Research article Special Issues

Some variant of Tseng splitting method with accelerated Visco-Cesaro means for monotone inclusion problems

  • Received: 25 March 2023 Revised: 18 July 2023 Accepted: 08 August 2023 Published: 21 August 2023
  • MSC : 47H05, 47H06, 47H09, 47H10, 65K15, 65Y05, 68W10

  • In this paper, we examine the convergence analysis of a variant of Tseng's splitting method for monotone inclusion problem and fixed point problem associated with an infinite family of $ \eta $-demimetric mappings in Hilbert spaces. The qualitative results of the proposed variant shows strong convergence characteristics under a suitable set of control conditions. We also provide a numerical example to demonstrate the applicability of the variant with some applications.

    Citation: Yasir Arfat, Supak Phiangsungnoen, Poom Kumam, Muhammad Aqeel Ahmad Khan, Jamshad Ahmad. Some variant of Tseng splitting method with accelerated Visco-Cesaro means for monotone inclusion problems[J]. AIMS Mathematics, 2023, 8(10): 24590-24608. doi: 10.3934/math.20231254

    Related Papers:

  • In this paper, we examine the convergence analysis of a variant of Tseng's splitting method for monotone inclusion problem and fixed point problem associated with an infinite family of $ \eta $-demimetric mappings in Hilbert spaces. The qualitative results of the proposed variant shows strong convergence characteristics under a suitable set of control conditions. We also provide a numerical example to demonstrate the applicability of the variant with some applications.



    加载中


    [1] F. Alvarez, H. Attouch, An inertial proximal method for monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Analysis, 9 (2001), 3–11. http://dx.doi.org/10.1023/A:1011253113155 doi: 10.1023/A:1011253113155
    [2] Y. Arfat, P. Kumam, M. Khan, P. Ngiamsunthorn, A. Kaewkhao, A parallel hybrid accelerated extragradient algorithm for pseudomonotone equilibrium, fixed point, and split null point problems, Adv. Differ. Equ., 2021 (2021), 364. http://dx.doi.org/10.1186/s13662-021-03518-2 doi: 10.1186/s13662-021-03518-2
    [3] Y. Arfat, P. Kumam, M. Khan, P. Ngiamsunthorn, Parallel shrinking inertial extragradient approximants for pseudomonotone equilibrium, fixed point and generalized split null point problem, Ricerche Mat., in press. http://dx.doi.org/10.1007/s11587-021-00647-4
    [4] Y. Arfat, P. Kumam, M. Khan, P. Ngiamsunthorn, Shrinking approximants for fixed point problem and generalized split null point problem in Hilbert spaces, Optim. Lett., 16 (2022), 1895–1913. http://dx.doi.org/10.1007/s11590-021-01810-4 doi: 10.1007/s11590-021-01810-4
    [5] Y. Arfat, P. Kumam, M. Khan, O. Iyiola, Multi-inertial parallel hybrid projection algorithm for generalized split null point problems, J. Appl. Math. Comput., 68 (2022), 3179–3198. http://dx.doi.org/10.1007/s12190-021-01660-4 doi: 10.1007/s12190-021-01660-4
    [6] Y. Arfat, P. Kumam, M. Khan, P. Ngiamsunthorn, An inertial extragradient algorithm for equilibrium and generalized split null point problems, Adv. Comput. Math., 48 (2022), 53. http://dx.doi.org/10.1007/s10444-021-09920-4 doi: 10.1007/s10444-021-09920-4
    [7] Y. Arfat, O. Iyiola, M. Khan, P. Kumam, W. Kumam, K. Sitthithakerngkiet, Convergence analysis of the shrinking approximants for fixed point problem and generalized split common null point problem, J. Inequal. Appl., 2022 (2022), 67. http://dx.doi.org/10.1186/s13660-022-02803-2 doi: 10.1186/s13660-022-02803-2
    [8] Y. Arfat, M. Khan, P. Kumam, W. Kumam, K. Sitthithakerngkiet, Iterative solutions via some variants of extragradient approximants in Hilbert spaces, AIMS Mathematics, 7 (2022), 13910–13926. http://dx.doi.org/10.3934/math.2022768 doi: 10.3934/math.2022768
    [9] Y. Arfat, P. Kumam, M. Khan, P. Ngiamsunthorn, An accelerated variant of the projection based parallel hybrid algorithm for split null point problems, Topol. Method. Nonl. Anal., 60 (2022), 457–474. http://dx.doi.org/10.12775/TMNA.2022.015 doi: 10.12775/TMNA.2022.015
    [10] Y. Arfat, P. Kumam, S. Phiangsungnoen, M. Khan, H. Fukhar-ud-din, An inertially constructed projection based hybrid algorithm for fixed point problem and split null point problems, AIMS Mathematics, 8 (2023), 6590–6608. http://dx.doi.org/10.3934/math.2023333 doi: 10.3934/math.2023333
    [11] Y. Arfat, P. Kumam, M. Khan, Y. Cho, A hybrid steepest-descent algorithm for convex minimization over the fixed point set of multivalued mappings, Carpathian J. Math., 39 (2023), 303–314. http://dx.doi.org/10.37193/CJM.2023.01.21 doi: 10.37193/CJM.2023.01.21
    [12] H. Bauschke, P. Combettes, Convex analysis and monotone operators theory in Hilbert spaces, Cham: Springer, 2017. http://dx.doi.org/10.1007/978-3-319-48311-5
    [13] J. Baillon, Un theorem de type ergodique pour les contractions non lineairs dans un e'spaces de Hilbert, C. R. Acad. Sci. Paris Ser. A-B, 280 (1975), 1511–1541.
    [14] H. Br$\acute{e}$zis, I. Chapitre, Operateurs maximaux monotones, North-Holland Math. Stud., 5 (1973), 19–51.
    [15] R. Bruck, On the convex approximation property and the asymptotic behavior of nonlinear contractions in Banach spaces, Israel J. Math., 38 (1981), 304–314. http://dx.doi.org/10.1007/BF02762776 doi: 10.1007/BF02762776
    [16] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algor., 8 (1994), 221–239. http://dx.doi.org/10.1007/BF02142692 doi: 10.1007/BF02142692
    [17] P. Combettes, The convex feasibility problem in image recovery, Adv. Imag. Elect. Phys., 95 (1996), 155–270. http://dx.doi.org/10.1016/S1076-5670(08)70157-5 doi: 10.1016/S1076-5670(08)70157-5
    [18] J. Deepho, J. Martínez-Moreno, K. Sitthithakerngkiet, P. Kumam, Convergence analysis of hybrid projection with Ces$\acute{a}$ro mean method for the split equilibrium and general system of finite variational inequalities, J. Comput. Appl. Math., 318 (2017), 658–673. http://dx.doi.org/10.1016/j.cam.2015.10.006 doi: 10.1016/j.cam.2015.10.006
    [19] J. Douglas, H. Rachford, On the numerical solution of the heat conduction problem in two and three space variables, Trans. Amer. Math. Soc., 82 (1956), 421–439. http://dx.doi.org/10.2307/1993056 doi: 10.2307/1993056
    [20] J. Duchi, S. Shalev-Shwartz, Y. Singer, T. Chandra, Efficient projections onto the l1-ball for learning in high dimensions, Proceedings of the 25th International Conference on Machine Learning, 2008,272–279. http://dx.doi.org/10.1145/1390156.1390191 doi: 10.1145/1390156.1390191
    [21] H. Engl, M. Hanke, A. Neubauer, Regularization of inverse problems, Dordrecht: Kluwer Academic Publishers, 2000.
    [22] A. Genel, J. Lindenstrauss, An example concerning fixed points, Israel J. Math., 22 (1975), 81–86. http://dx.doi.org/10.1007/BF02757276 doi: 10.1007/BF02757276
    [23] A. Gibali, D. Thong, Tseng type methods for solving inclusion problems and its applications, Calcolo, 55 (2018), 49. http://dx.doi.org/10.1007/s10092-018-0292-1 doi: 10.1007/s10092-018-0292-1
    [24] A. Gibali, A new split inverse problem and an application to least intensity feasible solutions, Online Journal Pure and Applied Functional Analysis, 2 (2017), 243–258.
    [25] A. Gibali, S. Reich, R. Zalas, Outer approximation methods for solving variational inequalities in Hilbert space, Optimization, 66 (2017), 417–437. http://dx.doi.org/10.1080/02331934.2016.1271800 doi: 10.1080/02331934.2016.1271800
    [26] W. Guo, J. Qin, W. Yin, A new detail-preserving regularization scheme, SIAM J. Imaging Sci., 7 (2014), 1309–1334. http://dx.doi.org/10.1137/120904263 doi: 10.1137/120904263
    [27] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73 (1967), 957–961.
    [28] S. Harisa, M. Khan, F. Mumtaz, N. Farid, A. Morsy, K. Nisar, et al., Shrinking Ces$\acute{a}$ro means method for the split equilibrium and fixed point problems in Hilbert spaces, Adv. Differ. Equ., 2020 (2020), 345. http://dx.doi.org/10.1186/s13662-020-02800-z doi: 10.1186/s13662-020-02800-z
    [29] N. Hirano, W. Takahashi, Nonlinear ergodic theorems for nonexpansive mappings in Hilbert spaces, Kodai Math. J., 2 (1979), 11–25. http://dx.doi.org/10.2996/kmj/1138035962 doi: 10.2996/kmj/1138035962
    [30] O. Iyiola, Y. Shehu, Convergence results of two-step inertial proximal point algorithm, Appl. Numer. Math., 182 (2022), 57–75. http://dx.doi.org/10.1016/j.apnum.2022.07.013 doi: 10.1016/j.apnum.2022.07.013
    [31] N. Kaewyong, K. Sitthithakerngkiet, Modified Tseng's method with inertial viscosity type for solving inclusion problems and its application to image restoration problems, Mathematics, 9 (2021), 1104. http://dx.doi.org/10.3390/math9101104 doi: 10.3390/math9101104
    [32] P. Maing$\acute{e}$, A hybrid extragradient-viscosity method for monotone operators and fixed point problems, SIAM J. Control Optim., 47 (2008), 1499–1515. http://dx.doi.org/10.1137/060675319 doi: 10.1137/060675319
    [33] A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., 241 (2000), 46–55. http://dx.doi.org/10.1006/jmaa.1999.6615 doi: 10.1006/jmaa.1999.6615
    [34] P. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16 (1979), 964–979. http://dx.doi.org/10.1137/0716071 doi: 10.1137/0716071
    [35] G. Pasty, Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, J. Math. Anal. Appl., 72 (1979), 383–390. http://dx.doi.org/10.1016/0022-247X(79)90234-8 doi: 10.1016/0022-247X(79)90234-8
    [36] B. Polyak, Introduction to optimization, New York: Optimization Software, 1987.
    [37] R. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc., 149 (1970), 75–88. http://dx.doi.org/10.2307/1995660 doi: 10.2307/1995660
    [38] W. Takahashi, The split common fixed point problem and the shrinking projection method in Banach spaces, J. Convex Anal., 24 (2017), 1015–1028.
    [39] W. Takahashi, Strong convergence theorem for a finite family of demimetric mappings with variational inequality problems in a Hilbert space, Japan J. Indust. Appl. Math., 34 (2017), 41–57. http://dx.doi.org/10.1007/s13160-017-0237-0 doi: 10.1007/s13160-017-0237-0
    [40] W. Takahashi, Weak and strong convergence theorems for new demimetric mappings and the split common fixed point problem in Banach spaces, Numer. Func. Anal. Opt., 39 (2018), 1011–1033. http://dx.doi.org/10.1080/01630563.2018.1466803 doi: 10.1080/01630563.2018.1466803
    [41] W. Takahashi, K. Shimoji, Convergence theorems for nonexpansive mappings and feasibility problems, Math. Comput. Model., 32 (2000), 1463–1471. http://dx.doi.org/10.1016/S0895-7177(00)00218-1 doi: 10.1016/S0895-7177(00)00218-1
    [42] W. Takahashi, C. Wen, J. Yao, The shrinking projection method for a finite family of demimetric mappings with variational inequality problems in a Hilbert space, Fixed Point Theory, 19 (2018), 407–420. http://dx.doi.org/10.24193/fpt-ro.2018.1.32 doi: 10.24193/fpt-ro.2018.1.32
    [43] R. Tibshirami, Regression shrinkage and selection via lasso, J. R. Stat. Soc. B, 58 (1996), 267–288. http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x doi: 10.1111/j.2517-6161.1996.tb02080.x
    [44] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38 (2000), 431–446. http://dx.doi.org/10.1137/S0363012998338806 doi: 10.1137/S0363012998338806
    [45] C. Vogel, Computational methods for inverse problems, Philadelphia: Society for Industrial and Applied Mathematics, 2002.
    [46] H. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66 (2002), 240–256. http://dx.doi.org/10.1112/S0024610702003332 doi: 10.1112/S0024610702003332
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(995) PDF downloads(55) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog