For a signature function $ \Psi:E({H}) \longrightarrow \{\pm 1\} $ with underlying graph $ H $, a signed graph (S.G) $ \hat{H} = (H, \Psi) $ is a graph in which edges are assigned the signs using the signature function $ \Psi $. An S.G $ \hat{H} $ is said to fulfill the symmetric eigenvalue property if for every eigenvalue $ \hat{h}(\hat{H}) $ of $ \hat{H} $, $ -\hat{h}(\hat{H}) $ is also an eigenvalue of $ \hat{H} $. A non singular S.G $ \hat{H} $ is said to fulfill the property $ (\mathcal{SR}) $ if for every eigenvalue $ \hat{h}(\hat{H}) $ of $ \hat{H} $, its reciprocal is also an eigenvalue of $ \hat{H} $ (with multiplicity as that of $ \hat{h}(\hat{H}) $). A non singular S.G $ \hat{H} $ is said to fulfill the property $ (-\mathcal{SR}) $ if for every eigenvalue $ \hat{h}(\hat{H}) $ of $ \hat{H} $, its negative reciprocal is also an eigenvalue of $ \hat{H} $ (with multiplicity as that of $ \hat{h}(\hat{H}) $). In this article, non bipartite unbalanced S.Gs $ \hat{\mathfrak{C}}^{(m, 1)}_{3} $ and $ \hat{\mathfrak{C}}^{(m, 2)}_{5} $, where $ m $ is even positive integer have been constructed and it has been shown that these graphs fulfill the symmetric eigenvalue property, the S.Gs $ \hat{\mathfrak{C}}^{(m, 1)}_{3} $ also fulfill the properties $ (-\mathcal{SR}) $ and $ (\mathcal{SR}) $, whereas the S.Gs $ \hat{\mathfrak{C}}^{(m, 2)}_{5} $ are close to fulfill the properties $ (-\mathcal{SR}) $ and $ (\mathcal{SR}) $.
Citation: Rashad Ismail, Saira Hameed, Uzma Ahmad, Khadija Majeed, Muhammad Javaid. Unbalanced signed graphs with eigenvalue properties[J]. AIMS Mathematics, 2023, 8(10): 24751-24763. doi: 10.3934/math.20231262
For a signature function $ \Psi:E({H}) \longrightarrow \{\pm 1\} $ with underlying graph $ H $, a signed graph (S.G) $ \hat{H} = (H, \Psi) $ is a graph in which edges are assigned the signs using the signature function $ \Psi $. An S.G $ \hat{H} $ is said to fulfill the symmetric eigenvalue property if for every eigenvalue $ \hat{h}(\hat{H}) $ of $ \hat{H} $, $ -\hat{h}(\hat{H}) $ is also an eigenvalue of $ \hat{H} $. A non singular S.G $ \hat{H} $ is said to fulfill the property $ (\mathcal{SR}) $ if for every eigenvalue $ \hat{h}(\hat{H}) $ of $ \hat{H} $, its reciprocal is also an eigenvalue of $ \hat{H} $ (with multiplicity as that of $ \hat{h}(\hat{H}) $). A non singular S.G $ \hat{H} $ is said to fulfill the property $ (-\mathcal{SR}) $ if for every eigenvalue $ \hat{h}(\hat{H}) $ of $ \hat{H} $, its negative reciprocal is also an eigenvalue of $ \hat{H} $ (with multiplicity as that of $ \hat{h}(\hat{H}) $). In this article, non bipartite unbalanced S.Gs $ \hat{\mathfrak{C}}^{(m, 1)}_{3} $ and $ \hat{\mathfrak{C}}^{(m, 2)}_{5} $, where $ m $ is even positive integer have been constructed and it has been shown that these graphs fulfill the symmetric eigenvalue property, the S.Gs $ \hat{\mathfrak{C}}^{(m, 1)}_{3} $ also fulfill the properties $ (-\mathcal{SR}) $ and $ (\mathcal{SR}) $, whereas the S.Gs $ \hat{\mathfrak{C}}^{(m, 2)}_{5} $ are close to fulfill the properties $ (-\mathcal{SR}) $ and $ (\mathcal{SR}) $.
