Research article Special Issues

Unbalanced signed graphs with eigenvalue properties

  • Received: 29 May 2023 Revised: 24 July 2023 Accepted: 31 July 2023 Published: 23 August 2023
  • MSC : 05C09, 05C90

  • For a signature function $ \Psi:E({H}) \longrightarrow \{\pm 1\} $ with underlying graph $ H $, a signed graph (S.G) $ \hat{H} = (H, \Psi) $ is a graph in which edges are assigned the signs using the signature function $ \Psi $. An S.G $ \hat{H} $ is said to fulfill the symmetric eigenvalue property if for every eigenvalue $ \hat{h}(\hat{H}) $ of $ \hat{H} $, $ -\hat{h}(\hat{H}) $ is also an eigenvalue of $ \hat{H} $. A non singular S.G $ \hat{H} $ is said to fulfill the property $ (\mathcal{SR}) $ if for every eigenvalue $ \hat{h}(\hat{H}) $ of $ \hat{H} $, its reciprocal is also an eigenvalue of $ \hat{H} $ (with multiplicity as that of $ \hat{h}(\hat{H}) $). A non singular S.G $ \hat{H} $ is said to fulfill the property $ (-\mathcal{SR}) $ if for every eigenvalue $ \hat{h}(\hat{H}) $ of $ \hat{H} $, its negative reciprocal is also an eigenvalue of $ \hat{H} $ (with multiplicity as that of $ \hat{h}(\hat{H}) $). In this article, non bipartite unbalanced S.Gs $ \hat{\mathfrak{C}}^{(m, 1)}_{3} $ and $ \hat{\mathfrak{C}}^{(m, 2)}_{5} $, where $ m $ is even positive integer have been constructed and it has been shown that these graphs fulfill the symmetric eigenvalue property, the S.Gs $ \hat{\mathfrak{C}}^{(m, 1)}_{3} $ also fulfill the properties $ (-\mathcal{SR}) $ and $ (\mathcal{SR}) $, whereas the S.Gs $ \hat{\mathfrak{C}}^{(m, 2)}_{5} $ are close to fulfill the properties $ (-\mathcal{SR}) $ and $ (\mathcal{SR}) $.

    Citation: Rashad Ismail, Saira Hameed, Uzma Ahmad, Khadija Majeed, Muhammad Javaid. Unbalanced signed graphs with eigenvalue properties[J]. AIMS Mathematics, 2023, 8(10): 24751-24763. doi: 10.3934/math.20231262

    Related Papers:

  • For a signature function $ \Psi:E({H}) \longrightarrow \{\pm 1\} $ with underlying graph $ H $, a signed graph (S.G) $ \hat{H} = (H, \Psi) $ is a graph in which edges are assigned the signs using the signature function $ \Psi $. An S.G $ \hat{H} $ is said to fulfill the symmetric eigenvalue property if for every eigenvalue $ \hat{h}(\hat{H}) $ of $ \hat{H} $, $ -\hat{h}(\hat{H}) $ is also an eigenvalue of $ \hat{H} $. A non singular S.G $ \hat{H} $ is said to fulfill the property $ (\mathcal{SR}) $ if for every eigenvalue $ \hat{h}(\hat{H}) $ of $ \hat{H} $, its reciprocal is also an eigenvalue of $ \hat{H} $ (with multiplicity as that of $ \hat{h}(\hat{H}) $). A non singular S.G $ \hat{H} $ is said to fulfill the property $ (-\mathcal{SR}) $ if for every eigenvalue $ \hat{h}(\hat{H}) $ of $ \hat{H} $, its negative reciprocal is also an eigenvalue of $ \hat{H} $ (with multiplicity as that of $ \hat{h}(\hat{H}) $). In this article, non bipartite unbalanced S.Gs $ \hat{\mathfrak{C}}^{(m, 1)}_{3} $ and $ \hat{\mathfrak{C}}^{(m, 2)}_{5} $, where $ m $ is even positive integer have been constructed and it has been shown that these graphs fulfill the symmetric eigenvalue property, the S.Gs $ \hat{\mathfrak{C}}^{(m, 1)}_{3} $ also fulfill the properties $ (-\mathcal{SR}) $ and $ (\mathcal{SR}) $, whereas the S.Gs $ \hat{\mathfrak{C}}^{(m, 2)}_{5} $ are close to fulfill the properties $ (-\mathcal{SR}) $ and $ (\mathcal{SR}) $.



