Research article Special Issues

A new generalization of edge-irregular evaluations

  • Received: 18 April 2023 Revised: 14 August 2023 Accepted: 18 August 2023 Published: 30 August 2023
  • MSC : 05C78

  • Consider a simple graph $ G = (V, E) $ of size $ m $ with the vertex set $ V $ and the edge set $ E $. A modular edge-irregular total $ k $-labeling of a graph $ G $ is a labeling scheme for the vertices and edges with the labels $ 1, 2, \dots, k $ that allows the modular weights of any two different edges to be distinct, where the modular weight of an edge is the remainder of the division of the weight (i.e., the sum of the label of the edge itself and the labels of its two end vertices) by $ m $. The maximal integer $ k $, minimized over all modular edge-irregular total $ k $-labelings of the graph $ G $ is called the modular total edge-irregularity strength. In the paper, we generalize the approach to edge-irregular evaluations, introduce the notion of the modular total edge-irregularity strength and obtain its boundary estimation. For certain families of graphs, we investigate the existence of modular edge-irregular total labelings and determine the precise values of the modular total edge-irregularity strength in order to prove the sharpness of the lower bound.

    Citation: Martin Bača, Muhammad Imran, Zuzana Kimáková, Andrea Semaničová-Feňovčíková. A new generalization of edge-irregular evaluations[J]. AIMS Mathematics, 2023, 8(10): 25249-25261. doi: 10.3934/math.20231287

    Related Papers:

  • Consider a simple graph $ G = (V, E) $ of size $ m $ with the vertex set $ V $ and the edge set $ E $. A modular edge-irregular total $ k $-labeling of a graph $ G $ is a labeling scheme for the vertices and edges with the labels $ 1, 2, \dots, k $ that allows the modular weights of any two different edges to be distinct, where the modular weight of an edge is the remainder of the division of the weight (i.e., the sum of the label of the edge itself and the labels of its two end vertices) by $ m $. The maximal integer $ k $, minimized over all modular edge-irregular total $ k $-labelings of the graph $ G $ is called the modular total edge-irregularity strength. In the paper, we generalize the approach to edge-irregular evaluations, introduce the notion of the modular total edge-irregularity strength and obtain its boundary estimation. For certain families of graphs, we investigate the existence of modular edge-irregular total labelings and determine the precise values of the modular total edge-irregularity strength in order to prove the sharpness of the lower bound.



    加载中


    [1] A. Ahmad, O. B. S. Al-Mushayt, M. Bača, On edge irregularity strength of graphs, Appl. Math. Comput., 243 (2014), 607–610. https://doi.org/10.1016/j.amc.2014.06.028 doi: 10.1016/j.amc.2014.06.028
    [2] A. Ahmad, M. A. Asim, M. Bača, R. Hasni, Computing edge irregularity strength of complete $m$-ary trees using algorithmic approach, U.P.B. Sci. Bull., Ser. A, 80 (2018), 145–152.
    [3] A. Ahmad, M. Bača, Y. Bashir, M. K. Siddiqui, Total edge irregularity strength of strong product of two paths, Ars Combin., 106 (2012), 449–459.
    [4] A. Ahmad, M. Bača, M. F. Nadeem, On edge irregularity strength of Toeplitz graphs, U.P.B. Sci. Bull., Ser. A, 78 (2016), 155–162.
    [5] A. Ahmad, M. Bača, M. K. Siddiqui, On edge irregular total labeling of categorical product of two cycles, Theory Comput. Syst., 54 (2014), 1–12. https://doi.org/10.1007/s00224-013-9470-3 doi: 10.1007/s00224-013-9470-3
    [6] O. Al-Mushayt, A. Ahmad, M. K. Siddiqui, On the total edge irregularity strength of hexagonal grid graphs, Australas. J. Comb., 53 (2012), 263–271.
    [7] M. Bača, S. Jendrol', M. Miller, J. Ryan, On irregular total labelings, Discrete Math., 307 (2007), 1378–1388. https://doi.org/10.1016/j.disc.2005.11.075
    [8] M. Bača, K. Muthugurupackiam, K. M. Kathiresan, S. Ramya, Modular irregularity strength of graphs, Electron. J. Graph Theory Appl., 8 (2020), 435–443. http://doi.org/10.5614/ejgta.2020.8.2.19 doi: 10.5614/ejgta.2020.8.2.19
    [9] M. Bača, M. K. Siddiqui, Total edge irregularity strength of generalized prism, Appl. Math. Comput., 235 (2014), 168–173. http://doi.org/10.1016/j.amc.2014.03.001 doi: 10.1016/j.amc.2014.03.001
    [10] S. Brandt, J. Miškuf, D. Rautenbach, On a conjecture about edge irregular total labellings, J. Graph Theory, 57 (2008), 333–343. http://doi.org/10.1002/jgt.20287 doi: 10.1002/jgt.20287
    [11] D. O. Haryeni, Z. Y. Awanis, M. Bača, A. Semaničová-Feňovčíková, Modular version of edge irregularity strength for fan and wheel graphs, Symmetry, 14 (2022), 2671. http://doi.org/10.3390/sym14122671 doi: 10.3390/sym14122671
    [12] R. Ichishima, F. A. Muntaner-Batle, Y. Takahashi, On the strength and independence number of graphs, Contrib. Math. 6 (2022), 25–29. https://doi.org/10.47443/cm.2022.036
    [13] J. Ivančo, S. Jendrol', Total edge irregularity strength of trees, Discuss. Math. Graph Theory, 26 (2006), 449–456. http://doi.org/10.7151/dmgt.1337 doi: 10.7151/dmgt.1337
    [14] S. Jendrol', J. Miškuf, R. Soták, Total edge irregularity strength of complete graphs and complete bipartite graphs, Discrete Math., 310 (2010), 400–407. http://doi.org/10.1016/j.disc.2009.03.006 doi: 10.1016/j.disc.2009.03.006
    [15] S. Jendrol', J. Miškuf, On total edge irregularity strength of the grids, Tatra Mt. Math. Publ., 36 (2007), 147–151.
    [16] A. N. A. Koam, A. Ahmad, M. Bača, A. Semaničová-Feňovčíková, Modular edge irregularity strength of graphs, AIMS Math., 8 (2023), 1475–1487. http://doi.org/10.3934/math.2023074 doi: 10.3934/math.2023074
    [17] A. M. Marr, W. D. Wallis, Magic graphs, New York: Birkhäuser, 2013. https://doi.org/10.1007/978-0-8176-8391-7
    [18] K. Muthugurupackiam, S. Ramya, Even modular edge irregularity strength of graphs, Int. J. Math. Combin., 1 (2018), 75–82.
    [19] K. Muthugurupackiam, S. Ramya, On modular edge irregularity strength of graphs, J. Appl. Sci. Comput., 6 (2019), 1902–1905.
    [20] Nurdin, A. N. M. Salman, E. T. Baskoro, The total edge-irregular strengths of the corona product of paths with some graphs, J. Comb. Math. Comb. Comput., 65 (2008), 163–175.
    [21] T. A. Santiago, Total edge irregularity strength of circulant networks and achnia graphs, J. Global Res. Math. Arch., 4 (2017), 1–5.
    [22] I. Tarawneh, R. Hasni, A. Ahmad, M. A. Asim, On the edge irregularity strength for some classes of plane graphs, AIMS Math., 6 (2021), 2724–2731. http://doi.org/10.3934/math.2021166 doi: 10.3934/math.2021166
    [23] Z. Zhang, T. Mehmood, A. U. Rehman, M. Hussain, X. Zhang, On valuation of edge irregularity strength of certain graphical families, J. Math., 2022 (2022), 3230932. http://doi.org/10.1155/2022/3230932 doi: 10.1155/2022/3230932
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(726) PDF downloads(53) Cited by(0)

Article outline

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog