Research article Special Issues

Teaching of system reliability based on challenging practical works using a spreadsheet software

  • Received: 09 June 2023 Revised: 01 August 2023 Accepted: 07 August 2023 Published: 23 August 2023
  • MSC : 97U50, 97K80

  • Systems reliability is usually an integral part of the curriculum for industrial engineering students. Very often, teachers limit themselves to a theoretical approach or simple calculations. Indeed, dedicated software is either expensive or complex for the intended use. Through this article, the objective is to teach students to create, by themselves, simple but adapted calculation tools from simple models given in a spreadsheet given in parallel with this article, allowing them to apply the theoretical knowledge acquired in the field of reliability. They will be able to easily understand the calculation of reliability thanks to the method of the functional diagram of reliability. Autonomously, they will be able to model most of the systems they might encounter in their engineering career. The developed tool will allow students to calculate the reliability of series systems, parallel systems, mixed systems, -out-of- systems, bridge systems and other complex models using the method of decomposition or the event space method. In the end, not only will readers be able to carry out the practical work proposed in this article, but the autonomy and skills they will have developed will allow them to model any industrial system or device in the way they deem appropriate.

    Citation: Jérémie Schutz, Christophe Sauvey. Teaching of system reliability based on challenging practical works using a spreadsheet software[J]. AIMS Mathematics, 2023, 8(10): 24764-24785. doi: 10.3934/math.20231263

    Related Papers:

    [1] Muhammad Farman, Ali Akgül, J. Alberto Conejero, Aamir Shehzad, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Analytical study of a Hepatitis B epidemic model using a discrete generalized nonsingular kernel. AIMS Mathematics, 2024, 9(7): 16966-16997. doi: 10.3934/math.2024824
    [2] Weam G. Alharbi, Abdullah F. Shater, Abdelhalim Ebaid, Carlo Cattani, Mounirah Areshi, Mohammed M. Jalal, Mohammed K. Alharbi . Communicable disease model in view of fractional calculus. AIMS Mathematics, 2023, 8(5): 10033-10048. doi: 10.3934/math.2023508
    [3] Ashish Awasthi, Riyasudheen TK . An accurate solution for the generalized Black-Scholes equations governing option pricing. AIMS Mathematics, 2020, 5(3): 2226-2243. doi: 10.3934/math.2020147
    [4] Hui Han, Chaoyu Yang, Xianya Geng . Research on the impact of green finance on the high quality development of the sports industry based on statistical models. AIMS Mathematics, 2023, 8(11): 27589-27604. doi: 10.3934/math.20231411
    [5] Badr Aloraini, Abdulaziz S. Alghamdi, Mohammad Zaid Alaskar, Maryam Ibrahim Habadi . Development of a new statistical distribution with insights into mathematical properties and applications in industrial data in KSA. AIMS Mathematics, 2025, 10(3): 7463-7488. doi: 10.3934/math.2025343
    [6] Ahmad Bin Azim, Ahmad ALoqaily, Asad Ali, Sumbal Ali, Nabil Mlaiki . Industry 4.0 project prioritization by using q-spherical fuzzy rough analytic hierarchy process. AIMS Mathematics, 2023, 8(8): 18809-18832. doi: 10.3934/math.2023957
    [7] Mohamed S. Elhadidy, Waleed S. Abdalla, Alaa A. Abdelrahman, S. Elnaggar, Mostafa Elhosseini . Assessing the accuracy and efficiency of kinematic analysis tools for six-DOF industrial manipulators: The KUKA robot case study. AIMS Mathematics, 2024, 9(6): 13944-13979. doi: 10.3934/math.2024678
    [8] Maryam Amin, Muhammad Farman, Ali Akgül, Mohammad Partohaghighi, Fahd Jarad . Computational analysis of COVID-19 model outbreak with singular and nonlocal operator. AIMS Mathematics, 2022, 7(9): 16741-16759. doi: 10.3934/math.2022919
    [9] Geoffrey McGregor, Jennifer Tippett, Andy T.S. Wan, Mengxiao Wang, Samuel W.K. Wong . Comparing regional and provincial-wide COVID-19 models with physical distancing in British Columbia. AIMS Mathematics, 2022, 7(4): 6743-6778. doi: 10.3934/math.2022376
    [10] Massoumeh Nazari, Mahmoud Dehghan Nayeri, Kiamars Fathi Hafshjani . Developing mathematical models and intelligent sustainable supply chains by uncertain parameters and algorithms. AIMS Mathematics, 2024, 9(3): 5204-5233. doi: 10.3934/math.2024252
  • Systems reliability is usually an integral part of the curriculum for industrial engineering students. Very often, teachers limit themselves to a theoretical approach or simple calculations. Indeed, dedicated software is either expensive or complex for the intended use. Through this article, the objective is to teach students to create, by themselves, simple but adapted calculation tools from simple models given in a spreadsheet given in parallel with this article, allowing them to apply the theoretical knowledge acquired in the field of reliability. They will be able to easily understand the calculation of reliability thanks to the method of the functional diagram of reliability. Autonomously, they will be able to model most of the systems they might encounter in their engineering career. The developed tool will allow students to calculate the reliability of series systems, parallel systems, mixed systems, -out-of- systems, bridge systems and other complex models using the method of decomposition or the event space method. In the end, not only will readers be able to carry out the practical work proposed in this article, but the autonomy and skills they will have developed will allow them to model any industrial system or device in the way they deem appropriate.



    Since its initiation in 1979, the Canadian Applied and Industrial Mathematics Society — Société Canadienne de Mathématiques Appliquées et Industrielles (CAIMS–SCMAI) has gained a growing presence in industrial, mathematical, scientific, and technological circles within and outside of Canada. Its members contribute to state-of-the-art research in industry, natural sciences, medicine and health, finance, physics, engineering, and more. The annual meetings are a highlight of the year. CAIMS–SCMAI is an active member society of the International Council for Industrial and Applied Mathematics, which hosts the prestigious ICIAM Congresses every four years.

    Canadian Applied and Industrial Mathematics is at the forefront of scientific and technological development. We use advanced mathematics to tackle real-world problems in science and industry and develop new theories to analyse structures that arise from the modelling of real-world problems.

    Applied Mathematics has evolved from traditional applications in areas such as fluids, mechanics, and physics, to modern topics such as medicine, health, biology, data science, finance, nano-tech, etc. Its growing importance in all aspects of life, health, and management increases the need for publication venues for high-level applied and industrial mathematics. Hence CAIMS–SCMAI decided to start a scientific journal called Mathematics in Science and Industry (MSI) to add value to the discussion of applied and industrial mathematics worldwide.

    Submissions to MSI in all areas of applied and industrial mathematics are welcome (https://caims.ca/mathematics_in_science_and_industry/). We offer a timely and high-quality review process, and papers are published online as open access, with the publication fee being covered by CAIMS for the first five years.

    MSI is honored that leading experts in industrial and applied mathematics have offered their support as editors:

    Editors in Chief:

    ● Thomas Hillen (University of Alberta, thillen@ualberta.ca)

    ● Ray Spiteri (University of Saskatchewan, spiteri@cs.usask.ca)

    Associate Editors:

    ● Lia Bronsard (McMaster University)

    ● Richard Craster (Imperial College of London, UK)

    ● David Earn (McMaster University)

    ● Ronald Haynes (Memorial University)

    ● Jane Heffernan (York University)

    ● Nicholas Kevlahan (McMaster University)

    ● Yong-Jung Kim (KAIST, Korea)

    ● Mark Lewis (University of Alberta)

    ● Kevin J. Painter (Heriot-Watt University, UK)

    ● Vakhtang Putkaradze (ATCO)

    ● Katrin Rohlf (Ryerson University)

    ● John Stockie (Simon Fraser University)

    ● Jie Sun (Huawei, Hong Kong)

    ● Justin Wan (University of Waterloo)

    ● Michael Ward (University of British Columbia)

    ● Tony Ware (University of Calgary)

    ● Brian Wetton (University of British Columbia)

    The first eight papers of MSI, presented here, are published as special issue in AIMS Mathematics. They showcase a broad representation of applied mathematics that touches the interests of Canadian researchers and our many collaborators around the world. The science that we present here is not exclusively "Canadian", but we hope that through the new journal MSI, we can contribute to scientific dissemination of knowledge and add Canadian values to the scientific discussion.

    The next issue of MSI is planned for the fall of 2020 and is expected to appear again as a special issue of AIMS Mathematics.



    [1] C. Sauvey, Mathematical modeling of electrical circuits and practical works of increasing difficulty with classical spreadsheet software, Modelling, 3 (2022), 445–463. https://doi.org/10.3390/modelling3040029 doi: 10.3390/modelling3040029
    [2] A. Ingolfsson, T. A. Grossman, Graphical spreadsheet simulation of queues, Informs Trans. Educ., 2 (2002), 27–39. https://doi.org/10.1287/ited.2.2.27 doi: 10.1287/ited.2.2.27
    [3] W. H. Stewart, A global crash-course in teaching and learning online: a thematic review of empirical emergency remote teaching (ERT) studies in higher education during year 1 of COVID-19, Open Prax., 13 (2021), 89–102. https://doi.org/10.5944/openpraxis.13.1.1177 doi: 10.5944/openpraxis.13.1.1177
    [4] A. F. Mazlan, M. Mohamad, A. Reesha, R. Kassim, Z. Othman, S. Kummin, Challenges and strategies to enhance online remote teaching and learning by tertiary institution educators: a literature review, Creat. Educ., 12 (2021), 718–726. https://doi.org/10.4236/ce.2021.124050 doi: 10.4236/ce.2021.124050
    [5] L. S. Hamilton, J. H. Kaufman, M. K. Diliberti, Teaching and leading through a pandemic, RAND Corporation, 2020. https://doi.org/10.7249/RRA168-2 doi: 10.7249/RRA168-2
    [6] F. Ferri, P. Grifoni, T. Guzzo, Online learning and emergency remote teaching: opportunities and challenges in emergency situations, Societies, 10 (2020), 86. https://doi.org/10.3390/soc10040086 doi: 10.3390/soc10040086
    [7] M. Zajdel, M. Michalcewicz-Kaniowska, P. Modrzyński, A. Komarnicka, J. Modrzyńska, Conditions and determinants of distance education for students during the COVID-19 pandemic—evaluation in the Kuyavia-Pomerania region in Poland, Sustainability, 13 (2021), 10373. https://doi.org/10.3390/su131810373 doi: 10.3390/su131810373
    [8] S. Yin, F. Guo, Y. Yu, Y. Li, K. Ullah, Practical teaching method innovation decisions related to labor and reading at agricultural colleges based on entropy-fuzzy AHP combination weights, AIMS Math., 8 (2023), 7641–7661. https://doi.org/10.3934/math.2023383 doi: 10.3934/math.2023383
    [9] K. Zhong, Q. Luo, Y. Zhou, M. Jiang, TLMPA: Teaching-learning-based Marine Predators algorithm, AIMS Math., 6 (2021), 1395–1442. https://doi.org/10.3934/math.2021087 doi: 10.3934/math.2021087
    [10] S. Huang, Y. Lin, J. Zhang, P. Wang, Chance-constrained approach for decentralized supply chain network under uncertain cost, AIMS Math., 8 (2023), 12217–12238. https://doi.org/10.3934/math.2023616 doi: 10.3934/math.2023616
    [11] G. Liu, Y. Zheng, F. Hu, Z. Du, Modelling exchange rate volatility under jump process and application analysis, AIMS Math., 8 (2023), 8610–8632. https://doi.org/10.3934/math.2023432 doi: 10.3934/math.2023432
    [12] M. Al-Qureshi, S. Rashid, F. Jarad, M. Alharthi, Dynamical behavior of a stochastic highly pathogenic avian influenza A (HPAI) epidemic model via piecewise fractional differential technique, AIMS Math., 8 (2023), 1737–1756. https://doi.org/10.3934/math.2023089 doi: 10.3934/math.2023089
    [13] J. Ndenda, J. Njagarah, S. Shaw, Influence of environmental viral load, interpersonal contact and infected rodents on Lassa fever transmission dynamics: perspectives from fractional-order dynamic modelling, AIMS Math., 7 (2022), 8975–9002. https://doi.org/10.3934/math.2022500 doi: 10.3934/math.2022500
    [14] T. S. Barry, O. Ngesa, J. K. Kiingati, N. O. Onyango, Bayesian joint spatial modelling of anemia and malaria in Guinea, AIMS Math., 8 (2023), 2763–2782. https://doi.org/10.3934/math.2023145 doi: 10.3934/math.2023145
