In this paper, we investigate the existence and nonexistence of positive solutions to a class of nonlocal partial difference equations via a variant version of the mountain pass theorem. The conditions in our obtained results release the classical (AR) condition in some sense.
Citation: Yuhua Long. Existence and nonexistence of positive solutions to a class of nonlocal discrete Kirchhoff type equations[J]. AIMS Mathematics, 2023, 8(10): 24568-24589. doi: 10.3934/math.20231253
In this paper, we investigate the existence and nonexistence of positive solutions to a class of nonlocal partial difference equations via a variant version of the mountain pass theorem. The conditions in our obtained results release the classical (AR) condition in some sense.
[1] | C. O. Alves, F. J. S. A. Correa, T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49 (2005), 85–93. https://doi.org/10.1016/j.camwa.2005.01.008 doi: 10.1016/j.camwa.2005.01.008 |
[2] | K. Perera, Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differ. Equ., 221 (2006), 246–255. https://doi.org/10.1016/j.jde.2005.03.006 doi: 10.1016/j.jde.2005.03.006 |
[3] | Z. T. Zhang, K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456–463. https://doi.org/10.1016/j.jmaa.2005.06.102 doi: 10.1016/j.jmaa.2005.06.102 |
[4] | A. M. Mao, Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without P.S. condition, Nonlinear Anal., 70 (2009), 1275–1287. https://doi.org/10.1016/j.na.2008.02.011 doi: 10.1016/j.na.2008.02.011 |
[5] | S. Gupta, G. Dwivedi, Ground state solution to N-Kirchhoff equation with critical exponential growth and without Ambrosetti-Rabinowitz condition, Rend. Circ. Mat. Palermo Ser. 2, 2023. https://doi.org/10.1007/s12215-023-00902-7 doi: 10.1007/s12215-023-00902-7 |
[6] | X. M. He, W. M. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbb{R}^3$, J. Differ. Equ., 252 (2012), 1813–1834. https://doi.org/10.1016/j.jde.2011.08.035 doi: 10.1016/j.jde.2011.08.035 |
[7] | K. Wu, F. Zhou, G. Z. Gu, Some remarks on uniqueness of positive solutions to Kirchhoff type equations, Appl. Math. Lett., 124 (2022), 107642. https://doi.org/10.1016/j.aml.2021.107642 doi: 10.1016/j.aml.2021.107642 |
[8] | Y. H. Long, L. Wang, Global dynamics of a delayed two-patch discrete SIR disease model, Commun. Nonlinear Sci. Numer. Simul., 83 (2020), 105117. https://doi.org/10.1016/j.cnsns.2019.105117 doi: 10.1016/j.cnsns.2019.105117 |
[9] | J. S. Yu, J. Li, Discrete-time models for interactive wild and sterile mosquitoes with general time steps, Math. Biosci., 346 (2022), 108797. https://doi.org/10.1016/j.mbs.2022.108797 doi: 10.1016/j.mbs.2022.108797 |
[10] | J. S. Yu, Z. M. Guo, X. F. Zou, Periodic solutions of second order self-adjoint difference equations, J. Lond. Math. Soc., 71 (2005), 146–160. https://doi.org/10.1112/S0024610704005939 doi: 10.1112/S0024610704005939 |
[11] | Z. Zhou, J. X. Ling, Infinitely many positive solutions for a discrete two point nonlinear boundary value problem with $\phi_{c}$-Laplacian, Appl. Math. Lett., 91 (2019), 28–34. https://doi.org/10.1016/j.aml.2018.11.016 doi: 10.1016/j.aml.2018.11.016 |
[12] | J. H. Kuang, Z. M. Guo, Heteroclinic solutions for a class of $p$-Laplacian difference equations with a parameter, Appl. Math. Lett., 100 (2020), 106034. https://doi.org/10.1016/j.aml.2019.106034 doi: 10.1016/j.aml.2019.106034 |
[13] | A. Nastasi, S. Tersian, C. Vetro, Homoclinic solutions of nonlinear Laplacian difference equations without Ambrosetti-Rabinowitz condition, Acta Math. Sci., 41 (2021), 712–718. https://doi.org/10.1007/s10473-021-0305-z doi: 10.1007/s10473-021-0305-z |
[14] | S. S. Cheng, Partial difference equations, London: Taylor and Francis, 2003. |
[15] | H. Zhang, Y. H. Long, Multiple existence results of nontrivial solutions for a class of second-order partial difference equations, Symmetry, 15 (2023), 1–14. https://doi.org/10.3390/sym15010006 doi: 10.3390/sym15010006 |
[16] | Y. H. Long, H. Zhang, Three nontrivial solutions for second-order partial difference equation via Morse theory, J. Funct. Spaces, 2022 (2022), 1–9. https://doi.org/10.1155/2022/1564961 doi: 10.1155/2022/1564961 |
[17] | Y. H. Long, D. Li, Multiple nontrivial periodic solutions to a second-order partial difference equation, Electron. Res. Arch., 31 (2023), 1596–1612. https://doi.org/10.3934/era.2023082 doi: 10.3934/era.2023082 |
[18] | Y. H. Long, D. Li, Multiple periodic solutions of a second-order partial difference equation involving p-Laplacian, J. Appl. Math. Comput., 69 (2023), 3489–3508. https://doi.org/10.1007/s12190-023-01891-7 doi: 10.1007/s12190-023-01891-7 |
[19] | S. H. Wang, Z. Zhou, Periodic solutions for a second-order partial difference equation, J. Appl. Math. Comput., 69 (2023), 731–752. https://doi.org/10.1007/s12190-022-01769-0 doi: 10.1007/s12190-022-01769-0 |
[20] | M. Bohner, G. Caristi, A. Ghobadi, S. Heidarkhani, Three solutions for discrete anisotropic Kirchhoff-type problems, Demonstratio Math., 56 (2023), 1–13. https://doi.org/10.1515/dema-2022-0209 doi: 10.1515/dema-2022-0209 |
[21] | Y. H. Long, X. Q. Deng, Existence and multiplicity solutions for discrete Kirchhoff type problems, Appl. Math. Lett., 126 (2022), 107817. https://doi.org/10.1016/j.aml.2021.107817 doi: 10.1016/j.aml.2021.107817 |
[22] | Y. H. Long, Multiple results on nontrivial solutions of discrete Kirchhoff type problems, J. Appl. Math. Comput., 69 (2023), 1–17. https://doi.org/10.1007/s12190-022-01731-0 doi: 10.1007/s12190-022-01731-0 |
[23] | Y. H. Long, Q. Q. Zhang, Infinitely many large energy solutions to a class of nonlocal discrete elliptic boundary value problems, Commun. Pure Appl. Math., 22 (2023), 1545–1564. https://doi.org/10.3934/cpaa.2023037 doi: 10.3934/cpaa.2023037 |
[24] | Y. H. Long, Nontrivial solutions of discrete Kirchhoff-type problems via Morse theory, Adv. Nonlinear Anal., 11 (2022), 1352–1364. https://doi.org/10.1515/anona-2022-0251 doi: 10.1515/anona-2022-0251 |
[25] | I. Ekeland, Convexity methods in Hamiltonian mechanics, Berlin, Heidelberg: Springer, 1990. https://doi.org/10.1007/978-3-642-74331-3 |
[26] | J. Ji, B. Yang, Eigenvalue comparisons for boundary value problems of the discrete elliptic equation, Commun. Appl. Anal., 12 (2008), 189–198. |
[27] | G. Cerami, Un criterio di esistenza per i punti critici su varietà illimitate, Rend. Instituto Lombardo Sci. Lett., 112 (1978), 332–336. |