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1. Introduction

Let the triplet (H , < ·, · >, ‖ · ‖) denote the real Hilbert space with the inner product and induced
norm. The classical monotone inclusion problem aims to find

s∗ ∈ H such that 0 ∈ As∗ + Bs∗, (1.1)

where A ⊆ H × H is a multi-valued operator and B is a single-valued operator on H . In the
context of monotone operator theory, (1.1) has been largely considered for various problems in
signal processing, subgradient algorithms, image recovery problem, variational inequality problem
and evolution equations, see [17, 19, 37] and the references cited therein.

In order to study the problem (1.1), one can employ effective iterative algorithms. The elegant
forward-backward (FB) iterative algorithm [34, 35] is prominent among various iterative algorithms
to solve (1.1). However, the FB iterative algorithm exhibits weak convergence, assuming the stronger
conditions for the operators A and B [44]. Recently, Gibali and Thong [23] considered a modified
variant of the Tseng’s splitting method to obtain strong convergence results in Hilbert spaces.

Fixed point problem (FPP) is another important framework to study a variety of problems arising
in various branches of sciences [17, 24, 25]. In 2017, Takahashi [38] proposed and analyzed a new
unifying class of nonlinear operators namely the class of η-demimetric operators in Hilbert spaces as
follows:

Let C be a nonempty subset of a real Hilbert space H . An operator W : C → C is said to be
η-demimetric [38], where η ∈ (−∞, 1), if Fix(W) , ∅ such that

〈s − t, (Id −W)s〉 ≥
1
2

(1 − η)‖(Id −W)s‖2, for all s ∈ C and t ∈ Fix(W),

where Id indicates the identity operator and Fix(W) = {t ∈ C | t = Wt} denotes the set of all fixed
points of the operator W. Note that

‖Ws − t‖2 ≤ ‖s − t‖2 + η‖s −Ws‖2, for all s ∈ C and t ∈ Fix(W),

is an equivalent representation of an η-demimetric operator. The class of η-demimetric operators have
been studied extensively in various instances of FPP in Hilbert spaces, see [39, 40, 42]. On the other
hand, Baillon [13] established the nonlinear ergodic theorem for nonexpansive operator as follows:

Theorem 1.1. [13] Let C be a nonempty, closed and convex subset of a real Hilbert space H and
W : C → C be a nonexpansive operator such that Fix(W) , ∅ then for all s ∈ C, the Cesáro means

Wnx =
1

n + 1

n∑
i=0

Wix, ∀ n ∈ {0, 1, 2, · · · , },

weakly converges to a fixed point of W.

Since then, the classical Cesáro means method has been considered for various classes of nonlinear
operators, see [18, 28, 29] and the references cited therein. Note that the Cesáro means method fails
to converge strongly for the class of nonexpansive operators [22]. In order to establish the strong
convergence results, one has to impose additional conditions on the algorithm. In 1967, Halpern [27]
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introduced and analyzed an iterative algorithm which strongly converges to the nearest fixed point
of the nonexpansive operator. It is remarked that the Halpern iterative algorithm coincides with the
Cesáro means method for linear operators. In 2000, Moudafi [33] proposed and analyzed the strongly
convergent viscosity iterative algorithm by utilizing a strict contraction operator instead of the anchor
point in the Halpern iterative algorithm. In order to generalize the classical Cesáro means method for
an infinite family of η-demimetric operators, we first consider the following auxiliary operator:

Qn,n+1 = Id,

Qn,n = βnT
′

nQn,n+1 + (1 − βn)Id,

Qn,n−1 = βn−1T
′

n−1Qn,n + (1 − βn−1)Id,
...

Qn,m = βmT
′

mQn,m+1 + (1 − βm)Id,
...

Qn,2 = β2T
′

2Qn,3 + (1 − β2)Id,

Wn = Qn,1 = β1T
′

1Qn,2 + (1 − β1)Id,

where 0 ≤ βm ≤ 1 and T
′

m = γs + (1 − γ)Tms for all s ∈ C with Tm being η-demimetric operator
and 0 < γ < 1− η. It is well-known in the context of operator Wn that each T

′

m is nonexpansive and the
limit limn→∞ Qn,m exists. Moreover,

Ws = lim
n→∞

Wns = lim
n→∞

Qn,1s, for all s ∈ C.

It follows from [41] that

Fix(W) =

∞⋂
n=1

Fix(Wn). (1.2)

Moreover, to enhance the speed of convergence of the proposed iterative algorithm, we also utilize
the inertial extrapolation technique essentially due to Polyak [36], see also [1–11, 31].

The rest of the paper is organized as follows: We present relevant preliminary concepts and results
in Section 2. We show the convergence analysis of the proposed iterative algorithm in Section 3 and
compute a numerical experiment for the viability of the algorithm in Section 4. Section 5 includes an
experiment on image deblurring with applications.