    加载中


    [1] U. Ahmad, S. Hameed, S. Jabeen, Class of weighted graphs with strong anti-reciprocal eigenvalue property, Linear Multilinear Algebra, 68 (2020), 1129–1139. https://doi.org/10.1080/03081087.2018.1532489 doi: 10.1080/03081087.2018.1532489
    [2] S. Barik, S. Ghosh, D. Mondal, On graphs with strong anti-reciprocal eigenvalue property, Linear Multilinear Algebra, 70 (2022), 6698–6711. https://doi.org/10.1080/03081087.2021.1968330 doi: 10.1080/03081087.2021.1968330
    [3] D. M. Cvetkovic, M. Doob, H. Sachs, Spectra of graphs, New York: Academic Press, 1980.
    [4] S. Barik, M. Nath, S. Pati, B. K. Sarma, Unicyclic graphs with strong reciprocal eigenvalue property, Electron. J. Linear Algebra, 17 (2008), 139–153. https://doi.org/10.13001/1081-3810.1255 doi: 10.13001/1081-3810.1255
    [5] M. A. Bhat, S. Pirzada, On equienergetic signed graphs, Discret. Appl. Math., 189 (2015), 1–7. https://doi.org/10.1016/j.dam.2015.03.003 doi: 10.1016/j.dam.2015.03.003
    [6] R. B. Bapat, S. K. Panda, S. Pati, Self-inverse unicyclic graphs and strong reciprocal eigenvalue property, Linear Algebra Appl., 531 (2017), 459–478. https://doi.org/10.1016/j.laa.2017.06.006 doi: 10.1016/j.laa.2017.06.006
    [7] Y. P. Hou, Z. K. Tang, D. J. Wang, On signed graphs with just two distinct adjacency eigenvalues, Discrete Math., 342 (2019), 111615. https://doi.org/10.1016/j.disc.2019.111615 doi: 10.1016/j.disc.2019.111615
    [8] S. Hameed, U. Ahmad, Inverse of the adjacency matrices and strong anti-reciprocal eigenvalue property, Linear Multilinear Algebra, 70 (2020), 2739–2764. https://doi.org/10.1080/03081087.2020.1812495 doi: 10.1080/03081087.2020.1812495
    [9] E. Ghorbani, W. H. Haemers, H. R. Maimani, L. P. Majd, On sign-symmetric signed graphs, Ars Math. Contemp., 19 (2020), 83–93. https://doi.org/10.26493/1855-3974.2161.f55 doi: 10.26493/1855-3974.2161.f55
    [10] U. Ahmad, S. Hameed, S. Jabeen, Noncorona graphs with strong anti-reciprocal eigenvalue property, Linear Multilinear Algebra, 69 (2021), 1878–1888. https://doi.org/10.1080/03081087.2019.1646204 doi: 10.1080/03081087.2019.1646204
    [11] D. J. Wang, Y. P. Hou, Unicyclic signed graphs with maximal energy, 2018, arXiv: 1809.06206.
    [12] F. Harary, On the notion of balance of a signed graph, Michigan Math. J., 2 (1954), 143–146. https://doi.org/10.1307/mmj/1028989917 doi: 10.1307/mmj/1028989917
    [13] S. K. Simic, Z. Stanic, Polynomial reconstruction of signed graphs, Linear Algebra Appl., 501 (2016), 390–408. https://doi.org/10.1016/j.laa.2016.03.036 doi: 10.1016/j.laa.2016.03.036
    [14] R. P. Bapat, S. K. Panda, S. Pati, Strong reciprocal eigenvalue property of a class of weighted graphs, Linear Algebra Appl., 511 (2016), 460–475. https://doi.org/10.1016/j.laa.2016.09.040 doi: 10.1016/j.laa.2016.09.040
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(999) PDF downloads(50) Cited by(1)

Article outline

Figures and Tables

Figures(8)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog