Let $ f: M^n\to \mathbb{R}^{n+1}_1 $ be an $ n $-dimensional umbilic-free spacelike hypersurface in the $ (n+1) $-dimensional Lorentzian space $ \mathbb{R}^{n+1}_1 $ with an induced metric $ I $. Let $ II $ be the second fundamental form and $ H $ the mean curvature of $ f $. One can define the conformal metric $ g = \frac{n}{n-1}(\|II\|^2-nH^2)I $ on $ f(M^n) $, which is invariant under the conformal transformation group of $ \mathbb{R}^{n+1}_1 $. If the Ricci curvature of $ g $ is constant, then the spacelike hypersurface $ f $ is called a conformal Einstein hypersurface. In this paper, we completely classify the $ n $-dimensional spacelike conformal Einstein hypersurfaces up to a conformal transformation of $ \mathbb{R}^{n+1}_1 $.
Citation: Yayun Chen, Tongzhu Li. Classification of spacelike conformal Einstein hypersurfaces in Lorentzian space $ \mathbb{R}^{n+1}_1 $[J]. AIMS Mathematics, 2023, 8(10): 23247-23271. doi: 10.3934/math.20231182
Let $ f: M^n\to \mathbb{R}^{n+1}_1 $ be an $ n $-dimensional umbilic-free spacelike hypersurface in the $ (n+1) $-dimensional Lorentzian space $ \mathbb{R}^{n+1}_1 $ with an induced metric $ I $. Let $ II $ be the second fundamental form and $ H $ the mean curvature of $ f $. One can define the conformal metric $ g = \frac{n}{n-1}(\|II\|^2-nH^2)I $ on $ f(M^n) $, which is invariant under the conformal transformation group of $ \mathbb{R}^{n+1}_1 $. If the Ricci curvature of $ g $ is constant, then the spacelike hypersurface $ f $ is called a conformal Einstein hypersurface. In this paper, we completely classify the $ n $-dimensional spacelike conformal Einstein hypersurfaces up to a conformal transformation of $ \mathbb{R}^{n+1}_1 $.
[1] | M. Cahen, Y. Kerbrat, Domaines symmétriques des quadriques projectives, J. Math. Pure Appl., 62 (1983), 327–348. |
[2] | X. Ji, T. Z. Li, H. F. Sun, Spacelike hypersurfaces with constant conformal sectional curvature in $R^{n+1}_1$, Pac. J. Math., 300 (2019), 17–37. http://doi.org/10.2140/pjm.2019.300.17 doi: 10.2140/pjm.2019.300.17 |
[3] | T. Z. Li, C. X. Nie, Conformal geometry of hypersurfaces in Lorentz space forms, Geometry, 2013 (2013), 549602. http://doi.org/10.1155/2013/549602 doi: 10.1155/2013/549602 |
[4] | T. Z. Li, C. X. Nie, Spacelike Dupin hypersurfaces in Lorentzian space forms, J. Math. Soc. Japan, 70 (2018), 463–480. http://doi.org/10.2969/jmsj/07027573 doi: 10.2969/jmsj/07027573 |
[5] | B. O'Neill, Semi-Riemannian geometry, New York: Academic Press, 1983. |
[6] | T. S. Yau, Remarks on conformal transformations, J. Differential Geom., 8 (1973), 369–381. http://doi.org/10.4310/jdg/1214431798 doi: 10.4310/jdg/1214431798 |