2. Preliminaries

We start this section with the mathematical preliminary concepts required in the sequel. Throughout
the paper, we assume the triplet (H , < ·, · >, ‖ · ‖) to be the real Hilbert space with the inner product
and induced norm. For a nonempty closed convex subset C of the Hilbert space H , PHC denotes the
associated metric projection operator which is firmly nonexpansive and satisfies 〈s−PHC s, PHC s− t〉 ≥ 0,
for all s ∈ H and t ∈ C. Recall that a set-valued operator A : H → 2H is said to be monotone, if for all
s, t ∈ H , u ∈ Ax and v ∈ Ay, we have 〈s − t, u − v〉 ≥ 0. Moreover, A is said to be maximal monotone
if there is no proper monotone extension of A. For a monotone operator A, the associated resolvent
operator JA

m of index m > 0 is defined as

JA
m = (Id + mA)−1,
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where (·)−1 indicates the inverse operator. Note that the resolvent operator JA
m is well defined

everywhere on Hilbert spaceH . Further, JA
m is single valued and satisfies the firmly nonexpansiveness.

Furthermore, x ∈ A−1(0) if and only if s ∈ Fix(JA
m).

The rest of this section is organized with the celebrated results required in the sequel. The following
lemma is a special case of Lemma 2.4 in [30].

Lemma 2.1. Let µ, ν, ξ̄ ∈ H . Let α, β, γ ∈ R with α + β + γ = 1 then we have

(i) ‖µ + ν‖2 ≤ ‖µ‖2 + 2〈ν, µ + ν〉;
(ii) ‖αµ + βν + γξ̄‖2 = α‖µ‖2 + β‖ν‖2 + γ‖ξ̄‖2 − αβ‖µ − ν‖2 − αγ‖µ − ξ̄‖2 − βγ‖ν − ξ̄‖2.

Lemma 2.2. [12] Let W : C → C be an operator defined on a nonempty closed convex subset C
of a real Hilbert space H and let (pn) be a sequence in C. If pn ⇀ p and if (Id − W)pn → 0, then
p ∈ Fix(W)

Lemma 2.3. [38] Let C be a nonempty, closed and convex subset of a Hilbert space H and let
W : C → H be an η-demimetric operator with η ∈ (−∞, 1). Then Fix(W) is closed and convex.

Lemma 2.4. [42] Let C be a nonempty, closed and convex subset of a Hilbert space H and let
W : C → H be an η-demimetric operator with η ∈ (−∞, 1) and Fix(W) , ∅. Let γ be a real number
with 0 < γ < 1− η and set T ′ = (1− γ)Id + γW, then T ′ is a quasi-nonexpansive operator of C intoH .

Lemma 2.5. [15] Let C be a nonempty bounded closed convex subset of a uniformly convex Banach
space and W : C → C be a nonexpansive operator. For each s ∈ C and the Cesáro means
Wns= 1

n+1

∑n
i=0 Wis, then lim supn→∞ ‖Wns −W(Wns)‖ = 0.

Lemma 2.6. [14] Let A ⊆ H×H be a maximal monotone operator and let B be a Lipschitz continuous
and monotone operator onH . Then A + B is a maximal monotone operator.

Lemma 2.7. [23] Let A ⊆ H ×H be a maximal monotone operator and let B be an operator on H .
Define S µ := (Id + µA)−1(Id − µB), µ > 0. Then we have Fix(S µ) = (A + B)−1(0), for all µ > 0.

Lemma 2.8. [46] Let (bn) be a sequence of nonnegative real numbers and there exists n0 ∈ N such
that

bn+1 ≤ (1 − ψn)bn + ψncn + dn, ∀ n ≥ n0,

where (ψn) ⊂ (0, 1) and (cn), (dn) with the following conditions hold:

(I)
∑∞

n=1 ψn = ∞;
(II) lim supn→∞ cn ≤ 0;

(III)
∑∞

n=1 dn < ∞, ∀ 0 ≤ dn(0 ≤ n);

then limn→∞ bn = 0.

Lemma 2.9. [32] Let (qn) be a sequence of nonnegative real numbers. Suppose that there is a
subsequence (qn j) of (qn) such that qn j < qn j+1 for all j ∈ N, then there exists a nondecreasing sequence
(εk) of N such that limk→∞ εk = ∞ and satisfy the following properties such that

qεk ≤ qεk+1 and qk ≤ qεk+1,

for some large number k ∈ N. Thus, εk is the largest number n in the set {1, 2, · · · , k} such that
qn < qn+1.
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3. Main results

In this section, we prove the following strong convergence result.

Theorem 3.1. Let A ⊆ H × H be a maximal monotone operator and let B be a monotone and ρ-
Lipschitz operator for some ρ > 0 on a real Hilbert spaceH . Let Wn be the W-operator and let h be a
λ-contraction on H with λ ∈ [0, 1). Assume that Γ = (A + B)−1(0) ∩ Fix(W) , ∅, µ1 > 0, σ ∈ (0, 1),
{ξ̄n} ⊂ [0, 1) and {αn}, {βn} are sequences in (0, 1). For given p0, p1 ∈ H , let the iterative sequence {pn}

be generated by 
un = pn + ξ̄n(pn − pn−1);
vn = JA

µn
(Id − µnB)un;

sn = vn − µn(Bvn − Bun);
pn+1 = αnh(pn) + (1 − αn − βn)pn + βn

1
n

∑n−1
i=0 Wisn.

(3.1)

Assume that the following step size rule

µn+1 =

{
min{ σ‖un−vn‖

‖Bun−Bvn‖
, µn}, if Bun − Bvn , 0;

µn, otherwise,

and conditions:

(C1)
∑∞

n=1 ξ̄n‖pn − pn−1‖ < ∞;

(C2) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞, and for each n ∈ N, 0 < a∗ < lim infn→∞ βn ≤ lim supn→∞ βn <

b∗ < 1 − αn, where a∗, b∗ be positive real numbers,
hold. Then the sequence {pn} generated by (3.1) converges strongly to an element in Γ.