    [15] I. Abrahams, M. J. Reiss, Practical work: its effectiveness in primary and secondary schools in England, J. Res. Sci. Teach., 49 (2012), 1035–1055. https://doi.org/10.1002/tea.21036 doi: 10.1002/tea.21036
    [16] I. Abrahams, R. Millar, Does practical work really work? A study of the effectiveness of practical work as a teaching and learning method in school science, Int. J. Sci. Educ., 30 (2008), 1945–1969. https://doi.org/10.1080/09500690701749305 doi: 10.1080/09500690701749305
    [17] A. W. June, Did the scramble to remote learning work? Here's what higher ed thinks, Chron. Higher Educ., 2020.
    [18] R. Millar, I. Abrahams, Practical work: making it more effective, Sch. Sci. Review, 91 (2009), 59–64.
    [19] R. B. Schultz, M. N. DeMers, Transitioning from emergency remote learning to deep online learning experiences in geography education, J. Geogr., 119 (2020), 142–146. https://doi.org/10.1080/00221341.2020.1813791 doi: 10.1080/00221341.2020.1813791
    [20] S. Affouneh, S. Salha, Z. N. Khlaif, Designing quality e-Learning environments for emergency remote teaching in coronavirus crisis, Int. J. Virtual Learn. Med. Sci., 11 (2020), 135–137. https://doi.org/10.30476/ijvlms.2020.86120.1033 doi: 10.30476/ijvlms.2020.86120.1033
    [21] S. Cieślik, Mathematical modeling of the dynamics of linear electrical systems with parallel calculations, Energies, 14 (2021), 2930. https://doi.org/10.3390/en14102930 doi: 10.3390/en14102930
    [22] L. Max, T. Thiringer, T. Undeland, R. Karlsson, Power electronics design laboratory exercise for final-year M. Sc. students, IEEE Trans. Educ., 52 (2009), 524–531. https://doi.org/10.1109/TE.2008.930513 doi: 10.1109/TE.2008.930513
    [23] T. Karakasidis, Virtual and remote labs in higher education distance learning of physical and engineering sciences, 2013 IEEE Global Engineering Education Conference (EDUCON), 2013. https://doi.org/10.1109/EduCon.2013.6530198 doi: 10.1109/EduCon.2013.6530198
    [24] A. Popenda, M. Lis, M. Nowak, K. Blecharz, Mathematical modelling of drive system with an elastic coupling based on formal analogy between the transmission shaft and the electric transmission line, Energies, 13 (2020), 1181. https://doi.org/10.3390/en13051181 doi: 10.3390/en13051181
    [25] R. Scorretti, Coupling of external electric circuits with computational domains, J, 4 (2021), 865–880. https://doi.org/10.3390/j4040059 doi: 10.3390/j4040059
    [26] P. Bauer, J. Ďuďák, D. Maga, V. Hajek, Distance practical education for power electronics, Int. J. Eng. Educ., 23 (2007), 1210.
    [27] F. Bicking, C. Simon, W. Mechri, Mesures d'importance par réseaux bayésiens, 10ème Congrès International Pluridisciplinaire Qualité et Sûreté de Fonctionnement, Qualita'2013, 2013.
    [28] G. Yang, System reliability evaluation and allocation, John Wiley & Sons Inc., 2007. https://doi.org/10.1002/9780470117880.ch4
    [29] F. Lees, Lees' Loss prevention in the process industries, 4 Eds., Butterworth-Heinemann, 2012.
    [30] C. H. Tsai, G. R. Rodriguez, N. Li, J. Robert, A. Serpi, J. M. Carroll, Experiencing the transition to remote teaching and learning during the COVID-19 pandemic, Interact. Design Archit., 46 (2020), 70–87.
    [31] M. Shin, K. Hickey, Needs a little TLC: examining college students' emergency remote teaching and learning experiences during COVID-19, J. Further Higher Educ., 45 (2021), 973–986. https://doi.org/10.1080/0309877X.2020.1847261 doi: 10.1080/0309877X.2020.1847261
  • math-08-10-1263-supplementary.xlsx
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1332) PDF downloads(91) Cited by(1)

Article outline

Figures and Tables

Figures(14)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog