have been directed to discuss the polynomials in two variables such as the 2-variables
Shivley’s matrix polynomials [7], the 2-variables Laguerre matrix polynomials [8], the 2-variables
Hermite generalized matrix polynomials [9—12], the 2-variables Gegenbauer matrix polynomials [13]
and the second kind of Chebyshev matrix polynomials with two variables [14].

In the current study, we intend to establish incomplete exponential matrix functions. Involving
the ,R,(P, Q;z) functions of matrix parameters, we investigate some properties of an incomplete
exponential of type of R -matrix functions . Furthermore, we provide generating formulas for the
incomplete exponential type of R -matrix functions.

The paper is organized as follows. In Section 2, we review basic definitions and previous results
which will be mandatory through the following sections. Section 3 introduces the definition of the
incomplete exponential of type of R -matrix functions and states some theorems about integral and
derivative formula of the incomplete exponential of type of R -matrix functions. Some generating
matrix relations incomplete exponential of type of R -matrix functions are provided in Section 4. In
Section 5, we discuss some special cases of the incomplete exponential of type of R-matrix functions.
The paper is appended with conclusions in Section 6.

2. Preliminaries

Throughout this paper, we consider a matrix L € C"™" and its spectrum o-(L) represents the collection
of all eigenvalues L . Let C" denote the h-dimensional complex vector space and C™" denote all square
matrices with 4 rows and & columns with complex entries. As usual, let Re(z) and Im(z) be referring
to the real and imaginary parts of a complex number z, respectively. The two-norm of L is defined on
C™h as follows

L
LI, = sup ”” )ICIHZ =max{V1: 1€ o(L'L)}, VYxeC, 2.1)
x20  11X112
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where for a vector x € C", ||x||, = (x*x)% is the Euclidean norm of x such that L* denotes the transposed
conjugate of L. Let us denote the real numbers @(L) and S(L) as in the following

a(L) = max{Re(z) : z € o(L)}, B(L) = min{Re(z) : z € o (L)}. 2.2)

If f(z) and g(z) are holomorphic functions of the complex variable established in an open set € of
the complex plane and L, M are matrices in C™" with o(L) C Q and o-(M) C Q, such that LM = ML,
then it follows from the matrix functional calculus properties in [7]), that f(L)g(M) = g(M) f(L).

We recall that the reciprocal Gamma function, given by I''!(z) = ﬁ, is an entire function of the

complex variable, and thus I"'(L) is a well defined matrix for any matrix L in ChP*1n addition, if L is
a matrix, then

L +nl isinvertible for all integers n > 0, (2.3)

where I is the identity matrix in C”". Then I'(L) is invertible and its inverse coincides with I'"'(L).
The Pochhammer symbol of a matrix argument is given by (see [5]):

(2.4)

LL+I).. (L+(n—-DD) =T LWL +nl), n>1,
(L) = 1 n=0.

Assume that L and M are positive stable matrices in C"". The Gamma matrix function I'(L) and Beta
matrix function B(L, M) have been defined in [5, 15], as follows:

oo 1
I(L) = f et dt, B(L,M) = f (1= My, (2.5)
0 0
where t© = exp((L — I)Int). J6dar and Cortés showed in [5] that
(L) = lim (n— DIL),] " (2.6)
where n > 1 is an integer.
Now, the incomplete matrix gamma is defined as follows: [15, 16]. Assume that L is a positive

stable matrix in C">" and y be a positive real number. Then, the incomplete matrix gamma function
v(L,y) and its complement I'(L, y) are defined by

)7
Y(L,y) = f et dt, (2.7)
0

I'(L,y) = f e 't*dt, (2.8)
y
and we have the following decomposition formula (see [15]):
y(L,y) +T'(L,y) = I'(L). (2.9)
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The following provides the hypergeometric matrix function ,F(L, M; N;z) as, assume that L, M
and N are matrices in C"™" and N satisfy condition (2.3), then the hypergeometric matrix function
of 2-numerator and 1-denominator for |z] < 1 is defined by the matrix power series (see [5, 6])
(M)n[(N)n]_lZn

n!

L),

2Fi(L. M;N;2) = Z( ) (2.10)
n>0

The Bessel matrix function J;(z) of the first kind associated to L is given in the following form:

(see [15,16])

- (—l)k _1 T\ L+2kl
J = ——— T ' (L+k+ DD (H
1(2) ; or T @& DD ) 2.11)
and the modified Bessel matrix function /;(z) has been defined in the form:
21
L()= Y — T YL+ (k+ DD (5)“2“, (2.12)
£ (k)! 2

where L is a matrix in C™" satisfying the condition (2.3). We may rewrite the Bessel and modified

Bessel matrix functions as
2

5@ = (%)A TN L+ 1) oFy(—; L +]1, }x (2.13)
and
Zoa 1 7
IL(Z):(E) I (L+I) 0F1(—§L+I, Z), (214)

where oF(—; L + 1, _—22) is a hypergeometric matrix function of 1-denominator

[(L+1),]" (—z2 )n.

n!

2
—Z
oFi(= Lt L) = )

n>0

4

Recently, the authors of [17] introduced an extension of the generalized hypergeometric matrix
function ,R,(P, Q;z) with regard to the matrices occurring in its series representation. Furthermore,
they provided integral representations, contiguous matrix function relations, and differential formulas
satisfied by the matrix function ,R,(P, Q; z) and they used the notation (P) to denote the array of p X p
matrices Py, Pa, ..., P, for some k € N.

For 1 <i<p,1 < j<gq,suppose that P, 0, S; and D; are positive stable matrices in C"™" such that
D; + kI are invertible for all integers k > 0, then the matrix function denoted by ,R,(P, O : (S), (D);z)
is defined as

Si,,...,S
qu(P’ Q : (S),(D),Z) :qu( D],...,Dl; PaQaZ)
=Y TP+ Q) (S, (S)),
n>0
<D (D) E = R, | |Pr 032 2.15)
n qn I/l‘ 2] Dq a4 ’
whenever the series converges absolutely and S, = S4,...,S5,,Dq = Dy,...,D,.
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3. The incomplete exponential matrix functions

Let L be a matrix in C™". We define the incomplete exponential matrix functions (IEMFs) as
follows:

e[(L; (x,2)] = ) TN(L+ nlyy(L + nl; x)Z—n' (3.1)
=0 n:
and -
E[[L: (x.2)]] = ; (L +nl) T(L + nl; x)fl—!, (3.2)
so that
e|(L: (x.2)| + E|[L: (x.9)]| = & (33)

Next, some important properties of the IEMF are listed below.

Lemma 3.1. Let L be a matrix in C™". For the two IEMFs; e[(L;(x,z))] and E [[L; (x, z)]] defined
in (3.1) and (3.2), respectively, then the following integral representations hold:

(i)

e[(L; (x. Z))] -1 (L) j:‘ uL_Ie—u( i [(L)n]_] (L;Z!)” )d”

n=0

:F_I(L)f uL_Ie_”OFl(—,L;zu)du.
0

(ii)

E[(L; (x, Z))] - T\(L) foo uL—Ie—u(Z [(L)n]_l (z:')" )dt

n=0

=T f ulte™ o F (=, L; zt)dt.

Proof. By replacing the incomplete gamma matrix functions in (3.1) and (3.2), respectively, by their
integral representations, we obtain the integral representations of (i) and (ii). O

Lemma 3.2. Let L be a matrix in C™" then the two IEMFs; e[(L;(x,z))] and E [[L; (x, z)]] defined
in (3.1) and (3.2), respectively, satisfy the differential properties:

n—1

z
(n-1"

i) Ze|(Li(x.2)] = Y T UL +nly(L+nl;x)
n=0

3 o - Zn_l
i) 2E[(L:(x2)] = Z:(; I~'(L +nl) T(L + nl, Ut

i) Ze|(L:(x,2)] = e[ L+ I; (x,)]
v)  2E[(L:(x.2)| = E[(L+ I: (x.2) |
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Proof. We differentiate (3.1) and (3.2) with respect to z, to conclude (i) and (ii) respectively. To verify
(ii1), we replace n by n — 1 in (i) and L by L + I, Changing n to n — 1 in (i1) and L to L + I/, immediately
imply (iv). O

Remark 3.3. By the integral representation in Lemma 3.2, we define the incomplete matrix exponential
by using Bessel matrix function in the form:

e (L: (x.2)] =z f ) eIy (2 V21) dr,
0
E[(L; (x, z))] =77 f‘” t%e_tI(L) (2 \/Z) dt,
e[(L +I; (x, —z))] =Z_% fox t%e_’JL (2 \/Z_I) dt,

and
E[(L+1:(x,—2)| =22 f e Ty (2V21) . (3.4)
Now, we provide the definition of the incomplete exponential of R-matrix function as

Definition 3.4. Let L, M, C,, Dy in CPh such that D, + Isatisfying the condition (2.3), then we define
the incomplete exponential of R-matrix functions as

C
peq[((L, M; x); z)] =€, [ Dp L, M; x; z]
w L (3.5)
= > I\ (L + Myy(nL + M; x)(Cp), [ (D), ] =
n=0 )
and
G
pEJ(LM:x:2)| =B | o7 |LM;x:2
q
. ) (3.6)
= 3L + M)D(L + M; 2)(Cp), | (D), f?
n=0 ’
Using (3.5) and (3.6), we obtain the following decomposition formula:
C C C
€4 [ Dz L, M;x;z| + ,E, [ DZ L, M;x; z] = ,F, [ Dz z] , (3.7)

where ,F,(.) is the generalized hypergeometric matrix function defined in [18].

Remark 3.5. For p = 0, g = 0, L = I, the expressions (3.5) and (3.6) reduce to the incomplete
exponential matrix functions in (3.1) and (3.2) as

C
peq[(l, M;x;z)] :oeo[ Dz I, M;x;z]
= >0l + Myy(nl + Mz )= (3.8)
n.
n=0

=e|(M, x):2)|
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and
Cp
oBo| (1 M: x;2)| =oEo| oP |1 M x:2
q
= 3Tl + BTl + M) (3.9)
n=0 n:
=E[(M. x:)|

3.1. Integral representations of the IEMF's

In the current section, we deduce several integral representations of the incomplete exponential of
R-matrix functions.

Theorem 3.6. The incomplete exponential of R-matrix function ,,Eq[(L, M; x; z)] matrix function
satisfies the following integral representations:

C

E,|(L,M;x;z)| =,E [ P

p q[ ] Pl p,

« C
M-I -
:£ " e ’qu[ DZ

where L, M, C, and Dy are commuting matrices in Ch B(M) > 0,B(nL + M) > 0, B(Cp) > 0 and
D, + L satisfies the condition (2.3).

LMm4
(3.10)

L,M; th] dt,

Proof. By using the definition of complement of gamma matrix function defined by (2.8), we obtain

rEq [ gz L, M; x; z] = f Mt

oo o (3.11)

[Z I'(nL + M)(Cy), [(Dy),] Z—]dt.
oy n!

By reversing the order of summation and integration and using Lemma 6 in [19], we find
»Eq [ gz L, M; x; z] = f Mot
sl _ Ly
[Z (L + MY(Cp), [P Q]dt,
oy n!
and this completes the proof of Theorem 3.6. O

From the proof of the previous Theorem 3.6, we conclude the following result.
Corollary 3.7.

(i) Bysetting L=1, M =Candp =1, q =0, then, C; = A in (3.11) and noting that all matrices are
commutative, we get

1E0[ A 'I,C;X;Z] = F_I(C)f [MC_Ie_ulFl [ A

C

zu] ]du, (3.12)

where | F| is hypergeometric matrix function in (2.10)
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(i) From R-matrix function, we have the integral matrix representation as

C _ * ZI —u C,-
qu[ Dp L,M;Z] =I 1(Cl)f [”Cl ‘e p—qu[ bt
q 0

Cq
where p < g + 1.

L, M, uz] ]du, (3.13)

Theorem 3.8. Let L, M, C, and Dy be commuting matrices in C™", B(M) > 0, B(nL+M) > 0,5(C,) > 0
and Dq + 1 satisfying the condition (2.3), then the incomplete exponential of R-matrix function

qu[(L, M; x; z)] matrix function have the following integral representation:

1
qu[ IC)p L, M; x, Z] =r-'(cr-', - Cl)r(Dl)f [fcl_l(l — P
q 0
C (3.14)
v 1Eq [ UL M; x, zt] ]dt.
Cq-1
Proof. By using integral definition of Beta matrix function
1
(M), [(C),]”" ="' (M)I"!(C = M)[(C) f MO — ) B gy, (3.15)
0
By substituting (3.15) in (3.14), it follows that
| & | m: —wr—‘ L+ M) (nL + M,
pH~q Dq ’ ’-x$Z _Z (n + ) (n + ’x)
n=0
17"
(Coi [D)| =
=I'(CHI (D, - C)I(Dy) Z r'(nL + M) (3.16)
n=0
-1 Zn
F(nL + M; 2)(Cpt)y [(Dgo)a|
1
f tCl+(n_1)I(1 _ M)Dl_cl_ldt.
0
Further simplification and reversing the order and integration leads to the required result. O

3.2. Differential formulas of the IEMFs

Theorem 3.9. For R-matrix function the incomplete exponential have the following derivative formula.

d" C,
&z {PEq[ D,

PEq

-1
LMm4}:m@ﬁum]

3.17
C, +nl ( )

Dy +nl

L,L+M;x,z],

where L, M, Cp, Dy are commuting matrices € C™",

AIMS Mathematics Volume 8, Issue 11, 26081-26095.
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Proof. From Eq (3.6) by differentiating with respect to z and replacing n by n + 1, we get

d%{qu[ lc)z ;L,M;x,z]} = il“l(L(n+ )+ M)

n=0 (3.18)
F(L(n + 1)+ M; x)(Cp)n+1 [(Dq)n+1]_

n

1z
E?

using the relation (L),;+; = L(L + I),,, we find that

d -
2L, S0 |z 2|} = cp [0y
dz Dq
Covl (3.19)
P + .
JE, Dyt 1 'L,L+ M,x,z].
By repeating above procedure n-times yields the R.H.S. of assertion (3.17). O

Theorem 3.10. Suppose that L, M, C, and Dy are commuting matrices in C™" and Dy + 1 satisfying the
condition (2.3), then, the incomplete exponential of R-matrix function qu[(L, M; x; z)] matrix function
have the following partial derivatives holds true:

9 G| . — B Cp+1 :
a_z {qu[ Dq 7L7 Ma X, Z:|} - (Cp)n [(Dq)n] PEq Dq +7 'LﬂL + Ma X, Z:| (3'20)
and
0 Gl . B cp+1| ,
a_z{”E"[Dq ,L,M,x,z]}—e 1 E, D, +1 L L+ M;x,zx"|. (3.21)

Proof. Differentiating partially (3.6) with respect to z, it follows that:

;L,M;x,z]}

0[S 1z

= {Z(; ™' (nL + M) T(1L + M; %) (Cp), |(Dy)s ;} (3.22)
o _ n—1

= Z(; T(nL + M) T(L + M; x)(Cp), [ (Dy), ] | ﬁ :

By replacing n by n + 1 in the Eq (3.21). For the proof (3.22), By using differentiate partially first
integral representation (3.11) with respect to x. m|

4. Generating functions of the incomplete exponential of R-matrix functions
This section is devoted to exploring some generating functions of the incomplete exponential of
R-matrix functions. Furthermore, several linear generating relations of the R-matrix function of the

incomplete exponential function is deduced.

AIMS Mathematics Volume 8, Issue 11, 26081-26095.
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Theorem 4.1. Let L, M, C,, and Dy are commuting matrices in C™" such that D i+kl, 1<j<g
are inevitable for all integers k > 0. Then, the generating function of the incomplete exponential of
R-matrix functions is given as:

U C
tL_I(M _ t)M—I E [ P
[ Eo| b

<L, M; x, /U"] dt = B(L, M) u™M!

Cp, Ak, L) @D
p° b . . k
p+qu+k[ Dq, A(k,L + M) ’L’ Ma -xa /1’/[ :|a
where k is a positive integer and A(k, L) represents the sequence matrix of k parameters as
L L+1 L+2I L+ (k—1I
kK> kO kK 77 k '
Proof. Let wy be the left hand side of Eq (4.1). Then, by using (3.6), this gives
N YIS - .
Wy _f =M Y T (L + M) T(nL + M; x)
0 n=0 (4.2)
-1 (AFY
X (Cplu|Dg),| .
By substituting ¢ = ux, we have
1
Wi :uL+M—If xL+(kn—l)1(1 _ t)M_Ir_l(l’lL + M)
0
-1 (A
T(nL + M; x)(Cp)y [ (D), ] —dx
' (4.3)

—yLtM-1 Z (L + M) T(nL + M; x)
n=0
(At

X (Cp)n [(Dq)n]_l T"NL+ M + knl) T(L + knl) T(M) =

Therefore, using the property Pochhammer matrix symbol leads directly to the right hand side of
Eq (4.1).
]

Theorem 4.2. Let L, M, C,,, and Dy are commuting matrices in CP" such that D it+kl, 1< j<gqgare
inevitable for all integers k > 0. A linear generating relation for the R-matrix function of incomplete
exponential can be given as:

[x(x 3 u)E_I(u _ Z)M_Iqu [ IC)Z

LMy x, A(u — t)k] du

=T(E)T(M) T' (M + E)(x — )EM-! (4.4)
Cp. Ak, L) ) ) N
p+qu+k |: Dq, A(k, E+ M) LMy x, A(x — ).

AIMS Mathematics Volume 8, Issue 11, 26081-26095.
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Proof. Let w, be the left hand side of Eq (4.4) and by using (3.6), we obtain

wy =l '(M) TYE) (M + E) f x(x — ) - M

~1 (/l(u _ t)k)n " (45)

DT L + M) TL + M5 0(Cyla [P =

n=0

Now, by substituting m = “=, it follows that

1
wy =L Y(M) TYE) T(M + E)(x — £)E*M-! f mMr =D g E-L
0
& k\n
Z ™' (nL + M) T(nL + M; x)(Cp), [(Dg),] M
n=0 N ' (4.6)
="M TYE) T(M + E)(x — r)E*M~! Z I '(nL + M) T(nL + M; x)
n=0
-1 (A(x — D)k

I'(E + M + knl) T(M + knl) T(E)(C,), [(Dq),,] p

Thus, using the properties of Pochhammer matrix implies the right-hand side of (4.4). m|

Now, we provide some linear generating relations for the R-matrix function of generalized
incomplete exponential as follows.

Theorem 4.3. Let L, M, C,, and Dy are commuting matrices in CPh such that D i+kl, 1<j<g
are inevitable for all integers k > 0. Then, the following linear generating relation for the R-matrix
function of incomplete exponential hold:

) (k—=DI-E C | |
Z[ k ]peq+l|:Dq’E_fk_1)I |’L’M,X,Z:|lk
: 4.7)

C
:(l_l)EPe(]+1|:D Ip_E ;L,M;X,Z(l—l)],
q»

where |z| < 1.

Proof. Let ws be the left-hand side of (4.7) and by applying (3.5), we obtain that

Z[ (k_l)l E ](Zr (nL + M) T(nL + M; x)
k=0 = (4.8)

(E - (k- 1)1)n] (Cp)u | (D) ;)tk.
By reversing the order of summation and using the relation

(k—l)I—E] [(k—n—l)I—E ]‘1

(E — (k- 1)1)n =(E+1), [ L '

k,neN,

4.9)

AIMS Mathematics Volume 8, Issue 11, 26081-26095.
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where

(i):r-‘(m DI YE - (k- DD)T(E +1), (4.10)

we obtain

Wy = Z 'L + M) T(nL + M x) [(E — k)] (Cp)n [(Dql),l]_1
n=0 (4.11)

"o | (k=n-1DI-E
'kz;‘[ . ]tk.

Moreover, we find the inner sum in (4.11), by using the relation

N

S

| k-DI-E
Z[( 13 ]tk:(l—t)E. (4.12)
k=0

From (4.11) and (4.12), the right hand side of (4.7) yields. |

Theorem 4.4. Let L, M, C,, and Dy are commuting matrices in C*™" such that D; + kI, 1< j<gq
are inevitable for all integers k > 0. Then

| k-DI-E Cp I
k=0 (4.13)
C
:(1 _t)E qu+1[ Dq,Ip_E ';L,M;X’Z(l_t)]a
where |7] < 1.
Proof. The proof here runs similarly to the the proof of Theorem 4.3. The details are omitted. O

Remark 4.5. If we add the generating Eqs (4.7), (4.13) and using (3.7), then we have the following

generating form as
o | (k-DI-E C, ¢
Z[ Kk ]PF‘“‘[Dq,E—(k—l)I“

k=0
C
D, E - E)k— I ‘z(l —~ t)].

(4.14)
= (1 - t)E qu+1 [

5. Special cases

In this section, we discuss some special cases of generalized incomplete exponential matrix
functions as stated in the following theorems:

Theorem 5.1. Let L, M, C,, and Dy are commuting matrices in CPh such that D i+kl, 1<j<g
are inevitable for all integers k > 0. Then

C17 CZ
D,

2Ey [ L, M; x; 1] =T"'(D, - C)) T7'(D, - C)T(Dy)
(5.1)

I(D; - C; — Cy) —y(nL + M;x) 2R, [ ~ 'L, M; z] :

AIMS Mathematics Volume 8, Issue 11, 26081-26095.
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Proof. Putting z =1, p =2, g = 1 in the decomposition formula (3.7) implies that

CI’CZ -
2E1 [ D1 L, M, X, 1]
[ C1.C, | ] C,..C
:2F1_ ;)12 1] - 261[ ;)12 L,M;x,z]

r . X
_ _ M-I —t Ci,.C
=,F D, 1_ ‘f(; t e »R; [ D,

—F | G- f Ml S TN (L + M) [(Dy), ]!
L E 0 n=0

(zt")"
n!

L, M, th] dt (5.2)

X(Cn(C2)n dr.

O

By using the relation of Gauss matrix summation [18] and reversing the order of summation and
integration, we find that

8| S st | =10y ey i, - o T
[(Dy = Cy = Cy) ) T\ (L + M) [(D),]”! (5.3)

n=0
X

(Cl)n(CZ)nZ_ f tnL+M_]e_tdt-
l’l' 0
Further simplification leads to the right-hand side of (5.1).

Theorem 5.2. Let L, M, C,,, and Dy be commuting matrices in CPh such that D i+kl, 1< j<gqgare
inevitable for all integers k > 0. Then

(Ci=Dy+1) 2E1l CBCZ L,M§X;Z]
C,+LC : C,,C 54)
=,E, 1y L& L, M;x;z|—(Dy = 1),E, LR2Or Mixz].
Dl DI—I

Proof. Let wy be the L.H.S of (5.4), then by using (3.6), we find that

wa= > Tl + M) TInL+ M; x] [(Dy),]” €1 (Cy + D),
o (5.5)

47"
(C2)y (D1 =D [Py =D, =
Employing the relation of Pochhammer matrix implies that
Ci (Ci+ D), =(Cy +nl)(Cy),

and
(Dl - I) (Dl)n = (D] - I)n (Dl + (I’l - 1)[) .
This yields the left side of (5.4). O
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6. Conclusions

The incomplete exponential type of R-matrix function is exhibited in the current study. Several

characterizations of the proposed incomplete exponential ,R,(P, Q; z) matrix functions such that the
integral representation, the derivative formulas and generating functions of the incomplete exponential
of R-matrix functions. We conclude our study by presenting special cases of the obtained results. The
findings of the present paper can be extended to obtain some interesting new results by fitting some
suitable parameters.
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