The following results from [23] are crucial for the analysis of our main result.

Lemma 3.1. [23] The sequence µn generated by (3.1) is a nonincreasing sequence with a lower bound
of min{µ1,

σ
ρ
}.

Lemma 3.2. [23] Assume that Conditions (C1) and (C2) hold and let (sn) be any sequence generated
by (3.1), we have

‖sn − p̄‖2 ≤ ‖pn − p̄‖2 −
(
1 − σ2 µ2

n

µ2
n+1

)
‖pn − vn‖

2 (3.2)

and
‖sn − vn‖ ≤ σ

µn

µn+1
‖pn − vn‖. (3.3)

Lemma 3.3. Assume that Conditions (C1) and (C2) hold and suppose that

lim
n→∞
‖pn − un‖ = lim

n→∞
‖pn − vn‖ = lim

n→∞
‖pn − sn‖ = lim

n→∞

∥∥∥sn −
1
n

n−1∑
i=0

Wisn

∥∥∥ = 0.

Let (pn) and (un) be two sequences generated by (3.1). If a subsequence (pnt) of pn converges weakly
to some p∗ ∈ H then p∗ ∈ Γ.
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Proof. Let p∗ ∈ H such that pnt ⇀ p∗ then p∗ ∈ (A + B)−1(0) follows from [23, Lemma 7]. Since
limn→∞ ‖pn − sn‖ = 0 and pnt ⇀ p∗ therefore we have snt ⇀ p∗. Since

lim
n→∞
‖sn −

1
n

n−1∑
i=0

Wisn‖ = 0,

therefore, utilizing Lemma 2.2, we get p∗ ∈ Fix(Wi) and hence p∗ ∈ Γ. �

Now we are able to prove the main result of this section.

Proof of Theorem 3.1. For simplicity, the proof is divided into the following three steps:
Step 1. Show that the sequence (pn) is bounded.
Let p̄ ∈ Γ, then for each n ∈ N we have

‖un − p̄‖2 = ‖pn − p̄ + ξ̄n(pn − pn−1)‖2

≤ ‖pn − p̄‖2 + ξ̄2
n‖pn − pn−1‖

2 + 2ξ̄n〈pn − p̄, pn − pn−1〉. (3.4)

Set Wn = 1
N+1

∑N
i=0 Wi and utilizing Lemma 2.4 we have

‖Wns −Wnt‖ =
∥∥∥1

n

n−1∑
i=0

Wis −
1
n

n−1∑
i=0

Wit
∥∥∥ ≤ 1

n

n−1∑
i=0

‖Wis −Wit‖

≤
1
n

n−1∑
i=0

‖s − t‖ = ‖s − t‖.

It follows from the above estimate that Wn is a nonexpansive operator. Moreover, for any p̄ ∈ Γ, we
have that Wn p̄ = 1

n

∑n−1
i=0 Wi p̄ = p̄. Since limn→∞(1 − σ2 µ2

n
µ2

n+1
) = 1 − σ2 > 0, therefore for each n ≥ n0

where n0 ∈ N, we have that

1 − σ2 µ2
n

µ2
n+1

> 0. (3.5)

From (3.2) and (3.5), we obtain
‖sn − p̄‖ ≤ ‖pn − p̄‖. (3.6)

Further, from (C2) and (3.6), we have

‖pn+1 − p̄‖ = ‖αn(h(pn) − p̄) + (1 − αn − βn)(pn − p̄) + βn(Wnsn − p̄)‖
≤ αn‖h(pn) − p̄‖ + (1 − αn − βn)‖pn − p̄‖ + βn‖Wnsn − p̄‖

≤ αnλ‖pn − p̄‖ + αn‖h(p̄) − p̄‖ + (1 − αn)‖pn − p̄‖

= [1 − αn(1 − λ)]‖pn − p̄‖ + αn(1 − λ)
‖h( p̄) − p̄‖

1 − λ

≤ max{‖pn − p̄‖,
‖h( p̄) − p̄‖

1 − λ
}.

Thus, for all n ≥ n0, ‖pn+1 − p̄‖ ≤ max{‖pn0 − p̄‖, ‖h( p̄)−p̄‖
1−λ }. This implies that (pn) is bounded.

Step 2. Compute the following two estimates:

(i) : βn
(
1 − σ2 µ2

n

µ2
n+1

)
‖pn − vn‖

2 + βn(1 − αn − βn)‖pn −Wnsn‖
2
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≤ ‖pn − p̄‖2 − ‖pn+1 − p̄‖2 + αn‖h(pn) − p̄‖2; (3.7)

(ii) :‖pn+1 − p̄‖2 ≤ [1 − αn(1 − λ)]‖pn − p̄‖2

+ αn(1 − λ)
[ 2
1 − λ

(βn‖pn −Wnsn‖‖pn+1 − p̄‖ + 〈h( p̄) − p̄, pn+1 − p̄)〉)
]
. (3.8)

Utilizing Lemma 2.1(ii), we obtain

‖pn+1 − p̄‖2 = ‖αn(h(pn) − p̄) + (1 − αn − βn)(pn − p̄) + βn(Wnsn − p̄)‖2

= αn‖h(pn) − p̄‖2 + (1 − αn + βn)‖pn − p̄‖2 + βn‖(Wnsn − p̄)‖2

−αn(1 − αn − βn)‖h(pn) − pn‖
2

−βn(1 − αn − βn)‖pn −Wnsn‖
2 − αnβn‖h(pn) −Wnsn‖

2

≤ αn‖h(pn) − p̄‖2 + (1 − αn − βn)‖pn − p̄‖2 + βn‖sn − p̄‖2

−βn(1 − αn − βn)‖pn −Wnsn‖
2.

