In this paper, we examine the convergence analysis of a variant of Tseng's splitting method for monotone inclusion problem and fixed point problem associated with an infinite family of $ \eta $-demimetric mappings in Hilbert spaces. The qualitative results of the proposed variant shows strong convergence characteristics under a suitable set of control conditions. We also provide a numerical example to demonstrate the applicability of the variant with some applications.
Citation: Yasir Arfat, Supak Phiangsungnoen, Poom Kumam, Muhammad Aqeel Ahmad Khan, Jamshad Ahmad. Some variant of Tseng splitting method with accelerated Visco-Cesaro means for monotone inclusion problems[J]. AIMS Mathematics, 2023, 8(10): 24590-24608. doi: 10.3934/math.20231254
In this paper, we examine the convergence analysis of a variant of Tseng's splitting method for monotone inclusion problem and fixed point problem associated with an infinite family of $ \eta $-demimetric mappings in Hilbert spaces. The qualitative results of the proposed variant shows strong convergence characteristics under a suitable set of control conditions. We also provide a numerical example to demonstrate the applicability of the variant with some applications.
[1] | F. Alvarez, H. Attouch, An inertial proximal method for monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Analysis, 9 (2001), 3–11. http://dx.doi.org/10.1023/A:1011253113155 doi: 10.1023/A:1011253113155 |
[2] | Y. Arfat, P. Kumam, M. Khan, P. Ngiamsunthorn, A. Kaewkhao, A parallel hybrid accelerated extragradient algorithm for pseudomonotone equilibrium, fixed point, and split null point problems, Adv. Differ. Equ., 2021 (2021), 364. http://dx.doi.org/10.1186/s13662-021-03518-2 doi: 10.1186/s13662-021-03518-2 |
[3] | Y. Arfat, P. Kumam, M. Khan, P. Ngiamsunthorn, Parallel shrinking inertial extragradient approximants for pseudomonotone equilibrium, fixed point and generalized split null point problem, Ricerche Mat., in press. http://dx.doi.org/10.1007/s11587-021-00647-4 |
[4] | Y. Arfat, P. Kumam, M. Khan, P. Ngiamsunthorn, Shrinking approximants for fixed point problem and generalized split null point problem in Hilbert spaces, Optim. Lett., 16 (2022), 1895–1913. http://dx.doi.org/10.1007/s11590-021-01810-4 doi: 10.1007/s11590-021-01810-4 |
[5] | Y. Arfat, P. Kumam, M. Khan, O. Iyiola, Multi-inertial parallel hybrid projection algorithm for generalized split null point problems, J. Appl. Math. Comput., 68 (2022), 3179–3198. http://dx.doi.org/10.1007/s12190-021-01660-4 doi: 10.1007/s12190-021-01660-4 |
[6] | Y. Arfat, P. Kumam, M. Khan, P. Ngiamsunthorn, An inertial extragradient algorithm for equilibrium and generalized split null point problems, Adv. Comput. Math., 48 (2022), 53. http://dx.doi.org/10.1007/s10444-021-09920-4 doi: 10.1007/s10444-021-09920-4 |
[7] | Y. Arfat, O. Iyiola, M. Khan, P. Kumam, W. Kumam, K. Sitthithakerngkiet, Convergence analysis of the shrinking approximants for fixed point problem and generalized split common null point problem, J. Inequal. Appl., 2022 (2022), 67. http://dx.doi.org/10.1186/s13660-022-02803-2 doi: 10.1186/s13660-022-02803-2 |
[8] | Y. Arfat, M. Khan, P. Kumam, W. Kumam, K. Sitthithakerngkiet, Iterative solutions via some variants of extragradient approximants in Hilbert spaces, AIMS Mathematics, 7 (2022), 13910–13926. http://dx.doi.org/10.3934/math.2022768 doi: 10.3934/math.2022768 |
[9] | Y. Arfat, P. Kumam, M. Khan, P. Ngiamsunthorn, An accelerated variant of the projection based parallel hybrid algorithm for split null point problems, Topol. Method. Nonl. Anal., 60 (2022), 457–474. http://dx.doi.org/10.12775/TMNA.2022.015 doi: 10.12775/TMNA.2022.015 |
[10] | Y. Arfat, P. Kumam, S. Phiangsungnoen, M. Khan, H. Fukhar-ud-din, An inertially constructed projection based hybrid algorithm for fixed point problem and split null point problems, AIMS Mathematics, 8 (2023), 6590–6608. http://dx.doi.org/10.3934/math.2023333 doi: 10.3934/math.2023333 |
[11] | Y. Arfat, P. Kumam, M. Khan, Y. Cho, A hybrid steepest-descent algorithm for convex minimization over the fixed point set of multivalued mappings, Carpathian J. Math., 39 (2023), 303–314. http://dx.doi.org/10.37193/CJM.2023.01.21 doi: 10.37193/CJM.2023.01.21 |
[12] | H. Bauschke, P. Combettes, Convex analysis and monotone operators theory in Hilbert spaces, Cham: Springer, 2017. http://dx.doi.org/10.1007/978-3-319-48311-5 |
[13] | J. Baillon, Un theorem de type ergodique pour les contractions non lineairs dans un e'spaces de Hilbert, C. R. Acad. Sci. Paris Ser. A-B, 280 (1975), 1511–1541. |
[14] | H. Br$\acute{e}$zis, I. Chapitre, Operateurs maximaux monotones, North-Holland Math. Stud., 5 (1973), 19–51. |
[15] | R. Bruck, On the convex approximation property and the asymptotic behavior of nonlinear contractions in Banach spaces, Israel J. Math., 38 (1981), 304–314. http://dx.doi.org/10.1007/BF02762776 doi: 10.1007/BF02762776 |
[16] | Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algor., 8 (1994), 221–239. http://dx.doi.org/10.1007/BF02142692 doi: 10.1007/BF02142692 |
[17] | P. Combettes, The convex feasibility problem in image recovery, Adv. Imag. Elect. Phys., 95 (1996), 155–270. http://dx.doi.org/10.1016/S1076-5670(08)70157-5 doi: 10.1016/S1076-5670(08)70157-5 |
[18] | J. Deepho, J. Martínez-Moreno, K. Sitthithakerngkiet, P. Kumam, Convergence analysis of hybrid projection with Ces$\acute{a}$ro mean method for the split equilibrium and general system of finite variational inequalities, J. Comput. Appl. Math., 318 (2017), 658–673. http://dx.doi.org/10.1016/j.cam.2015.10.006 doi: 10.1016/j.cam.2015.10.006 |
[19] | J. Douglas, H. Rachford, On the numerical solution of the heat conduction problem in two and three space variables, Trans. Amer. Math. Soc., 82 (1956), 421–439. http://dx.doi.org/10.2307/1993056 doi: 10.2307/1993056 |
[20] | J. Duchi, S. Shalev-Shwartz, Y. Singer, T. Chandra, Efficient projections onto the l1-ball for learning in high dimensions, Proceedings of the 25th International Conference on Machine Learning, 2008,272–279. http://dx.doi.org/10.1145/1390156.1390191 doi: 10.1145/1390156.1390191 |
[21] | H. Engl, M. Hanke, A. Neubauer, Regularization of inverse problems, Dordrecht: Kluwer Academic Publishers, 2000. |
[22] | A. Genel, J. Lindenstrauss, An example concerning fixed points, Israel J. Math., 22 (1975), 81–86. http://dx.doi.org/10.1007/BF02757276 doi: 10.1007/BF02757276 |
[23] | A. Gibali, D. Thong, Tseng type methods for solving inclusion problems and its applications, Calcolo, 55 (2018), 49. http://dx.doi.org/10.1007/s10092-018-0292-1 doi: 10.1007/s10092-018-0292-1 |
[24] | A. Gibali, A new split inverse problem and an application to least intensity feasible solutions, Online Journal Pure and Applied Functional Analysis, 2 (2017), 243–258. |
[25] | A. Gibali, S. Reich, R. Zalas, Outer approximation methods for solving variational inequalities in Hilbert space, Optimization, 66 (2017), 417–437. http://dx.doi.org/10.1080/02331934.2016.1271800 doi: 10.1080/02331934.2016.1271800 |
[26] | W. Guo, J. Qin, W. Yin, A new detail-preserving regularization scheme, SIAM J. Imaging Sci., 7 (2014), 1309–1334. http://dx.doi.org/10.1137/120904263 doi: 10.1137/120904263 |
[27] | B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73 (1967), 957–961. |
[28] | S. Harisa, M. Khan, F. Mumtaz, N. Farid, A. Morsy, K. Nisar, et al., Shrinking Ces$\acute{a}$ro means method for the split equilibrium and fixed point problems in Hilbert spaces, Adv. Differ. Equ., 2020 (2020), 345. http://dx.doi.org/10.1186/s13662-020-02800-z doi: 10.1186/s13662-020-02800-z |
[29] | N. Hirano, W. Takahashi, Nonlinear ergodic theorems for nonexpansive mappings in Hilbert spaces, Kodai Math. J., 2 (1979), 11–25. http://dx.doi.org/10.2996/kmj/1138035962 doi: 10.2996/kmj/1138035962 |
[30] | O. Iyiola, Y. Shehu, Convergence results of two-step inertial proximal point algorithm, Appl. Numer. Math., 182 (2022), 57–75. http://dx.doi.org/10.1016/j.apnum.2022.07.013 doi: 10.1016/j.apnum.2022.07.013 |
[31] | N. Kaewyong, K. Sitthithakerngkiet, Modified Tseng's method with inertial viscosity type for solving inclusion problems and its application to image restoration problems, Mathematics, 9 (2021), 1104. http://dx.doi.org/10.3390/math9101104 doi: 10.3390/math9101104 |
[32] | P. Maing$\acute{e}$, A hybrid extragradient-viscosity method for monotone operators and fixed point problems, SIAM J. Control Optim., 47 (2008), 1499–1515. http://dx.doi.org/10.1137/060675319 doi: 10.1137/060675319 |
[33] | A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., 241 (2000), 46–55. http://dx.doi.org/10.1006/jmaa.1999.6615 doi: 10.1006/jmaa.1999.6615 |
[34] | P. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16 (1979), 964–979. http://dx.doi.org/10.1137/0716071 doi: 10.1137/0716071 |
[35] | G. Pasty, Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, J. Math. Anal. Appl., 72 (1979), 383–390. http://dx.doi.org/10.1016/0022-247X(79)90234-8 doi: 10.1016/0022-247X(79)90234-8 |
[36] | B. Polyak, Introduction to optimization, New York: Optimization Software, 1987. |
[37] | R. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc., 149 (1970), 75–88. http://dx.doi.org/10.2307/1995660 doi: 10.2307/1995660 |
[38] | W. Takahashi, The split common fixed point problem and the shrinking projection method in Banach spaces, J. Convex Anal., 24 (2017), 1015–1028. |
[39] | W. Takahashi, Strong convergence theorem for a finite family of demimetric mappings with variational inequality problems in a Hilbert space, Japan J. Indust. Appl. Math., 34 (2017), 41–57. http://dx.doi.org/10.1007/s13160-017-0237-0 doi: 10.1007/s13160-017-0237-0 |
[40] | W. Takahashi, Weak and strong convergence theorems for new demimetric mappings and the split common fixed point problem in Banach spaces, Numer. Func. Anal. Opt., 39 (2018), 1011–1033. http://dx.doi.org/10.1080/01630563.2018.1466803 doi: 10.1080/01630563.2018.1466803 |
[41] | W. Takahashi, K. Shimoji, Convergence theorems for nonexpansive mappings and feasibility problems, Math. Comput. Model., 32 (2000), 1463–1471. http://dx.doi.org/10.1016/S0895-7177(00)00218-1 doi: 10.1016/S0895-7177(00)00218-1 |
[42] | W. Takahashi, C. Wen, J. Yao, The shrinking projection method for a finite family of demimetric mappings with variational inequality problems in a Hilbert space, Fixed Point Theory, 19 (2018), 407–420. http://dx.doi.org/10.24193/fpt-ro.2018.1.32 doi: 10.24193/fpt-ro.2018.1.32 |
[43] | R. Tibshirami, Regression shrinkage and selection via lasso, J. R. Stat. Soc. B, 58 (1996), 267–288. http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x doi: 10.1111/j.2517-6161.1996.tb02080.x |
[44] | P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38 (2000), 431–446. http://dx.doi.org/10.1137/S0363012998338806 doi: 10.1137/S0363012998338806 |
[45] | C. Vogel, Computational methods for inverse problems, Philadelphia: Society for Industrial and Applied Mathematics, 2002. |
[46] | H. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66 (2002), 240–256. http://dx.doi.org/10.1112/S0024610702003332 doi: 10.1112/S0024610702003332 |