[1] | U. Ahmad, S. Hameed, S. Jabeen, Class of weighted graphs with strong anti-reciprocal eigenvalue property, Linear Multilinear Algebra, 68 (2020), 1129–1139. https://doi.org/10.1080/03081087.2018.1532489 doi: 10.1080/03081087.2018.1532489 |
[2] | S. Barik, S. Ghosh, D. Mondal, On graphs with strong anti-reciprocal eigenvalue property, Linear Multilinear Algebra, 70 (2022), 6698–6711. https://doi.org/10.1080/03081087.2021.1968330 doi: 10.1080/03081087.2021.1968330 |
[3] | D. M. Cvetkovic, M. Doob, H. Sachs, Spectra of graphs, New York: Academic Press, 1980. |
[4] | S. Barik, M. Nath, S. Pati, B. K. Sarma, Unicyclic graphs with strong reciprocal eigenvalue property, Electron. J. Linear Algebra, 17 (2008), 139–153. https://doi.org/10.13001/1081-3810.1255 doi: 10.13001/1081-3810.1255 |
[5] | M. A. Bhat, S. Pirzada, On equienergetic signed graphs, Discret. Appl. Math., 189 (2015), 1–7. https://doi.org/10.1016/j.dam.2015.03.003 doi: 10.1016/j.dam.2015.03.003 |
[6] | R. B. Bapat, S. K. Panda, S. Pati, Self-inverse unicyclic graphs and strong reciprocal eigenvalue property, Linear Algebra Appl., 531 (2017), 459–478. https://doi.org/10.1016/j.laa.2017.06.006 doi: 10.1016/j.laa.2017.06.006 |
[7] | Y. P. Hou, Z. K. Tang, D. J. Wang, On signed graphs with just two distinct adjacency eigenvalues, Discrete Math., 342 (2019), 111615. https://doi.org/10.1016/j.disc.2019.111615 doi: 10.1016/j.disc.2019.111615 |
[8] | S. Hameed, U. Ahmad, Inverse of the adjacency matrices and strong anti-reciprocal eigenvalue property, Linear Multilinear Algebra, 70 (2020), 2739–2764. https://doi.org/10.1080/03081087.2020.1812495 doi: 10.1080/03081087.2020.1812495 |
[9] | E. Ghorbani, W. H. Haemers, H. R. Maimani, L. P. Majd, On sign-symmetric signed graphs, Ars Math. Contemp., 19 (2020), 83–93. https://doi.org/10.26493/1855-3974.2161.f55 doi: 10.26493/1855-3974.2161.f55 |
[10] | U. Ahmad, S. Hameed, S. Jabeen, Noncorona graphs with strong anti-reciprocal eigenvalue property, Linear Multilinear Algebra, 69 (2021), 1878–1888. https://doi.org/10.1080/03081087.2019.1646204 doi: 10.1080/03081087.2019.1646204 |
[11] | D. J. Wang, Y. P. Hou, Unicyclic signed graphs with maximal energy, 2018, arXiv: 1809.06206. |
[12] | F. Harary, On the notion of balance of a signed graph, Michigan Math. J., 2 (1954), 143–146. https://doi.org/10.1307/mmj/1028989917 doi: 10.1307/mmj/1028989917 |
[13] | S. K. Simic, Z. Stanic, Polynomial reconstruction of signed graphs, Linear Algebra Appl., 501 (2016), 390–408. https://doi.org/10.1016/j.laa.2016.03.036 doi: 10.1016/j.laa.2016.03.036 |
[14] | R. P. Bapat, S. K. Panda, S. Pati, Strong reciprocal eigenvalue property of a class of weighted graphs, Linear Algebra Appl., 511 (2016), 460–475. https://doi.org/10.1016/j.laa.2016.09.040 doi: 10.1016/j.laa.2016.09.040 |