Now utilizing (3.2) in the above estimate, we get

‖pn+1 − p̄‖2 ≤ αn‖h(pn) − p̄‖2 + (1 − αn)‖pn − p̄‖2 − βn(1 − αn − βn)‖pn −Wnsn‖
2

−βn(1 − σ2 µ2

µ2
n+1

)‖pn − vn‖
2

≤ αn‖h(pn) − p̄‖2 + ‖pn − p̄‖2 − βn(1 − αn − βn)‖pn −Wnsn‖
2

−βn(1 − σ2 µ2

µ2
n+1

)‖pn − vn‖
2.

Simplifying the above estimate, we have the desired estimate (3.7).
Next, by using (C2) and setting jn = (1 − βn)pn + βnWnsn, we get

‖ jn − p̄‖ ≤ ‖pn − p̄‖ (3.9)

and
‖pn − jn‖ = βn‖pn −Wnsn‖. (3.10)

Utilizing (3.9), (3.10), Lemma 2.1(i) and (ii), the desired estimate (3.8) follows from the following
calculation:

‖pn+1 − p̄‖2

= ‖(1 − αn)( jn − p̄) + αn(h(pn) − h(p̄)) − αn(pn − jn) − αn( p̄ − h( p̄))‖2

≤ ‖(1 − αn)( jn − p̄) + αn(h(pn) − h(p̄))‖2 − 2αn〈pn − jn + p̄ − h(p̄), pn+1 − p̄〉

≤ (1 − αn)‖ jn − p̄‖2 + αn‖h(pn) − h( p̄)‖2 − 2αn〈pn − jn + p̄ − h(p̄), pn+1 − p̄〉

≤ (1 − αn)‖pn − p̄‖2 + αnλ‖pn − p̄‖2 + 2αn〈pn − jn, p̄ − pn+1〉 + 2αn〈h( p̄) − p̄, pn+1 − p̄〉

≤ [1 − αn(1 − λ)]‖pn − p̄‖2 + 2αn‖pn − jn‖‖pn+1 − p̄‖ + 2αn〈h( p̄) − p̄, pn+1 − p̄〉

= [1 − αn(1 − λ)]‖pn − p̄‖2 + 2αnβn‖pn −Wnsn‖‖pn+1 − p̄‖ + 2αn〈h( p̄) − p̄, pn+1 − p̄〉
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=
[
1 − αn(1 − λ)

]
‖pn − p̄‖2 + αn(1 − λ)

[ 2
1 − λ

(
βn‖pn −Wnsn‖‖pn+1 − p̄‖ + 〈h( p̄) − p̄, pn+1 − p̄〉

)]
.

Step 3. Show that limn→∞ ‖pn − p̄‖ = 0.
We consider the two possible cases on the sequence (‖pn − p̄‖).
Case A. For all n ≥ n0, ‖pn+1 − p̄‖2 ≤ ‖pn − p̄‖2 and n0 ∈ N. This implies that limn→∞ ‖pn − p̄‖ exists.
Since limn→∞

(
1 − σ2 µ2

n
µ2

n+1

)
= 1 − σ2 > 0. By using (C2) and (3.7), we have

lim
n→∞
‖pn − vn‖ = lim

n→∞
‖pn −Wnsn‖ = 0. (3.11)

From (3.3), we get
lim
n→∞
‖sn − vn‖ = 0. (3.12)

By the definition of (un) and (C1), we have

lim
n→∞
‖un − pn‖ = lim

n→∞
ξ̄n‖pn − pn−1‖ = 0. (3.13)

By using the triangle inequality, we obtain the following estimates:

‖un − vn‖ ≤ ‖un − pn‖ + ‖pn − vn‖ → 0, as n→ ∞;
‖un − sn‖ ≤ ‖un − vn‖ + ‖vn − sn‖ → 0, as n→ ∞;
‖pn − sn‖ ≤ ‖pn − vn‖ + ‖vn − sn‖ → 0, as n→ ∞;

‖sn −Wnsn‖ ≤ ‖pn − sn‖ + ‖pn −Wnsn‖ → 0, as n→ ∞.

By using Lemma 2.5, we have

lim sup
n→∞

‖Wnsn −W(Wnsn)‖ = 0. (3.14)

Note that for all n ∈ N, we get

‖pn+1 − pn‖ ≤ ‖pn+1 −Wnsn‖ + ‖pn −Wnsn‖

≤ αn‖h(pn) − pn‖ + (2 − βn)‖pn −Wnsn‖. (3.15)

From (3.11) and (C2), the estimate (3.15) implies that

lim
n→∞
‖pn+1 − pn‖ = 0. (3.16)

Similarly, from (3.13), (3.16) and the following triangle inequality, we have

‖pn+1 − un‖ ≤ ‖pn+1 − pn‖ + ‖pn − un‖ → 0, as n→ ∞.

Since (pn) is bounded, then there exists a subsequence (pnt) of (pn) with pnt ⇀ p∗ ∈ H . Now utilizing
Lemma 3.3 we have p∗ ∈ Γ.

By making use of the estimate (3.16), we get

lim sup
n→∞

〈h( p̄) − p̄, pn+1 − p̄〉 ≤ lim sup
n→∞

〈h(p̄) − p̄, pn+1 − pn〉 + lim sup
n→∞

〈h( p̄) − p̄, pn − p̄〉 ≤ 0. (3.17)
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From the estimate (3.17) and Lemma 2.8, we get limn→∞ ‖pn − p̄‖ = 0.
Case B. There exists a subsequence (‖pnk − p̄‖2) of (‖pn − p̄‖2) such that ‖pnk − p̄‖ < ‖pnk+1 − p̄‖ for all
k ∈ N.

It follows from Lemma 2.9 that there exists a nondecreasing sequence (bm) ∈ N such that
limm→∞ bm = ∞, for all m ∈ N with the inequality ‖pbm − p̄‖2 ≤ ‖pbm+1 − p̄‖2 holds. In the similar
fashion from (3.7), we obtain

βbm

(
1 − σ2

µ2
bm

µ2
bm+1

)
‖pbm − vbm‖

2 + βbm(1 − αbm − βbm)‖pbm − S bmwbm‖
2

≤ ‖pbm − p̄‖2 − ‖pbm+1 − p̄‖2 + αbm‖h(pbm) − p̄‖2

≤ αbm‖h(pbm) − p̄‖2.

Since limn→∞ αn = 0, so we get

lim
m→∞
‖pbm − vbm‖ = lim

m→∞
‖pbm − S bmwbm‖ = 0.

Similarly from Case A, we have

lim sup
m→∞

〈h(p̄) − p̄, pbm+1 − p̄〉 ≤ 0.

Using (3.8) for n ≥ max{n∗, n0}, we have the following estimate:

‖pbm+1 − p̄‖2

≤ [1 − αbm(1 − λ)]‖pbm − p̄‖2 + αbm(1 − λ)[
2

1 − λ
(βbm‖pbm − S bmwbm‖‖pbm+1 − p̄‖ + 〈h( p̄) − p̄, pbm+1 − p̄〉)]

≤ [1 − αbm(1 − λ)]‖pbm+1 − p̄‖2 + αbm(1 − λ)[
2

1 − λ
(βbm‖pbm − S bmwbm‖‖pbm+1 − p̄‖ + 〈h( p̄) − p̄, pbm+1 − p̄〉)].

The above estimate yields that

‖pbm+1 − p̄‖2 ≤
2

1 − λ
(
βbm‖pbm − S bmwbm‖‖pbm+1 − p̄‖ + 〈h( p̄) − p̄, pbm+1 − p̄〉

)
. (3.18)

Therefore, lim supm→∞ ‖pbm − p̄‖2 ≤ 0. Therefore, pn → p̄ ∈ Γ and this completes the proof. �

We now propose a variant of the iterative algorithm (3.1) embedded with the Halpern iterative
algorithm [27].

Theorem 3.2. Let A ⊆ H × H be a maximal monotone operator and let B be a monotone and ρ-
Lipschitz operator for some ρ > 0 on a real Hilbert spaceH . Let Wn be the W-operator and let h be a
λ-contraction onH with λ ∈ [0, 1). Assume that Γ = (A + B)−1(0) ∩ Fix(W) , ∅, (µ1) > 0, σ ∈ (0, 1),
{ξ̄n} ⊂ [0, 1) and {αn}, {βn} are sequences in (0, 1). For given q, p0, p1 ∈ H , let the iterative sequences
{pn}, {un}, {vn}, {wn} and {pn+1} be generated by

un = pn + ξ̄n(pn − pn−1);
vn = JA

µn
(Id − µnB)un;

sn = vn − µn(Bvn − Bun);
pn+1 = αnq + (1 − αn − βn)pn + βn

1
n

∑n−1
i=0 Wisn.

(3.19)
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Assume that the following step size rule

µn+1 =

{
min{ σ‖un−vn‖

‖Bun−Bvn‖
, µn}, if Bun − Bvn , 0,

µn, otherwise,

and conditions

(C1)
∑∞

n=1 ξ̄n‖pn − pn−1‖ < ∞;

(C2) limn→∞
αn
βn

= 0, 1 − αn − βn = 0 and
∑∞

n=1
αn
βn

= ∞;

(C3) For each n ∈ N, 0 < a∗ < lim infn→∞ βn ≤ lim supn→∞ βn < b∗ < 1 − αn, where a∗, b∗ be positive
real numbers hold.

Then the sequence {pn} generated by (3.19) converges strongly to a point in Γ.

Remark 3.1. In order to obtain the desired result, for the iteration (3.19), we have to assume a stopping
criteria for (3.19) to be n > nmax for some sufficiently large number nmax.

Proof. Observe that for each n ≥ 1, arguing similarly as in the proof of Theorem 3.1 (Steps 1–3), we
deduce that Γ is well defined, closed and bounded. Furthermore, the sequence (pn) is bounded and

lim
n→∞
‖pn+1 − pn‖ = 0. (3.20)

Let pn+1 = αnq + (1 − αn − βn)pn + βnWnsn. An easy calculation along (3.20), (C2) and (C3) implies
that

‖Wnsn − pn‖ ≤
1

(βn)
‖pn+1 − pn‖ +

αn

βn
‖q − pn‖.

The above estimate infers that
lim
n→∞
‖Wnsn − pn‖ = 0.

The rest of the proof of Theorem 3.2 is similar to the proof of Theorem 3.1 and is therefore omitted. �

The following remark elaborate how to align condition (C1) in a computer-assisted iterative
algorithm.

Remark 3.2. We remark here that the condition (C1) can easily be aligned in a computer-assisted
iterative algorithm since the value of ‖pn − pn−1‖ is quantified before choosing ξ̄n such that 0 ≤ ξ̄n ≤

̂̄ξn

with ̂̄ξn =

{
min{ Θn

‖pn−pn−1‖
, ξ̄}, i f pn , pn−1;

ξ̄, otherwise.

Here {Θn} denotes a sequence of positives
∑∞

n=1 Θn < ∞ and ξ̄ ∈ [0, 1).

4. Example and numerical results

In this section, we compute a numerical experiment for the viability of the iterative algorithm (3.1).

AIMS Mathematics Volume 8, Issue 10, 24590–24608.



24600

Example 4.1. Let H = R. We denote the inner product 〈s, t〉 = st, for all s, t ∈ R and induced norm
|s| =

√
〈s, t〉. Let the operators h, A, B : R → R be defined as h(s) = s

8 , As = 4s and Bs = 3s for
all s ∈ R. Observe that, h is a contraction with constant λ ∈ [0, 1), B is a monotone and ρ-Lipschitz
operator for some ρ > 0 and A is a maximal monotone operator such that (A + B)−1(0) = {0}. Let the
sequence of operators Ti : R→ R be defined by

Ti(s) =

{
−3s

i , s ∈ (−∞, 1);
s, s ∈ (1,∞).

Note that Ti is an infinite family of 3−i2
(3+i)2 -demimetric operators with

⋂∞
i=1 Fix(Ti) = 0 = Fix(W). Hence

Γ = (A + B)−1(0) ∩ Fix(W) = 0. In order to compute the numerical values of (pn), we choose Θ = 0.5,
αn = 1

n+1 , βn = n
2(n+1) , µ1 = 7.45 and σ = 0.785. Since

{
min{ 1

n2‖pn−pn−1‖
, 0.5}, i f pn , pn−1;

0.5, otherwise.

We now provide a numerical test for a comparison between accelerated Tseng’s type splitting method
defined in Theorem 3.1 (i.e., Theorem 3.1, ξ̄n , 0), standard Tseng’s type splitting method (i.e.,
Theorem 3.1, ξ̄n = 0), Algorithm 1 [31] and Theorem 2 [23]. The stopping criteria is defined as
En = ‖vn − un‖ < 10−5. Table 1 summarises the comparison of these algorithm with respect to the
following choices of initial inputs:

Choice 1. p0 = 4, p1 = 4.5.

Choice 2. p0 = 5, p1 = −3.

Choice 3. p0 = −1.3, p1 = −4.7.

Table 1. Numerical results for Example 4.1.

Choice 1 Choice 2 Choice 3
Iteration CPU(s) Iteration CPU(s) Iteration CPU(s)

(1) Theorem 3.1, ξ̄n , 0 11 0.053120 14 0.051362 10 0.048537
(2) Theorem 3.1, ξ̄n = 0 17 0.060018 19 0.058867 16 0.057642
(3) Algorithm 1 [31] 27 0.068117 37 0.069215 33 0.065345
(4) Theorem 2, Gibali et al. 36 0.074537 45 0.077642 38 0.068804

The error plotting En of ξ̄n , 0 and ξ̄n = 0 for each choice in Table 1 are shown in Figure 1.
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Figure 1. Comparison of Theorem 3.1 for ξ̄n , 0 and ξ̄n = 0 with Theorem 2 [23].

We can see from Table 1 and Figure 1 that the Theorem 3.1 with ξ̄n , 0 performs better as compared
to the Theorem 3.1 with ξ̄n = 0, Algorithm 1 [31] and Theorem 2 [23].

5. Applications

In this section, we demonstrate some theoretical as well as applied instances of the main result in
Section 3.

5.1. Split feasibility problem

The classical split feasibility problem (SFP), essentially due to Censor and Elfving [16], aims to
find ŝ ∈ ω := C ∩ h−1(Q) = {t̄ ∈ C : ht̄ ∈ Q}, where C ⊂ H1 and Q ⊂ H2 are nonempty, closed and
convex subsets ofH1 andH2, respectively. In order to derive the result for SFP from Theorem 3.1, we
recall the indicator operator of a nonempty, closed and convex subset C ofH1 as

ΦC(s∗) :=
{

0, s∗ ∈ C;
∞, otherwise.

It is well known that the subdifferential ∂ΦC associated with ΦC is a maximal monotone operator.
Recall also that ∂ΦC = N(µ,C), where N(µ,C) is the normal cone of C at µ. Utilizing this fact, we
conclude that the resolvent operator of ∂ΦC is the metric projection operator of H1 onto C. Setting
B(x̄) = ~∗(Id − PQ)~x̄, where PQ is the metric projection onto Q and A(x̄) = ∂ΦC(x̄) then the SCFP has
the inclusion structure as defined in (1.1). Since B is ρ-Lipschitz continuous, where ρ = ‖~‖2 = 1 and
A is maximal monotone, (see [12]), we, therefore, arrive at the following variant of Theorem 3.1:

Theorem 5.1. Assume that Γ = ω∩ Fix(W) , ∅. For given p0, p1 ∈ H1, let the iterative sequence (pn)
be generated by 

un = pn + ξ̄n(pn − pn−1);
vn = PC(Id − µn~

∗(Id − PQ)~)un;
sn = vn − µn((~∗(Id − PQ)~)vn − (~∗(Id − PQ)~)un);
pn+1 = αnh(pn) + (1 − αn − βn)pn + βn

1
n

∑n−1
i=0 Wisn.

(5.1)

Assume that the following step size rule:

µn+1 =

 min{ σ‖un−vn‖

‖(~∗(Id−PQ)~)un−(~∗(Id−PQ)~)vn‖
, µn} if (~∗(Id − PQ)~)un − (~∗(Id − PQ)~)vn , 0;

µn, otherwise,
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and conditions (C1) and (C2) hold. Then the sequence (pn) generated by (5.1) converges strongly to
an element in Γ.

5.2. Convex minimization problems

Let f : H → R ∪ (+∞) and g : H → R ∪ (+∞) be two convex, proper and lower semicontinuous
functions such that f differentiable with ρ-Lipschitz continuous gradient and g is such that its proximal
map. We consider the following convex minimization problem of finding x̄ ∈ H such that

f(x̄) + g(x̄) = min
x∈H

{
f(x) + g(x)

}
. (5.2)

In view of the Fermat’s rule, the problem (5.2) is equivalent to the following problem of finding x̄ ∈ H
such that

0 ∈ ∇f(x̄) + ∂g(x̄), (5.3)

where the subdifferential ∂g is a maximal monotone operator and the gradient ∇f is ρ-Lipschitz
continuous [12,37]. Assume that ω is the set of solutions of problem (1.1) and ω , ∅. In Theorem 3.1,
set that B := ∇f and A := ∂g. Then, we compute the following result.

Theorem 5.2. Let f : H → R ∪ (+∞), g : H → R ∪ (+∞) be two proper, convex and lower
semicontinuous functions on a real Hilbert space H . Assume that Γ = ω ∩

⋂∞
i=1 Fix(Wi) , ∅ and

ξ̄n is a bounded real sequence. For given p0, p1 ∈ H , let the iterative sequences (pn) be generated by
un = pn + ξ̄n(pn − pn−1);
vn = J∂gµn (Id − µn∇f)un;
sn = vn − µn(∇fvn − ∇fun);
pn+1 = αnh(pn) + (1 − αn − βn)pn + βn

1
n

∑n−1
i=0 Wisn.

(5.4)

Assume that the following step size rule

µn+1 =

{
min{ σ‖un−vn‖

‖∇fun−∇fvn‖
, µn}, if ∇fun − ∇fvn , 0;

µn, otherwise,

and the conditions (C1) and (C2) hold. Then the sequence (pn) generated by (5.4) converges strongly
to an element in Γ.

5.3. Application to image processing problems

Let h ∈ Rn×m be a blurring operator, z ∈ Rn be the original image and w ∈ Rm be the blurred and
noisy image (observed image) with v be the additive noise from Rm. The following structure is known
as an image recovery problem:

hz = w + v.

For solving this problem, we make use of the model of Tibshirani [43] which is known as LASSO
problem:

min
z∈Rn

{1
2
‖hz − w‖22 + k‖z‖1

}
, (5.5)
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where k > 0 is a regularization parameter. Problem (5.5) cannot be used to solve the image de-
blurring directly, as the image is sparse under some gradient transformation. In order to reconstruct
the images from their noisy, blurry and/or incomplete measurements, Guo et al. [26] proposed a novel
regularization model for reproducing high-quality images using fewer measurements than the state-of-
the-art methods. We therefore use the following model:

min
z∈Rn

{1
2
‖hz − w‖22 + k‖∇z‖1

}
. (5.6)

The Richardson iteration, which is often called the Landweber method [20, 21, 45], is generally used
as an iterative regularization method to solve (5.6). This method is defined as follows:

zk+1 = zk + ρhT (w − hzk), (5.7)

where ρ step size is constant. To ensure the convergence, the step size satisfy 0 < ρ < 2
ε2

max
and εmax is

the largest singular value of h. We set k = 0.7875 and µ = 0.001, ξn = 1
(100∗n+1)2 , αn = 1

2n , βn = 1
88n+1 .

The quality of the the restored images are analyzed on the following scale of signal to noise ratio (SNR)
defined as S NR = 20 log10

‖z‖2

‖z−zn‖2
, where z and zn are the original and estimated images at iteration n,

respectively. We compare the performance of the algorithms abbreviated as Theorem 5.1, ξ̄n , 0,
Theorem 5.1, ξ̄n = 0, Algorithm 1 [31] and Theorem 2 of Gibali et al. [23] on the test images (Mona
Lisa and Cameraman) via the image restoration experiment for motion operator, respectively.

It can be observed from Figures 3 and 5 that the larger SNR values infer the better restored images.
We can see from Table 2, and the corresponding test images in Figures 2 and 4, that the inertial variant
of the iterative algorithm in Theorem 5.1 (i.e., ξ̄n , 0) performs better as compared to the non-inertial
variant (i.e., ξ̄n = 0) Algorithm 1 [31] and Theorem 2 of Gibali and Thong [23].

(a) Original image (b) Observed image (c) Reconstructed image

Figure 2. (a) Original image (182 × 276) with a motion length 30 and an angle 45; (b)
Observed image, degraded by motion; (c) Reconstructed image.
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Figure 3. Comparison of (5.1), ξ̄n , 0, (5.1), ξ̄n = 0 and Theorem 2 [23].

(a) Original image (b) Observed image (c) Reconstructed image

Figure 4. (a) Original image (256 × 256)with Gaussian blur of size 9 × 9 and standard
deviation σ = 6; (b) Observed image, degraded by Gaussian; (c) Reconstructed image.
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Figure 5. Comparison of (5.1), ξ̄n , 0, (5.1), ξ̄n = 0 and Algorithm 2 [23].

Table 2. The SNR in decibel(dB) values and average per iteration computation time of the
two optimization algorithms.

Mona Lisa Cameraman
No. of test image SNR(dB) CPU(sec) SNR(dB) CPU(sec)
(1) Theorem 5.1, ξ̄n , 0 38.3032 30.1321 34.9918 20.1326
(2) Theorem 5.1, ξ̄n = 0 37.5156 26.3298 27.7731 17.0077
(3) Algorithm 1 [31] 29.3231 25.4876 21.8794 15.6142
(4) Theorem 2 of Gibali and Thong 22.3231 23.1861 17.6226 13.0051
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6. Conclusions

In this paper, we have devised an accelerated Visco-Cesáro means Tseng’s type splitting method for
computing a common solution of a monotone inclusion problem and the FPP associated with an infinite
family of η-demimetric operators in Hilbert spaces. We have incorporated an appropriate numerical
example for the viability the iterative algorithm. We have also included some theoretical, as well as
applied instances, of the main result in Section 3 that can provide an important future research direction
in these theories.
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of hybrid projection with Cesáro mean method for the split equilibrium and general

AIMS Mathematics Volume 8, Issue 10, 24590–24608.

http://dx.doi.org/http://dx.doi.org/10.1007/s11590-021-01810-4
http://dx.doi.org/http://dx.doi.org/10.1007/s12190-021-01660-4
http://dx.doi.org/http://dx.doi.org/10.1007/s10444-021-09920-4
http://dx.doi.org/http://dx.doi.org/10.1186/s13660-022-02803-2
http://dx.doi.org/http://dx.doi.org/10.3934/math.2022768
http://dx.doi.org/http://dx.doi.org/10.12775/TMNA.2022.015
http://dx.doi.org/http://dx.doi.org/10.3934/math.2023333
http://dx.doi.org/http://dx.doi.org/10.37193/CJM.2023.01.21
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-319-48311-5
http://dx.doi.org/http://dx.doi.org/10.1007/BF02762776
http://dx.doi.org/http://dx.doi.org/10.1007/BF02142692
http://dx.doi.org/http://dx.doi.org/10.1016/S1076-5670(08)70157-5


24607

system of finite variational inequalities, J. Comput. Appl. Math., 318 (2017), 658–673.
http://dx.doi.org/10.1016/j.cam.2015.10.006

19. J. Douglas, H. Rachford, On the numerical solution of the heat conduction problem in two and three
space variables, Trans. Amer. Math. Soc., 82 (1956), 421–439. http://dx.doi.org/10.2307/1993056

20. J. Duchi, S. Shalev-Shwartz, Y. Singer, T. Chandra, Efficient projections onto the l1-ball for
learning in high dimensions, Proceedings of the 25th International Conference on Machine
Learning, 2008, 272–279. http://dx.doi.org/10.1145/1390156.1390191

21. H. Engl, M. Hanke, A. Neubauer, Regularization of inverse problems, Dordrecht: Kluwer
Academic Publishers, 2000.

22. A. Genel, J. Lindenstrauss, An example concerning fixed points, Israel J. Math., 22 (1975), 81–86.
http://dx.doi.org/10.1007/BF02757276

23. A. Gibali, D. Thong, Tseng type methods for solving inclusion problems and its applications,
Calcolo, 55 (2018), 49. http://dx.doi.org/10.1007/s10092-018-0292-1

24. A. Gibali, A new split inverse problem and an application to least intensity feasible solutions,
Online Journal Pure and Applied Functional Analysis, 2 (2017), 243–258.

25. A. Gibali, S. Reich, R. Zalas, Outer approximation methods for solving
variational inequalities in Hilbert space, Optimization, 66 (2017), 417–437.
http://dx.doi.org/10.1080/02331934.2016.1271800

26. W. Guo, J. Qin, W. Yin, A new detail-preserving regularization scheme, SIAM J. Imaging Sci., 7
(2014), 1309–1334. http://dx.doi.org/10.1137/120904263

27. B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73 (1967), 957–961.

28. S. Harisa, M. Khan, F. Mumtaz, N. Farid, A. Morsy, K. Nisar, et al., Shrinking Cesáro means
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